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Abstract. This study examines the adaptive responses of Rhododendron arboreum, a key tree 

species in the Indian Himalayas, to water stress at the treeline ecotone (3100 - 3500 m above sea 

level (asl)). We measured water potential (Ψ) using a pressure chamber and leaf conductance 

with an AP4 type porometer. Pre-dawn water potential (ΨPD) ranged from -0.12 to -0.91 MPa, 

with significant variation across sites, seasons, and years (p < 0.05). Osmotic potential at full 

turgor (Ψπ100) was -1.19 MPa for trees and -1.57 MPa for seedlings. Relative water content 

(RWC %) varied between 82.70 % and 91.01 %. Morning leaf conductance (gwAM) ranged from 

58.00 to 271.68 mmol m
-2 

sec
-1

.
 
Soil moisture at 15 cm depth (Sm15) showed significant variation 

compared to deeper soil layers and leaf conductance metrics. Seedlings exhibited higher 

susceptibility to water stress, particularly during winter when soil freezes. Our findings highlight 

the eco-physiological responses of R. arboreum to changing environmental conditions and the 

impact of soil moisture dynamics on water potential and relative water content. 

Keywords: Leaf conductance, osmotic potential, R. arboreum, treeline, water potential. 

Classification numbers: 3.4.2, 3.5.1, 3.8.3 

1. INTRODUCTION 

Climate has a large influence on plant recruitment [1], and at the core of regeneration, 

temperature and water supply are not only critical drivers for a plant’s distribution [2] but also 

promote seed dormancy and germination. Species are assumed to occur within a certain climatic 

space determined by the climatic needs of the species [3]. Understanding the ecological needs of 

keystone species, such as Rhododendron arboreum [4] in the Himalayas, is of critical 

importance for ecosystem conservation. The R. arboreum occurs in the Himalayan region at 

elevations between approximately 1000 and 3800 m asl. Tree rhododendrons are vital to 

Himalayan ecosystems, thriving in diverse habitats like steep, high-rainfall areas with acidic 

soils, aiding slope stability and watershed functions [5]. Their abundant flowering from early 

spring to summer supports various insect and bird pollinators [6]. Alpine treeline ecotones are 

highly sensitive to environmental changes, particularly climate change, and can shift rapidly [7]. 
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Drought, a critical climatic event, impacts these areas through two types: winter and summer. 

Winter drought, or chronic desiccation, occurs when water loss continues on sunny days but 

frozen soils prevent water uptake [8]. Acute frost desiccation arises from increased transpiration 

and reduced water absorption, often affecting species like R. arboreum [9]. Summer drought is 

driven by soil drying and high transpiration rates on warm, sunny days, further stressing plants 

in treeline zones. 

The R. arboreum undergoes key phenological events in spring and summer, making its 

water transport system crucial for understanding its growth and survival. Studying its responses 

to water stress in its unique Himalayan habitat reveals adaptive strategies under extreme 

conditions. Key parameters like water potential, osmotic potential, and relative water content 

help explain how R. arboreum maintains water balance under varying environmental pressures. 

Understanding its water stress adaptations contributes to broader conservation efforts aimed at 

preserving biodiversity and ecosystem stability in the region because R. arboreum is a keystone 

species in the Himalayan ecosystem, providing habitat and resources for numerous other 

organisms. Therefore, this study seeks to explore the parameters related to water relations and 

adaptive strategies of R. arboreum trees and seedlings, especially during drier periods in the 

treeline areas of the Indian Himalayan region.  

2. MATERIALS AND METHODS 

2.1. Study sites 

The present study was conducted at Aali, Bedni and Tungnath treeline in the western 

Himalaya at coordinates between 30°11´02˝N and 79°39´36˝E and altitudes between 3000 to 

3500 m asl. The mean species that form the treeline were Acer caesium, Abies spectabilis, 

Betula utilis, Quercus semecarpifolia, Prunus cornuta, R. arboreum, R. campanulatum, and 

Taxus baccata.  

