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ABSTRACT

Recently, finite elements method (FEM) has beed usost popular for analysis of stress,
vibration, heat flow and many other phenomena. Wighincrease in computing power, FEM is
wider used for the static and dynamic analysisotdirbearing system. In this paper, the lateral
vibration of large turbo machinery is studied. &M model is created and the eigenvalues and
eigenvectors are calculated and analyzed to firtdralafrequencies, critical speeds, mode
shapes and unbalance responses. Then critical au® rshapes are determined. Finally,
responses of unbalance force are analyzed and cedhpa case of isotropic bearings and
anisotropic bearings.

Keywords finite element method (FEM), lateral vibration,darmachinery, mode shape, critical
speed.

1. INTRODUCTION

Lateral rotor vibration (LRV) is radial —plane aiddimotion of the rotor spin axis. LRV is
an important design consideration in many typesrathting machinery, particularly turbo
-electrical machines such as steam turbine generattls, compressors, pumps, gas turbine jet
engines, turbochargers and electric motors.

In several decades, FEM has been successfully insedor dynamic analysis. Gash [1],
Nelson and McVaugh [2], Hashish and Sankar [3] g€l model axi-symmetric rotor bearing
system. Jie and Lee [4] model asymmetric rotoribgasystem. Ruhl and Booker [5] used FEM
analysis rotor only consider translational inerttald bending stiffness. Michael et al. [6],
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Giancarlo [7], Thanh et al. [8] proposed a modelchtincluded the effects of bending, rotary
inertia, gyroscopic moments, transverse shear ohefitons and axial load in both axi
-symmetric and asymmetric rotor bearing system.

In turbo and rotating machines, bearing constitre of the most critical components. It
directly influence on the rotordynamics performande, and reliability of the machine. Even
after the machine is designed and placed in operathanges or modifications to the bearings
constitute one of the most effective, direct, asdnemical means to alter and improve the
machine’s dynamic performance [9]. Bearing-supstiffness depend not only the design and
manufacture a particular machines, it also canm@géongly on the way in which that machine
is mounted. Natural frequencies and modes are enhegyroperties of a structure they don't
depend on the force or loads acting on the stracttiwill change if the characteristic (mass,
stiffness, damping) or boundary condition (mountiofithe structure changes [10].
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Figure 1 Modeling of a LP B rotor-bearing system.

In this work, the LP B rotor of a 1000 MW USC (alsupercritical) steam turbine is
studied. Turbo-generator sets with 1000 MW are lyideed in generation of electric power. It
is a large and complex rotating machine. Figurbdws the structure of the LP B rotor-bearing
system. The system is modeled 45 Timoshenko bedthsA® nodes, 184 degrees of freedom,
including gyroscopic, shear modulus, and rotarytiaeeffects. Bearings locate at node 4 and
node 37 and denote by Brgl and Brg2. Both beatiags stiffness k= k= 2.45¢10°N/m and
damping &= ¢,y = 3x10°N.s/m.

2. FINITE ELEMENT MODELING ROTOR

A typical shaft element and its coordinate arestlated in Figure 2. Here, we consider only
lateral or transverse vibration so each node has fpeneralize coordinates: transverse
displacementsu, v in the x-, y- direction and rotatiog8 about x- and y-axes. A

vector {g ' ={q{?.. qf}T H U, WO, Wa Uy Vel o 37 contains the coordinate of an

element.
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2.1. Shaft elements

The element matrices are derived using energy rdsthBecause of the symmetric, the
mass matrix and the stiffness matrix in ¥zgolane and thgz plane are obtained in similar way.
The deflection within the element in tkeplane (Figure 3) is approximated by [6]
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Figure 2 Coordinate used in analysis of rotor. Figure 3 Coordinate in xz plane.
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Now assume that the cross section do not vary witie element. The strain energy within
the beam element is

1% o ( t)

Ue=—IEele(f)( = dé=S Eel j( )) 2d¢ 2)

whereE,, |, are the Young’'s modulus and the second momentoskesection about the neutral
plane respectively. Making the substitution fronsE{]) and (2), the strain energy is given by

U, =20a3 T KI Q. 3)
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Ke is element stiffness matrix, given by

12 6, -12 6,

42 -4, 22

KezEe3|e e e e (4)
I symm12 -6l
42

The mass matrix is computed in a similar way binngighe kinetic energy. Neglecting the
rotational effect, the kinetic energy of the beam i

_1F e Lo
T, = ZipeAJJe(f,t)df St Tmy o, (5)

Pe, A are the density of the material and cross-see@tea of the beam respectiveM. in Eq.
(5) is element mass matrix and gives as below

156 22, 54 - 1B

4213, -32

Me — peAele € € € (6)
420 Symm 156 - 2
4?2

Based on the local coordinate vector for each awrbending in the two planes, the
localcoordinate vector is

4={Uy Ve Ou ¥ o U Ve O ¥ &' .

