
 
 
Vietnam Journal of Science and Technology 62 (6) (2024) 1047-1064 

doi:10.15625/2525-2518/21045 

 

 

 

A review: Hydrotalcite layers as protective coatings on 

zinc and zinc alloys 

Thu Thuy Pham
1, 2

, Thuy Duong Nguyen
1
, Marie-Georges Olivier

2, 3
,                    

Thi Xuan Hang To
1, 4, *

 

1
Institute for Tropical Technology, 18 Hoang Quoc Viet, Cau Giay District, Ha Noi, Viet Nam 

2
Université de Mons, Materials Science Department, Place du Parc 20, Mons, Belgium 

3
Materia Nova, Parc Initialis, Mons, Belgium 

4
Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 

18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam 

*
Emails: ttxhang60@gmail.com 

Received: 27 June 2024; Accepted for publication: 11 October 2024 

Abstract. In recent years, there has been significant research and development in area of 

corrosion prevention and protection, focusing on hydrotalcite layers on zinc and zinc alloys due 

to their distinct attributes, such as their capability to accommodate anions, ability to exchange 

anions, capability for structural memory, and its resistance to barriers. This review primarily 

aims to summarize findings related to how the formation of HT layers on zinc and zinc alloys is 

affected by various synthesis conditions. Besides, we compared and deliberated upon HT layers' 

anti-corrosion mechanism and corrosion protection. 
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1. INTRODUCTION 

Recently, there has been a growing interest in zinc and its alloys as promising corrosion 

protection of metal substrates due to more negative electrode potential compared to iron [1, 2]. 

Unlike other active light metals like aluminum alloys, zinc alloys do not naturally develop a 

protective oxide film to slow down corrosion in aggressive environments, therefore, they present 

a distinctive and significant challenge in terms of corrosion protection. Several studies have 

focused on developing an effective method to inhibit the initial corrosion of zinc, which involves 

the preparation of a coating or some functional barrier layer on the surface for isolating base 

materials from corrosive environments [3 - 8]. Among coatings, hydrotalcite (HT) conversion 

layers show considerable promise, primarily due to their cost-effectiveness and easy                               

application [9 - 12]. 
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Figure 1. Schematic illustration of hydrotalcites (HTs) (reprinted with permission from [12]). 

The chemical formula of hydrotalcite is represented as [M1-x
2+

Mx
3+

(OH)2][A
n-

]x/n.mH2O, 

where M
2+

 and M
3+

 denote metallic ions with two and three positive charges, respectively, and, 

A
n-

 ions, which are exchangeable anions, are located in the interlayer region to balance the 

charge (Figure 1) [12 - 17]. The positive charge on the hydroxide layers arises when certain M
2+

 

cations are substituted by M
3+

 cations, therefore, additional anions enter the HT gallery to offset 

the surplus positive charges on these hydroxide layers [7, 18 - 21]. This characteristic gives HT a 

capability to contain various anions, making it a valuable choice for various applications, 

including corrosion protection [19]. Thanks to their distinctive lamellar structure, the HTs have 

the capability to encase and release corrosion inhibitors, offering more additional benefits in 

terms of corrosion protection [22 - 27]. Moreover, the HTs possess capability to capture and 

retain corrosive anions such as Cl
-
 ions within positively charged layers (Figure 2) [19, 28]. 

They have the capability to grow directly on metal surfaces and create a firmly adhering 

protective layer using straightforward synthesis techniques [9, 10, 29 - 31]. They have been 

increasingly used for safeguarding zinc alloys against corrosion [32 - 36]. Furthermore, these HT 

layers can serve as a solid foundation for applying additional organic top coatings [37]. 

 

Figure 2. Schematic illustration of working mechanism of HT used in the anticorrosive coatings                          

(reprinted with permission from [28]). 

Recently, there has been a growing interest in utilizing HT layers on surface of zinc and its 

alloys. This review seeks to provide a comprehensive overview of the various techniques 

employed in creating standalone HT layers as well as composite coatings on zinc alloys. 