2.1.  Climate 

The study sites are located in the alpine zone, where snow cover remains till April. Soil is 

acidic with pH values of 4 to 5 [10]. The climate of the study area is characterized by short cool 

summers and long severe winters. The mean annual temperature of the sites varied from -8.91 

(January) to 25.6 °C (May) and the mean annual precipitation was 2410.5 ± 432.2 mm [10].  

2.2. Measurements 

Three soil depths were used for assessing soil moisture (Sm). At each study site, ten sample 

plants (trees and seedlings) were assessed for measuring Ψ, leaf conductance (gw), and water 

potential components of R. arboreum during summer, rainy, autumn, and winter seasons 

between 2018 and 2019.  

2.3. Soil moisture 

To estimate the level of moisture of the ground, samples of soil were taken from five 

representative locations at three distinct soil depths: 0-15, 15-30, and 30-45 cm. A battery-

powered digital weighing balance was used to weigh 50 g of soil in the field, packaged in 

polybags and transported to the laboratory. The samples were dried at 100 °C until reaching a 

constant weight. The moisture content was then calculated using dry weight [11]. 
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2.4. Water potential 

A pressure chamber (PMS Instrument Co. model 1000, range 70 bars) was used to measure 

Ψ of trees and seedlings on each previously marked individual at pre-dawn (ΨPD) between 5:30-

6:30 hrs and mid-day (ΨMD) between 13:30-14:30 hrs at seasonal intervals [12, 13]. 

2.5. Components of water potential 

To determine the link between the components of Ψ and the relative water content (RWC 

%), pressure-volume (PV) curves were formed using a pressure chamber. PV curves were 

prepared following the bench drying method from overnight saturated twigs of trees and 

seedlings. The osmotic potential at zero turgor (Ψπ0), the osmotic potential at full turgor (Ψπ100), 

and the RWC % at the turgor loss point (RWCz) were all calculated from PV curves [13, 14]. 

Osmotic adjustment is generally calculated as the decline in osmotic potential (zero and full 

turgor) separately for different seasons, namely rainy, autumn, winter, and summer. 

2.6. Leaf conductance 

An AP4 type porometer (Delta-T Devices) was used to measure the leaf conductance (gw) 

of trees and seedlings on a seasonal basis [13, 15]. The leaf conductance measurements were 

taken from three leaves/individuals on the sunlit sides in the morning (gwAM) between 10:30 and 

11:30 and between 13:30 and 14:30. 

2.7. Statistical analysis 

Using the statistical program SPSS version 2016, the data were subjected to statistical 

analysis of variance and a statistically significant validation with a confidence level of 95 %. 

The Spearman rank correlation coefficient (r) was used to express the relationship                               

between variables. 

3. RESULTS AND DISCUSSION 

 

3.1. Soil moisture 

Across all the study sites and seasons the soil moisture content (Sm) varied between 32.37 ± 

1.67 and 73.50 ± 1.91 % in Year 1 (Yr1) and 31.56 ± 2.36 and 66.06 ± 1.79 % in Year 2 (Yr2). 

In Yr1, the maximum Sm was achieved at depths of 0-15cm during autumn while in Yr2 it 

reached a maximum during the rainy season and in both years, it reached a minimum at depths 

of 30 - 45 cm during winter (Figure 1). 

 

Figure 1. The mean soil water content over the chosen research locations, seasons, and years.                            

The error bars denote ± SE. 
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3.2. Water potential of trees 

ΨPD of R. arboreum trees ranged from -0.12 ± 0.05 to -0.91 ± 0.15 MPa in the first year 

(Yr1) and from -0.16 ± 0.01 to -0.88 ± 0.12 MPa in the second year (Yr2), and ΨMD of the trees 

was from -0.21 ± 0.03 to -1.67 ± 0.32 MPa in Yr1 and from -0.23 ± 0.03 to -1.62 ± 0.21 MPa in 

Yr2. Across all the study sites in both years, ΨPD was most negative in summer and ΨMD was 

highly adverse in the winter months and least detrimental in the rainy months (Figure 2). The 

ANOVA results indicated that ΨPD and ΨMD varied significantly throughout locations, years, 

seasons, and each interaction of ΨPD and ΨMD was also significant (p < 0.05). 