Assuming two bending planes do not couple, the efeérmatrix for the two planes are
merely inserted correct location in the 8x8 shkftrent matrices.

2.2. Disk elements

The disk elements are assumed to be rigid as fegnees of freedom. The kinetic energy
of a disk is [6]

1 o 1 2 2y, 1 2
Td—Emd(uz+\f)+EId(wy+wy)+72|pa)~z 7)
whereny is the mass of the diskj, vare the velocities in the andy directions,|,, |4 are the
polar moment and diametral moment of inertg),w, w, are the instantaneous angular

velocities aboutX—, -, Z— axes, which are fixed in the disk and rotate wiith i
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In Eq. (7), the first term is the kinetic energyedo the translation of the disk. The second
and the third term are kinetic energy due to th@ti@nal motion of the disk. The detall

definition of the «,, w, w, [6] is

Gcosp+y sinp cod

Wy
w, p =4 —Osing+y cosp sird (8)
w, Q-ysing

in here, 9,tﬂ are angular velocities about thxe, y- axes respectively, @ is the angular of

rotation about the shaft. Assuming the rotatiétend ¢ are small, we can neglect terms higher
than second order and their derivatives. Take &dgnfo Eq. (7) into to obtain

szémd(uzﬂf)% |d(92+¢2)+—;|p(92—29w0) (9)
The element matrices are obtained by applying lagg's equation to Eq. (9). Thus we
have the mass matri{. and the gyroscopic matr@.of the disk as
0 O
0 O
0 (10)

p

-1, 0

OOO§

0 0 O 0
m 0 O 0
01,0 0
0 0 I, 0
2.3. Bearings

In general, bearing force on the rotor are normaflgdeled by stiffness and damping
matrices as shown in the following the equatio®]6-

fX kXX kX u CXX CX u
i el M S Bl
fy kyX kyy v CyX CW v
where f,, f, are the dynamic force in thxeandy direction,u, vare the dynamic displacements of

the shaft journal relative to the bearing housmghie x and y directions. Figure 4 illustrates the

stiffness and damping of the journal bearing motfethis paperk,, Ky Gy Gx are assumed
equal zero.

3. EQUATION OF MOTION

Generally, the equation of motion for vibrationaofmultiple degree of freedom (dof) rotor
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— bearing system may be written as
Mg+ (QG+ O g+ Ko K, (12)

where: g is a vector containing the generalize
coordinateM is mass matrix( is gyroscopic matrix;
C is damping matrixK is stiffness matrix§Q is rotor
spin speedi(t) is generalized force.

Kxx, Cxx

3.1. Free vibration

Free vibration is fundamental to the dynamica
of characteristic of rotor system. For free vilwati
(F(t) = 0) and the Eq. (12) rewrite in state-space Figure 4 Journal Bearing model

form [6,7]
Ei TR R
M 0 |dt|q 0 -M||q 0
Solving Eq (13) in state space form give the eigdumss, it occur as a complex conjugate pairs
§.5. = (-0t NI-C7)=-da £ I (14)
where @, w, {; are the natural frequencies, damped natural frezies and damping ratio
respectively, for thé&" mode, and | = \/—_1

3.2. Unbalance response

The vector of generalize force acting at n&dkie to a disk offset by a displacemersnd
an angleB usually represent in forf], (‘R denotes the real part of the complex number).

e |=R(Q%Q, %) (15)

wheredandyare the angle (when t = 0) of the out-of-balamced and moment vectors relative
to Oxyaxes,m, Iy la, are the mass, polar moment and diametral momeinedia of the disk
at nodek . Taking Eqg. (15) into Eq. (12), gives
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Mg+ QG+ Ca+ Kg=R(Q% b &) (16)
Solving Eqg. (16) determine the steady-state respdosthe unbalance forces. Letting

q{t) = A{qye™) (quis complex) gives the unbalance response as
o =[(K-Q°M) + jQ(QG+ )] Q% (17)

3.3. Critical Speed

Campbell diagram: The Campbell diagram is the most general methodetermine
critical speeds. Suppose that for any one frequenayponent of forcing, the frequenay can
be written in terms of rotational speed

@, =1(Q) (18)

A force whose frequency is identical to rotor speedaid to be gynchronous forcén =
1).The critical speeds of the system is given by thtersections of the synchronous line

w;, = Q (ux is forcing frequency) and natural frequency cuves f (Q) [6, 7].