Additionally, this review aims to offer an in-depth analysis of the corrosion resistance 

capabilities exhibited by HT layers. 
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2. PREPARATION AND FORMATION MECHANISM OF HT LAYERS ON ZINC AND 

ZINC ALLOYS 

2.1. Hydrothermal method  

The hydrothermal method is the most commonly employed approach to prepare HT layer 

on magnesium and aluminum alloy substrates [10, 11, 15, 38, 39]. For the hydrothermal method 

used to produce HT conversion layers, the process involves dissolving metal salts, metal 

oxides/hydroxides, and alkali sources in water, subsequently, these cocktail solutions are 

exposed to hydrothermal treatment within a Teflon-lined stainless autoclave, maintained at a 

specific temperature for a designated duration [40, 41]. This method offers a distinct advantage 

compared to other techniques due to robust bonding strength of HT formed layer to surface of 

substrate [42]. 

Zheludkevich, et al. firstly synthesized ZnAl-HT with nitrates layer on zinc surface by 

dipping substrates in a closed vessel with the mixture solution of 1 mM Al(NO3)3 and 0.1 M 

NaNO3 at 90 °C for various time intervals [15, 43, 44]. In the formation process of HT layers on 

zinc, Al(OH)4
−
 and ZnOH

+
 species were also taken into account as the fundamental components 

for constructing HT [43]. The initial stage encompassed a series of swift chemical reactions: 

Zn
2+ 

+ 2e
-
 → Zn                                                                           (1)                                                           

NO3
-
 + H2O + 2e

-
 → NO2

-
 + 2OH

-                                                                       
 (2) 

O2 + 2H2O + 4e
-
 → 4OH

-
                                                            (3)           

Al
3+

 + OH
-
 → Al(OH)

2+
, Al(OH)

2+
 + OH

-
 → Al(OH)2

+                   
 (4) 

Al(OH)2
+
 + OH

-
 → Al(OH)3↓                                                      (5)                                                

Al(OH)3 + OH
-
 → Al(OH)4

-
                                                         (6) 

when the buffering capacity of aluminum containing species was exhausted, aluminum 

hydroxide began to precipitate on the zinc surface in solution in the second stage.  

 

Figure 3. SEM images of Zn-LDH-NO3 (a) and (b), Zn-LDH-Cl (c) and (d)                                                 

(reprinted with permission from [15]). 
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During this stage, the concentration of Al in the solution decreases and that of Zn increases, 

while the pH grows due to the active electrochemical reduction reactions. In the third stage, the 

ZnAl-HT generated the building blocks of Al(OH)4
-
 and ZnOH

+
 species. The HT layer, 

characterized by its typical plate-like structure, was applied onto the surface of zinc (Figure 3). 

2.2. In-situ growth method  

The microstructure of HT layers varies significantly depending on the specific synthesis 

conditions employed in the in-situ growth approach. The microstructure and structure of HT 

layers is influenced by crucial process parameters, including the pH of reaction baths, reaction 

time, M
3+

/M
2+

 ratios, and composition and roughness of zinc coatings.  

Buchheit, et al. initially fabricated ZnAl-CO3 HT layers on hot-dip galvanized steel (HDG) 

by immersing the substrate into a strongly alkaline sodium aluminate solution [44]. The authors 

found that using an ammonium/ammonia source as the alkaline agent in the reaction solutions 

led to the formation and morphology of the coating. 

Amanian, et al. produced in-situ growth of ZnAl-CO3 HT conversion layers on 

electrogalvanized steel (EG steel) during 4, 8, 16 and 24 h, and, investigated the influences of 

treatment duration on appearance, internal structure, and surface characteristics of these layers 

[37, 46]. The results confirmed that irrespective of the treatment duration, the HT flakes 

exhibited a preference for growing perpendicular to the surface, forming a comprehensive 

covering on EG steel, however, the tightness and surface roughness of the HT coatings were 

influenced by the duration of immersion in the solution [37].  

 

Figure 4. SEM images of HT-coated specimens. pH refers to the treatment solution conditions (reprinted 

with permission from [36]). 

Pham, et al. prepared ZnAl-CO3 HT layers on EG steel by immersion substrates in mixture 

solution containing Al(NO3)3 and Zn(NO3)2 with various Al:Zn
 
ratios at pH 12 for 6 h with 

stirring and 16 h without stirring [33]. The XRD results confirmed that the Al/Zn
 
ratios impacted 

the brucite layer, thickness of the interlayer distance and crystallite size of HT. In addition, the 

SEM and cross-section SEM results suggested that the Al/Zn
 
ratios affected significantly on 

morphology and thickness of HT layers. The crystal size of the ZnAl-HT films slightly increased 

as the Al³⁺ /Zn²⁺  ratio decreased from 5/1 to 5/2. However, at a ratio of 5/3, the crystals 
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exhibited a significant size reduction, becoming more uniform and denser. When the Al³⁺ /Zn²⁺  

molar ratio was further decreased from 5/4 to 5/5, the crystal size continued to increase, while 

the thickness of the films decreased. 