 

Figure 2. Mean pre-dawn and mid-day ΨTree of R. arboreum during all the seasons and locations.                        

Error bars indicate ± SE. 

2.1.Water potential of seedlings 
ΨPD of R. arboreum seedlings was from -0.11 ± 0.03 to -1.27 ± 0.22 MPa in Yr1 and from -

0.13 ± 0.02 to -1.0 ± 0.11 MPa in Yr2, and ΨMD of the seedlings was from -0.11 ± 0.03 to -1.91 

± 0.13 MPa in Yr1 and from -0.11 ± 0.03 to -1.76 ± 0.18 MPa in Yr2 throughout the study 

period and sites. Across all the study sites in both years, ΨPD and ΨMD were most negative in 

winter and were least detrimental in the rainy months (Figure 3). The ANOVA results showed 

that ΨPD of the seedlings varied significantly across years, seasons, and sites (p<0.05) and ΨMD 

varied significantly across seasons and sites (p<0.05) but not for the two years of study. The 

interactions of ΨPD varied significantly while the interactions of ΨMD were only significant with 

seasons and species (p < 0.05).  

Figure 3. Mean pre-dawn and mid-day seedling water potential R. arboreum across all the seasons and 

sites. Error bars indicate ± SE. 
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seedlings, the mean daily change in Ψ was from 0.02 ± 0.01 and to 0.74 ± 0.12 MPa in Yr1 and 

from 0.02 ± 0.01 to 0.80 ± 0.13 MPa in Yr2, across all seasons and locations. In Yr1, the 

seedlings experienced the greatest daily change in Ψ during the summer season, whereas in Yr2, 

this peak occurred in the winter months, with the smallest changes in both years during the rainy 

months (Figure 4). The ANOVA results revealed that the ΔΨ for both trees and seedlings 

differed significantly across years, sites, and seasons (p < 0.05). 

 

Figure 4. The daily variation in water potential for R. arboreum trees and seedlings across different 

seasons and locations. Error bars represent ± SE. 

3.4. Water potential components of trees 

In R. arboreum trees Ψπ100 was from -0.74 ± 0.01 to -1.94 ± 0.01 MPa in Yr1 and from -0.74 
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were most adverse in the summer months and least adverse for both years during the rainy 

period (Figure 5). Ψπ100 and Ψπ0 declined from the rainy to the summer period. Ψπ100 declined 
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Ψp peaked in summer and decreased in the rainy season (Figure 5). The RWC% was from 84.12 

± 0.99 to 90.76 ± 0.45 % in Yr1 and was from 82.70 ± 0.78 to 91.01 ± 0.41 % in Yr2, 

throughout all the study seasons and locations. RWC% peaked in summer of Yr1 and winter of 

Yr2, while it was lowest in the rainy period in both years (Figure 5). The results of ANOVA 

showed that there were significant differences (p < 0.05) in Ψπ100, Ψπ0, PPfull, and RWC% in all 

seasons and sites, but not in the two research years. All other interactions were not significant, 

except for the interaction between seasons and sites, which varied significantly (p < 0.05).  

 
Figure 5. Ψπ0, Ψπ100, Ψp and RWC% of R. arboreum trees across various seasons and locations. Error 

bars denote ± SE. 
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3.5. Water potential components of seedlings 

In R. arboreum seedlings Ψπ100 was from -0.72 ± 0.16 to -2.14 ± 0.03 MPa in Yr1 and from 

-0.77 ± 0.05 to -2.49 ± 0.06 MPa in Yr2. Ψπ0 ranged from -1.63 ± 0.39 to -4.20 ± 0.24 MPa in 

Yr1 and -1.79 ± 0.26 to -3.67 ± 0.11 MPa in Yr2 throughout the study period and locations. The 

Ψπ100 and Ψπ0 was highly negative in summer for both years while Ψπ100 was minimal adverse in 

the rainy period and Ψπ0 was minimal adverse in autumn during the study period (Figure 6). 

