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Abstract. A size-dependent beam formulation based on the classical beam theory and modified 

couple stress theory (MCST) is derived for nonlinear bending analysis of a microcantilever 

under an end force/moment. The microbeam is linearly tapered in the directions of width and 

height. The formulation is derived using the concept of the co-rotational formulation in which 

the vector of internal forces and tangent stiffness matrix are firstly constructed in the element-

attached coordinates and then transferred to the global ones. The nonlinear response is predicted 

by the iterative method and the arc-length technique. The numerical investigation confirms the 

efficiency of the derived formulation, and it can predict accurate nonlinear responses of the 

microcantilever by using just several elements. The result reveals the importance of the 

microstructural size effects on the nonlinear responses and ignoring the size effects leads to an 

overestimation of the deflections. The impacts of various factors such as the scale parameter and 

the tapered ratio on the nonlinear behavior of the microcantilever are investigated in detail. 

Keywords: Tapered microbeam, MCST, size-dependent nonlinear behavior, co-rotational approach, 

geometrical nonlinearity. 

Classification numbers: 5.4.2, 5.4.5. 

1. INTRODUCTION 

Microbeams with thickness in the order of microns are widely seen in micro-electro-

mechanical systems (MEMS) [1, 2].  The microbeams in these systems are often buckled and often 
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undergo large deflections, which motivates geometrically nonlinear analysis of microstructures, 

investigation that are most closed to the present topic are briefly summarized below. 

The traditional beam theories were adopted in deriving the size-dependent nonlinear beam 

models in the early stage [3 - 6].  The von Kármán assumption is used to model deformation, 

and the nonlinear responses to electro-mechanical loading are assessed using the shooting 

method  [3] or Galerkin technique [5, 6]. To model the size effects in small-scale structures, 

several higher-order continuum theories, e.g. the strain gradient elasticity theory (SGET) [7, 8] 

and modified couple stress theory (MCST) [9] were developed. Using the MCST and MSGT to 

model the size effect, Mohammadi and Mahzoon [10] studied postbuckling of microbeams 

subjected to axial force and temperature change. The static bending, post-buckling and vibration 

analyses of microbeams were presented in  [11], showing the significance of size effect when the 

ratio of thickness to the length scale parameter is about one. 

Non-prismatic beams are of great importance in practice because of their ability to meet 

architectural requirements and optimize the structural weight. Some effort has been made in 

nonlinear analysis of the beams with non-prismatic sections. A closed-form solution for buckling 

problems of columns with variable cross-section was derived in Ref. [12]. A paralinear element 

considering the non-uniform section was derived in [13] for computing the large displacements 

of columns under  an eccentric axial force. Cleghorn and Tabarrok [14] used the solution of a 

tapered Timoshenko beam in their derivation of the property matrices for assessing vibration 

characteristics of non-prismatic beams. Baker [15] solved the governing equations of a tapered 

cantilever under distributed loads, and then determined the large deflection beam profiles. The 

solution in series for deflections of non-prismatic members with small displacements is derived 

in [16]. Lee et al. [17]  employed Runge-Kutta method to solve the differential equations of 

tapered cantilevers undergoing large displacements. The deformed configurations of non-

prismatic cantilevers with Ludwick material subjected to a tipping moment were determined by 

Brojan et al. [18] using an exact moment-curvature formula. The free vibration analysis of non-

prismatic beams was presented in [19] by using the exact shape functions to derive the structural 

matrices. 

In this paper, the nonlinear analysis of a micro-scale cantilever undergoing large deflections 

is carried out using the nonlinear finite element method. The microcantilever is considered to be 

linearly tapered in the directions of width and height. A co-rotational finite element is derived 

and employed to construct the nonlinear equilibrium equation. The formulation is formulated in 

the framework of the classical beam theory and the MCST accounting for the microstructural 

scale effect. Newton-Raphson method is employed in combination with the arc-length technique 

to obtain the nonlinear load-deflection curves of the microcantilever. Numerical investigations 

are presented to show the influence of the tapered ratio and the scale parameter on the nonlinear 

behavior of the tapered micro-scale cantilever beam. 

2. MATERIAL AND METHOD 

2.1. Co-rotational approach 

Figure 1 shows a tapered micro-scale cantilever in a coordinate system (x,y,z). The 

microcantilever is linearly tapered in the directions of width and height according to 

    0 01 , 1
x x

b x b h x h
L L

 
   

      
   

 (1) 
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where L is the beam length;  b x  and  h x  are, respectively, the width and height of the cross-

section with abscissa x; 
0b  and 

0h  are, respectively, the width and height of the section at the 

clamped end; 0 1   is the tapered ratio.  