 

Figure 5. XRD patterns of LDH-treated specimens. pH refers to the treatment solution conditions 

(reprinted with permission from [36]) 

Hoshino, et al. demonstrated and highlighted that the pH of reaction baths had a direct 

influence on the composition and microstructure of HT layer on EG steel [36]. The observations 

confirmed the clear correlation between pH levels and the resulting microstructure in HT layer 

(Figure 4). The crystal size showed a slight increase as the pH was raised from 12.0 to 12.4, but 

above pH 12.6, there was a significant reduction, resulting in smaller crystals. The authors put 

forth a hypothesis suggesting that Al(OH)4
−
 and Zn(OH)

+ 
were the primary species responsible 

for ZnAl-HT formation. However, conducting the synthesis with a pH greater than 12.6 leads to 

the emergence of an extra ZnO phase (Figure 5). 

The proposed that within the lower range of pH values, specific chemical reactions might 

take place, leading to the creation of ZnAl-CO3 HT on EG steel: 

2Zn(s) + O2 + H2O + OH
- 
→ 2Zn(OH)3

-
                                                                        (7)                          

 CO2(g) + 2OH
-
 → CO3

2- 
+ H2O                                                                                     (8) 

Al(OH)4
- 
+ 2Zn(OH)3

-
 + 0.5CO3

2- 
+ xH2O → Zn2Al(OH)6(CO3)0.5.xH2O + 4OH

-             
(9) 

At the upper limit of the pH range, the dissolution of Zn can be segmented into the 

following two reactions: 
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Zn(s) + 2OH
- 
→ ZnO(s) + H2O + 2e

-                                                                                                                       
 (10)                            

ZnO(s) + H2O + OH
-
 → Zn(OH)3

-                                                                                                                              
 (11) 

Pham, et al. synthesized ZnAlCe HT layers on HDG substrates with the different pH values 

of reaction baths by in-situ growth method [34]. The findings revealed that the formation of 

ZnAlCe HT layers, with a molar ratio of Zn:Al:Ce at 3:4:1  occurred by addition of 1 M NaOH 

solution to water with a pH ranging from 11 to 13. The pH values of reaction baths significantly 

influenced the rate of zinc coating’s dissolution reaction as well as the creation of HT layer. The 

thickness of HT layers increased as the pH value rose. At a lower pH (around 11), the 

concentrations of Zn(OH)₃ ⁻  and Al(OH)₄ ⁻  were reduced, resulting in fewer HT crystals 

being deposited on the HDG surface and the thinner HT conversion layer. However, at pH 12, 

the concentrations of these key species were sufficient to form and deposit HT building blocks 

on the HDG substrate. Additionally, pH 12 promoted the formation of initial ZnO crystals, 

which acted as a conditioning layer, leading to a denser deposition of HT crystals. When the pH 

increased to around 13, it accelerated the dissolution of the zinc coating and ZnO formation, 

affecting the porosity of the top layer and altering the microstructure and morphology of the HT 

layer. The precursor bath pH of 12 was found to be the optimal condition for both forming HT 

layer and facilitating incorporation of cerium within the HT network. In addition, the XRD 

results claimed that the cation-cation distance in brucite layer and interlayer distance also 

depended on pH values.  

In-situ HT layers on different zinc alloys were investigated [32, 47, 48]. Huang et al. 

produced ZnAl-CO3 HT on Zn-Al (ZA) alloys (Zn, Al: 5 wt.%) by immersion substrates in                

5 mmol/L Na2CO3 (pH 8 with 1 M NaOH) for 4 h at 80 ℃ [47]. Holzner et al. prepared MgAl-

CO3 HT layer on Zn-Al-Mg (ZAM) coated steel (Zn, Al: 2.5 wt.%, Mg: 1.5 wt.%) by immersion 

substrates into mixture solution containing 3 mM CO3
2-

 and 5 mM Mg
2+

 (pH 10.5) at 80 °C for 

300 s [47]. Pham et al. produced ZnAl-CO3 HT and investigated the effect of composition and 

roughness of top zinc alloys coated steel such as HDG (Zn, Al: 1.2 wt.%), ZA coated steel (Zn, 

Al: 9.4 wt.%), and ZAM coated steel (Zn, Al: 7.2 wt.%, Mg: 4.0 wt.%) on morphology and 

structure of HT layers [32]. The HT layers were prepared by immersion substrates in mixture 

solution concluding 0.3 M Zn
2+

 and 0.5 M Al
3+

 at pH 12 for 6 h with stirring and 16 h without 

stirring. These findings demonstrate that alterations in the composition and surface roughness of 

zinc coated steel substrates did not impact the structure of the HT layers, nevertheless, these 

changes had significant effects on the appearance, thickness, and porosity of these HT layers. 