Ψπ100 declined from rainy to the summer season and Ψπ0 declined from autumn to summer 

months during the study period. Ψπ100 declined from -0.72 to -2.14 MPa in Yr1 and from -0.77 to 

-2.49 MPa in Yr2 and the decline was -1.42 MPa in Yr1 and -1.72 MPa in Yr2. Ψπ0 declined 

from -2.63 to -4.20 MPa in Yr1 and from -1.79 to -3.67 MPa in Yr2 and the decline was -2.57 

MPa in Yr1 and -1.88 MPa in Yr2 (Figure 6). 

Ψp in R. arboreum seedlings ranged from 1.25 ± 0.11 to 1.94 ± 0.11 MPa in Yr1 and 1.14 ± 

0.09 to 2.06 ± 0.12 MPa in Yr2 over the study periods and locations. Ψp was highest in the 

winter months and lowest during the rainy months over the study period (Figure 6). Across all 

the seasons the RWC% varied from 54.20 ± 3.96 to 87.80 ± 2.80 % in Yr1 and 56.60 ± 2.83 to 

85.00 ± 3.13 % in Yr2. RWC% reached a minimum in the summer season and a maximum in the 

winter months throughout the study (Figure 6). The ANOVA results revealed that Ψπ0, PPfull, 

and RWC% of R. arboreum seedlings varied significantly across sites and seasons (p<0.05), but 

not in two study years. Ψπ100 varied significantly across locations (p<0.05) but not significantly 

by study years and seasons. All other interactions were not significant, except for the one 

between seasons and locations, which varied significantly (p < 0.05). 

 

Figure 6. Ψπ0, Ψπ100, Ψp and RWC% of R. arboreum seedlings across various seasons and locations. 

Error bars denote ± SE. 
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Figure 7. Mean leaf conductance (mmol m
-2

 sec
-1

) of R. arboreum trees in the morning and afternoon 

during all study seasons, locations, and years. The error bars show ± SE. 

3.7. Leaf conductance of seedlings 

The morning leaf conductance of R. arboreum seedlings was from 46.00 ± 2.14 to 589.00 ± 

21.67 mmol m
-2 

sec
-1

 in Yr1 and from 47.20 ± 2.09 to 460.00 ± 18.89 mmol m
-2 

sec
-1

 in Yr2. 

Similarly, the leaf conductance during the afternoon was from 24.00 ± 1.36 to 312.00 ± 19.82 

mmol m
-2 

sec
-1

 in Yr1 and from 26.00 ± 2.89 to 300.98 ± 22.27 mmol m
-2 

sec
-1

 in Yr2. Both the 

gwAM and gwPM were highest for the rainy months and lowest for the winter months over the 

study years, locations, and periods (Figure 8). The ANOVA results indicated that the morning 

and afternoon gwseedling of R. arboreum varied significantly with years, seasons, and sites                  

(p < 0.05). All the interactions also varied significantly with each other (p < 0.05). 

 

Figure 8. Mean leaf conductance (mmol m
-2

 sec
-1

) of R. arboreum seedlings in the morning and afternoon 

during all study seasons, locations, and years. The error bars show ± SE. 
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Table 1. Spearman rank correlation coefficients between various R. arboreum water relations variables. 

Variable Sm15 Sm30 Sm45 
Tree Seedling 

ΨPD ΨMD gwAM gwPM ΨPD ΨMD gwAM gwPM 

Sm15 1 0.95** 0.84** -0.23NS -0.20NS -0.41NS -0.06NS -0.39NS -0.40NS -0.66** -0.59** 

Sm30  1 0.94** -0.22NS -0.11NS -0.01NS -0.01NS -0.27NS -0.31NS -0.59** -0.49** 

Sm45   1 -0.11NS 0.01NS 0.13NS -0.05NS 0.17NS -0.19NS -0.50** -0.37NS 

ΨPD    1 0.91** 0.77** 0.47** 1 0.93** 0.81** 0.89** 

ΨMD     1 0.67** 0.48**  1 0.77** 0.91** 

gwAM      1 0.68**   1 0.90** 

gwPM       1    1 

Note: NS = Correlation is non-significant, ** = Correlation is significant at the 5 % level (p<0.05) (2-tailed). 
 