4. CALCULATION RESULTS
4.1. Vibration frequency of the rotor

The first eight eigenvalues, natural frequencigs for the rotor at O rev/min and 3000
rev/min are given in table 1. At zero speed, theenad frequencies occur in pair because in the
x- and y- direction, the rotor- bearing system i€aupled and the inertia and stiffness of the
rotor identical. When the shaft is spinning at 308@/min, each pairs of natural frequencies
separates due to gyroscopic effect. Because bethshhft and disk of the rotor have large
diameters, the influence of gyroscopic is largee Beparation of natural frequencies is more
clearly illustrated by the Campbell diagram showiirigure 5. As the shaft speed increase, each
natural frequency diverges, one frequency increaskone decrease. The real part of roots is
very small, damping ratio approximately equals z&rahat damped natural frequencies are very
close to natural frequencies.

4.2. Unbalance response

It's assumed that an out-of-balance of 0.001 m aotthe two sides of the rotor (disk 11
and disk 31) in the same angular position (FigureUnbalance responses of the rotor are
analyzed in two cases: (1) the rotor supportedsbirapic bearings and (2) anisotropic bearings.
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Table 1 The first eight eigenvalues and natural frequesici

0 rev/min 3000 rev/min
Root s (rad/s) wn (Hz) Root s (rad/s) wh (Hz)
- 3.92¢10% 141.50; 22.52 - 3.6x 10+ 139.47] 22.19
- 3.92¢10% 141.50; 22.52 -4.24x10°+143.46j 22.83
-2.06x102 + 281.95j 44.87 -1.96x10°+ 144.86j 43.63
-2.06x107 + 281.95j 44.87 -2.15x10°% 289.82j 46.12
-4.86x10% 368.67] 58.67 -4.55x10% 354.96j 56.50
-4.86x10°+ 368.67j 58.67 -5.16x10°+382.31;j 60.85
-2.43<10%+ 454.47j 72.31 -2.46x10°+ 436.27] 69.44
-2.43x10% 454.47] 72.31 -2.38x07%+ 473.10;] 75.23
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Rotor spin speed (rev/min)

Figure 5 Campbell diagram, FW (forward whirl), BW (backwarhirl).

4.2.1. Rotor Supported by Isotropic bearings

In this case, the bearings stiffness matricesyarergetric with the original stiffnessy& kiy
= 2.45x 10°N/m and damping,g= ¢,y = 3x10°N.s/m.

Figure 6 shows unbalance responses and phase shahdkese nodes te direction.
Because of the symmetric system, the responsdseir tlirection and in the direction are
coincided. The responses to the out-of-balancesfatcthe equivalent critical speeds of 1360,
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2750, and 3680 rev/min get maximum values. Compawith the rotor speeds, these speeds
coincide with natural frequencies of the systenth@ Campbell diagram (figure 5) and only
forward whirl modes are exited. When the rotor spam sub-critical speed range, these nodes
whirl in-phase. Due to critical speeds, the phademnge by approximately 18(hecause of
damping, the phase change do not exactly by)186e phase changes occur at both resonances
and anti resonances of the system. The phase ot 11 reverses two times in regions 2250
rev/min and 2890 rev/min, respectively. The nod&l3d reverse phase in region 3050 rev/min.

I I
| |
| |
| |
| |
| |
,,,,,,,,,,,, AN S P |
—Node 11x |
|

| — Node 31x

| | | |

| | | |

| | | | |
0 500 1000 1500 2000 2500 3000 3500 4000
Rotor spin speed (rev/min)

| | | | |
| L | | |

200 - T T T T T —Node11x| T | T T T T T e R I
| — Node 31x ‘

| | | |

| | | |

L L T L I
0 500 1000 1500 2000 2500 3000 3500 4000
Rotor spin speed (rev/min)

Response magnitude (m)

Figure 6 Unbalance response of the rotor at node 11, 8ieirx direction.

4.2.2. Rotor Supported by anisotropic bearing

This system is the same with previous system, déxtiegd the isotropic bearings are
replaced by anisotropic bearings. Original stiffneeach bearing is assumed to pe-k.45x
10°N/m and will be changed, byk 2.40<10° N/m.