2.3. Anion-exchange method 

Due to inherent property of HT to undergo anion exchange, the anion-exchange is a general 

technique for production of special HT compound [49 - 51]. Initially, HT precursors containing 

smaller interlayer anions are created, and subsequently, the interlayer anions of these prepared 

HT precursors are replaced with the target product's anions under specific conditions. 

Zheludkevich, et al. prepared ZnAl-Cl, ZnAl-SO4, and ZnAl-VOx HTs on zinc by replacing 

NO3
-
 in interlayers [44, 52]. The results confirmed that the rate of exchange reactions for Cl

-
, 

SO4
2-

, and VOx
y-

 anions during anion exchange within LDH-NO3 follows a decreasing order as 

follows: Cl
- 
> SO4

2-
 > VOx

y- 
[52]. In addition, the ZnAl-V2O7 HT layer was also successfully 

produced by soaking ZnAl-NO3 samples in a 0.1 M NaVO3 solution (pH 8 - 9) for 4 h at room 

temperature (Figure 6) [44]. 
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Figure 6. Diffractograms of zinc samples coated with LDH layers before and after anionic exchange 

(reprinted with permission from [44]) 

 

Figure 7. XRD patterns of Zn-Al-CO3 LDH conversion coated EG steels. (a) before and (b-f) after 

immersion in NaNO3 methanol solvent at 50 
o
C. Times refer to immersion in the NaNO3 methanol 

solvent. (reprinted with permission from [35]). 
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Hoshino, et al. found that NO3
-
 could successfully exchange with CO3

2-
 in conversion 

coated ZnAl-CO3 HT when the conversion coated substrate was immersed in a 0.24 M NaNO3 

methanol solvent at 50 °C for 2 h (Figure 7) [35]. Building upon their synthesis of ZnAl-CO3 HT 

layers on EG steel, Amanian et al. acquired ZnAl-BTA HT layers (BTA: benzotriazole) through 

anion exchange [46]. To facilitate inhibitor anion loading, the ZnAl-CO3 HT layers samples 

were immersed in a 0.1 M NH4NO3 solution in methanol under a nitrogen atmosphere at 30 °C 

for 2 h. Subsequently, these samples were immersed in an alkaline solution of BTA for 2 h under 

nitrogen atmosphere at 50 °C. 

3. CORROSION PROTECTION OF HT LAYERS ON ZINC AND ZINC ALLOYS 

 
Figure 8. EIS spectra of bare zinc and zinc coated with LDH(NO3) and LDH(V2O7) after immersion 

during 1 day (a) and 14 days (b) in 0.05 M NaCl solution where solid lines display fitting lines; equivalent 

circuit models used for fitting of bare zinc (c), LDH(NO3) sample after 1 day (d) and 14 days of 

immersion (e), and LDH(V2O7) sample (f); temporal evolution of the charge transfer resistance (Rct) (g) 

(reprinted with permission from [44]). 
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Figure 9. Ionic current density maps measured on zinc (a,c,e,g) and zinc coated with LDH(V2O7) 

(b,d,f,h) in 0.05 M NaCl during 1 h (a,b), 24 h (c,d) and 72 h (e,f), and optical images (g, h) acquired by 

the end of 72 h immersion (reprinted with permission from [44]) 

Recently, there has been significant interest in incorporating HT powders into polymer 

coatings as corrosion inhibitors for zinc and zinc alloy coatings [7]. The studies suggest that 

composites consisting of HTs intercalated with inhibitors have the potential for diverse 

applications in various coatings and demonstrate an efficient protective effect across a broad 

spectrum of substrates. Besides incorporating HT powder into organic coatings, in-situ 

developed HT layers can also be employed in conjunction with and without other coatings to 

enhance the corrosion protection of the underlying zinc and zinc alloy coatings [34, 35, 37]. 