 
Figure 9. Relationships between forenoon and afternoon leaf conductance with pre-dawn water                     

potential of R. arboreum trees and seedlings. 
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0.80 MPa in seedlings. These variations in plant Ψ observed both from day to day and at 

different times within the same day, were influenced by a combination of environmental 

conditions and physiological processes. Notably, higher variations in ΔΨ were often linked to 

increased transpiration rates, more negative leaf Ψ, and elevated photosynthesis levels. However, 

in treeline areas, ΔΨ of R. arboreum trees and seedlings appeared to be comparatively low. The 

low ΔΨ might be attributed to the prevailing climatic conditions such as abundant rainfall, low 

temperatures, high soil moisture, and humidity levels. 

As drought conditions worsen, cells respond by adjusting their internal water balance 

through the accumulation of osmotic solutes. In R. arboreum, exhibited a decline in osmotic 

potential from the rainy season to summer, at both full and zero turgors. Similar trends were 

reported by previous studies in comparable treeline areas [13, 25]. This pronounced reduction in 

osmotic potential suggests that the primary strategy of R. arboreum is to ensure water 

availability, particularly to maintain high rates of photosynthesis during warm, sunny days with 

optimal humidity [13]. Osmotic adjustment is evident when Ψπ100 declines [26]. In R. arboreum, 

seasonal changes in Ψπ100 were observed, with mean values of -1.19 MPa in trees and -1.57 MPa 

in seedlings. This notable decline in osmotic potential during mild drought conditions should 

facilitate the retention of soil water, thereby supporting fall photosynthesis [26]. Species with 

deep roots or efficient water transport mechanisms often exhibit less osmotic adjustment 

compared to shallow-rooted trees [27]. Relative water content at turgor loss point (RWCz) 

remained relatively high during both winter and summer seasons, coinciding with the period of 

most negative Ψ. Moreover, R. arboreum maintained a high RWCz ranging from 89.92 % to 

91.01 % during peak drought conditions. The ability of trees to uphold high RWC under drought 

stress was also observed in other studies [28, 29]. 

Plants regulate water loss by controlling stomatal aperture, influenced by the water 

potential gradient between the leaf and surrounding air [30]. In this study, gw was highest during 

the rainy season and lowest from mid-September to mid-February. High humidity and low vapor 

pressure deficit during the rainy season promoted optimal stomatal conductance. Stomatal 

responses are interconnected with soil moisture, leaf Ψ, and atmospheric conditions, with 

reduced conductance during dry periods correlating inversely with ΨPD in oak trees [31]. 

Similarly, it was also observed that the stomatal conductance decreased in dry months when tree 

water potential was at its lowest [15]. The rate of stomatal response to water deficits affects 

transpiration, photosynthesis [32], carbon uptake, and other physiological processes within 

plants. During diurnal measurements in the winter season, leaf Ψ exerted minimal influence on 

leaf stomatal conductance, as stomatal conductance remained consistently low throughout the 

day. Conversely, in the rainy season, gradual decreases in leaf Ψ corresponded with gradual 

increases in leaf stomatal conductance and vice versa, likely because plants received a steady 

water supply throughout the day [33]. 

 

4. CONCLUSIONS 

 
This study emphasizes the importance of conserving Himalayan ecosystems, particularly R. 

arboreum and other treeline species. Sustainable water management, like rainwater harvesting 

and soil moisture conservation, is crucial to address seasonal water variability. Conservation 

efforts should be tailored to the species’ specific responses to water stress and integrate climate 

resilience, while also involving local communities. As a keystone species, R. arboreum 

maintains ecological balance, but winter soil freezing threatens water uptake, especially for 

seedlings. Long-term research on water potential and ecological factors will deepen 

understanding of the species' water dynamics. 
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