The responses of the system at node 11 and nobeoBi-of-balance 0.001m on both disks
(at node 11 and node 31) are shown in Figure 7.réhponses have a maximum when rotor
speeds is 1340, 1360, 2620, 2760, 3360 and 367tirevComparing these speed with the
critical speed of the rotor in the Campbell diagrave can see that both forward and backward
modes are excited. The stiffness of the systeniffierence inx andy directions; hence, the
amplitude of whirl in these directions are diffezenthis illustrated in Figure 8.

It can be seen that, the peaks response occureasaime rotor speed in theandy
directions. At these speeds, responses of phasehanged. The zero values of the response in
x andy direction occur at different rotor speeds; thus fihase of response in tkalirection
changes at a different rotor speed from thatttgection. If the phase of response in either
y direction changes substantially, the directiomvbirl reverse. In Figure 8, regions of backward
whirl are indicated by shaded regions. At somerrspeeds, one part of the rotor is in backward
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whirl whereas other is in forward whirl (mix modd).is more clearly by plot orbits at these
nodes as shown in Figure 9. The orbits are elapand can be forward or backward.
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Figure 7. Response of the rotor at node 11 and node 3Hiregtion due to out-of-balance force
at node 11 and node 31 (the length of the seminaajsrof the orbit).
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Figure 2 Whirl orbits at node 11 (dashed) and node 31id}s@r the rotor on anisotropic bearings.
The cross denotes the start of the orbit and theaind denotes the end

4.2.3. Map of critical speed and mode shapes
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Map of critical speed and mode shapes enable ane=rgo obtain rapidly an impression
of how the uncertainly in one of the parametersafbehavior of the machine. Figure 10 shows
how the first two mode shapes of the rotor vanhwiite bearing stiffness. It can be seen that, at
low stiffness (18+10° N/m), the rotor is hardly constrained and the mestlape are more
various. At high stiffness, the bearing presentslarost pinned constraint and the mode shapes
of the rotor do not change. That means, the beaceny be considered as a rigid body
approximately.

0.5~

First mode shape

Position ()

Second mode shape

Position (m)

Figure 1Q The variation of the first two mode shape witlalieg stiffness.
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5. CONCLUSTIONS

In this study, the dynamic vibration behavior ofethB B rotor of a 1000 MW

turbo-generator under unbalance forces is invdstigalhe finite element method (FEM) is
applied to model the system. The results can bersuined as follows:

The responses of the rotor in two case isotropid anisotropic bearing systems are

analyzed. In case the rotor supported by isotréygiaring, only forward modes are excited.
Whereas in case of the rotor supported by anisiotrbgarings, both forward and backward
modes are excited

The influence of the bearing support stiffness otical speed and mode shape is one of

the most basic principles. This map is generatesutih a parametric variation of the bearing
support stiffness. It provides an overview of hdwe tcritical speeds and mode shapes will
change with variation of the bearing support stiffa

10.
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TOM TAT

PHAN TiCH MO HINH DAODONG CUA TURBINE BANG PHUONG PHAP PHAN TU
HUU HAN

Ngd Van Thanf’, Danmei Xié, L& Hoaibuc'

Triong Pai hoc Giao thdng ¥n ti, Viet Nam
4\/ién Co khidgng lec, Bai hoc Vi Han, Trung Quc

"Email: ngovanthanhdc@gmail.com

Phrong phap phn tir hitu han dwoc g ding ong rai trong tinh toanis bén, daodong,
nhiét dong ding nhr rat nhiéu linh wrc khac trong tinh toan #tiké co khi. Trong nking nim
gan day, Wi viéc phat trén manh né caa may tinh, phong phap phn tir hiru han d& duoc ar
dung chi yéu dé tinh toaninh vadong hrc hoc cia Fé rotor vaoé truc. Bai bao nghiéntw dao
dong ngang 6a turbine may phéatién oy I6n bing phrong phap phn tir hitu han. Tir mé hinh
phan tir hitu han, tac gi tién hanh phan tich catic treng aia ¢ daodong bao gm tin & dao
dong tr do, ¢ do t6i han, trang thai daaiong riéng. Tang thai nat can ng dugc phan tich va
so sanh khi turbineip trénd truc dang hréng vao truc bit dang hréng.

Tir khéa: pheong phéap phn tir hitu han (FEM), daodong ngang, turbine, 4ng thai daadong,
téc do téi han.

651