The corrosion resistance of HT layers on zinc and zinc alloy coatings was measured and 

contrasted with that of the untreated substrates.  Buchheit, et al. showed that the anti-corrosion 

of HT layers produced using optimal methods on HDG was higher than that of untreated 

substrates, however, their anti-corrosion effect was lower in comparison with Zn phosphate 

coatings [45]. The electrochemical results indicated that the presence of HT layers significantly 

enhanced corrosion protection of zinc and zinc coatings during exposure time to corrosive 

media.  
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Zheludkevich, et al. investigated the corrosion inhibitive properties of ZnAl-NO3 and 

ZnAl-V2O7 HT layers on zinc substrates using EIS (Electrochemical Impedance Spectroscopy) 

and  SVET (Scanning vibrating electrode technique) in a 0.05 M NaCl solution [44]. They 

discovered that the corrosion protection of zinc was significantly enhanced with the ZnAl-V2O7 

layer compared to both the bare substrate and the ZnAl-NO3 layer sample (Figures 8 and 9). In 

addition, after 72 hours of immersion in 0.05 M NaCl, the optical image reveals no obvious 

signs of corrosion, confirming the effective corrosion resistance offered by the ZnAl-V2O7 HT 

layer (Figure 9). 

 

Figure 10. Evolution of EIS spectra for LDH-treated specimens during exposure to 0.1 M NaCl solution. 

pH refers to the treatment solution conditions (reprinted with permission from [36]). 

 

Figure 11. Relationship between impedance at 0.01 Hz and solution pH                                                        

(reprinted with permission from [36]). 
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Figure 12. Results of EIS of LDH conversion coated EG steels (a) before and (b) after 2 h immersion in 

the NaNO3 methanol solvent. The measurements were carried out in a 0.1 M NaCl solution after 1 h, 3h 

and 8 h immersion (reprinted with permission from [35]). 

Hoshino, et al. investigated the effect of pH values on corrosion protection of HT layers on 

EG steel (Figures 10 and 11) [36]. The findings showed that the anti-corrosion of HT layers 

demonstrated an improvement as the solution pH rose, reaching its peak at pH 12.6. However, a 

significant decline in corrosion resistance was noticeable beyond this pH value. When the pH 

was below 12.6, corrosion resistance improved with thicker layers, but the protection provided 

by the HT layers was limited due to cracks and crevices in the crystals, allowing the electrolyte 

to reach the Zn substrate. At pH 12.6, higher corrosion resistance occurred despite thinner 

layers, likely due to the formation of a dense ZnO layer. As the pH rose above 12.6, the ratio of 

ZnO to HT in the coating increased, potentially reducing corrosion resistance, since ZnO, being 

highly soluble in NaCl solution, offered no protective effect. Hoshino et al. also investigated the 

corrosion protection of ZnAl-CO3 and HT ZnAl-NO3 layers on EG steel [35]. Compared with 

the ZnAl-CO3 HT layers, the converted ZnAl-NO3 HT coated specimens showed lower 

corrosion resistance by EIS and immersion test in 0.1 M NaCl, however, the results of 100 μL 

droplet testing with 0.1 M NaCl confirmed that ZnAl-NO3 HT sample was higher corrosion 

protection (Figures 12 and 13). In addition, the solubility of the ZnAl-NO3 HT layer was found 

to be greater than that of the ZnAl-CO3 HT. This could affect the corrosion resistance of the 

coating when exposed to large amounts of solution. 

Amanian, et al. confirmed that HT layers on HDG after 16 h immersion in mixture solution 

had better anti-corrosion effect [37]. Polarization and EIS analyses indicated that the HT layers 

for 16 h reduced the corrosion current density of EG steel by a factor of 10 and enhanced the 

impedance at 0.01 Hz by a factor of 6 in 0.1 M NaCl. The authors demonstrated that when HT 

layers were treated with BTA for corrosion protection, the impedance of the modified HT layers 

increased by a factor of four compared to the untreated HT layers [46]. Pham, et al. indicated 

that the corrosion resistance of HT with Al/Zn
 
ratios 5/1, HT 5/2, and HT 5/3 films noticeably 

declined, on the contrary, the protective qualities of HT 5/4 and HT 5/5 remained consistent over 

time when subjected to immersion in 0.1 M NaCl [33]. 
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The existence of HT layers on various zinc alloys had a notable effect on corrosion 

resistance of substrates. Huang, et al. indicated that the corrosion resistance (Rsum = Rcpf + Rct) of 

HT layers on ZA alloy was higher than that of bare substrate during exposure time in 3.5 wt.% 

NaCl [47]. This suggests that the HT layers can enhance the durability of the corrosion product 

film and efficiently inhibit the infiltration of corrosive ions. Pham, et al. verified that the 

composition of zinc alloys had an impact on the corrosion protection provided by HT layers 

[32]. The corrosion protection properties were maintained in the HT layers on HDG, whereas the 

corrosion protection of HT layers on ZA and ZAM decreased after 24 h immersion in                              

0.1 M NaCl solution. 

Pham, et al. examined how the pH of a solution influenced the corrosion resistance of 

ZnAlCe HT layers on HDG and compared their anti-corrosion on ZnAl HT layer prepared under 

pH conditions [32, 34]. The polarization and EIS results showed that the HT layer at pH 12 had 

sharply better corrosion protection than those of HT layers at pH 11 and 13. Moreover, 

incorporating cerium into the HT layer at pH 12 resulted in a noteworthy enhancement of 

corrosion resistance compared to the HT layer without cerium at the same pH solution. 

 

Figure 13. Physical appearance of specimens with either Zn-Al-CO3 LDH coating (a-d) or Zn-Al NO3 

LDH coating (e-h) after subsequent exposure to 100 μl of 0.1 M NaCl droplet in 98 % HR chamber. 

Times refer to exposure. (d, h) after washing and drying (reprinted with permission from [35]). 

In recent findings, the corrosion mechanism of HT layers has been explored, revealing that 

their ability against corrosion can be understood by considering key factors, including acting as a 

physical barrier, trapping aggressive ions, and facilitating the formation of self-repairing oxide 

or hydroxide layers. It had been previously discussed the effective barrier properties exhibited 

by HT layers in providing corrosion protection in prior publications [32 - 34]. In corrosive 

environments, the compact in-situ grown HT layers served as a physical protective barrier, 

effectively isolating aggressive ions from the top zinc and zinc alloy coatings [32 - 34, 47]. The 

reduction in aggressive ions concentration, associated with the aggressive ions trapping effect, is 

directly linked to the potential for reducing environmental aggressiveness and extending the 

operational lifespan of metallic materials [53]. In corrosive environment containing Cl
-
 ions, it 

was found that Cl
- 
ions can undergo an anion-exchange reaction with the anion’s presence within 
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the gallery, leading to their absorption into HT interlayer [32 - 34]. The self-repair ability of HT 

was one of the most important factors that helped increase the protective ability of HT layers [32 

- 34]. The formation of metallic oxide/hydroxide crystallites within the corrosion cracking zone 

of HT layers was a result of a self-healing mechanism, which repairs corrosion pits and creates a 

protective layer [32 - 34].  Especially, significant improvement in the corrosion protection of HT 

coatings was involved the deposition of cerium oxides/hydroxides [34]. 

4. CONCLUSIONS 

This review outlines the recent advancements in layer involving HT applied to zinc and its 

alloys to enhance their corrosion protection. Numerous valuable research endeavors have been 

conducted on a wide array of HT layers on zinc alloys, driven by their distinctive characteristics, 

which include modifiable structure and anion exchange capability. Researchers assert that HT 

layers have been widely recognized as robust physical barriers that effectively shield against the 

corrosive impact of aggressive ions. The HT layers can act as “nano-trap” of aggressive ions, 

effectively retarding the deterioration of zinc alloy coatings. In addition, one of the key factors 

contributing to the enhanced protective properties of HT layers can be their capability for self-

repair. The HT conversion layers on zinc and its alloys, prepared through the "in-situ" growth 

method, have been effective for corrosion protection in chloride-containing corrosive 

environments. However, the majority of research discussed in this review has been conducted in 

laboratory settings, and there is a need for further refinement of experimental procedures to 

make them more applicable for industrial use. 
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ABBREVIATION 

BTA: Benzotriazole 

EG: Electrogalvanized 

EIS: Electrochemical Impedance Spectroscopy 

HDG: Hot-dip galvanized steel 

HT: Hydrotalcite 

LDH: Layered double hydroxide 

SEM: Scanning electron microscopy 

SVET: Scanning vibrating electrode technique 

XRD: X-Ray diffraction analysis 
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