 

Figure 1. Tapered cantilever microbeam under investigation. 

 

Figure 2. Co-rotational beam element with local and global degrees of freedom 

      Figure 2 illustrates a 2-node beam element and its degrees of freedom in two Cartesian 

coordinates, a local system ( , )x z  and a global one (x, z). The system (x, z) is fixed in space, the 

system ( , )x z  always translates and rotates with the element in the deformation process. The 

system ( , )x z  is chosen such that the origin is always at node 1, while the x - axis directs from 

node 1 to node 2. With the chosen local system, the local axial displacement at node 1 and the 

transverse displacements at both the two nodes are vanished,  
1 1 2 0u w w   . In this regard, 

the element vector of degrees of freedom with respects to the local coordinates, ( d ), has the 

form  

 2 1 2

T

u  d  (2) 

In the above equation, 
2u  is the local displacement in x - direction at the node 2; 1  and 2  are, 

respectively, the rotations with respect the local coordinates at both the two nodes. In Eq. (2) and 

in the below, the bar suffix is used to define a variable defined in the local coordinates, and the 

superscript ‘T’ indicates the transpose of a matrix or a vector. 

In general, the global degrees of freedom are nonzero, and thus the element vector of nodal 

displacements with respect to the global coordinates (d) contains six components as follows  

 1 2 1 1 2 2

T
u u w w d  (3) 
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with , , ( 1, 2)i i iu w i   are, respectively, the global axial displacement, transverse displacement 

and the rotation at the node i. The vector of nodal forces with respect to the local coordinates 

associated with the local vector of nodal degrees of freedom in Eq. (2) has the following forms 

 in

T

uf
θ

f f   with   2 1 2,
T

uf N M M 
θ

f  (4) 

where 
2N  is the local force in x - direction at the node 2; 

1M  is the local moment at node 1, 

while  
2M  is the local moment at node 2. The corresponding vector of global nodal forces 

associated with the vector of global nodal degrees of freedom in Eq. (3) is as follows 
 

 in

T
 u θf f f , with    1 2 1 1 2 2,N N Q M Q M u θf f  (5) 

with Ni (i = 1, 2) is the global axial force at node i; Qi and Mi are, respectively, the global shear 

force and moment at the nodes. 

The local displacement and the rotations in Eq. (2) can be approximately calculated from  

the global ones in Eq. (3) by considering the geometry of Figure 2, and they have the forms 

2 0 1 1 2 2, ,c R Ru l l             (6) 

In Eq. (5), 
0l is the initial length of the element, while 

cl is the length of the deformed element. 

These quantities can be computed from the nodal coordinates of the element and the current 

nodal degrees of freedom; 
R  is the element rigid rotation, which can be calculated as [20, 21] 

2 1

2 2 1 1

arctanR

w w

x u x u


 
  

   

 (7) 

where xi (i = 1,2) is the initial abscissa of node i; ui, wi (i = 1, 2) are the axial and transverse 

displacements with respect to the global coordinates at node i, respectively. 

The vector of the nodal forces and the matrix of the tangent stiffness, fin and kt, 

respectively, can be calculated from the expression of the strain energy (U) of the element as 

follows 
2

in 1 in 1 1 2 2 1 2 32
, N (M M )T T

t t

U U U   
       
   

d
f T f k T k T T T

d d d d
 (8) 

where in

U



f
d

 and 
2

2t

U



k
d

 are, respectively, the vector of the nodal forces and the matrix of 

tangent stiffness with respect to the local coordinates; T1, T2 and T3 are the transformation 

matrices, and they can be computed from the local and global relations in Eq. (6) as follows 
2 2

2
1 2 32 2

, , Ru  
   
  

d
T T T

d d d
 (9) 

      The vector of the nodal forces fin and the tangent stiffness matrix kt are defined by Eqs. (8) and 

(9) in case  the vector 
inf and the matrix  tk  are known, and thus the global formulation is  

defined. 

2.2. Size-dependent local formulation 

According to the classical beam theory, the displacements u  and w  of a point inside the 

element in the x - and z -directions are  
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0 0( , ) ( ) ( ), ( , ) ( )u x z u x z x w x z w x    (10) 

with 
0( )u x  and 

0 ( )w x  respectively denote the local axial and the transverse displacement of a 

point on the x -axis, and 0w x     is the local rotation of cross section.  

The following shallow arch formulation can be adopted for the local normal strain in the 

large displacement analysis of the micro-scale beam [20] 

2

0, 0, , 0 0,

1
( , ) ( ) ( ) ( ) ( ),

2
x x x x xxx z u x w z x x z w x        (11) 

where 2

0 0, 0,

1
( ) ( )

2
x xx u x w    is the membrane strain. The subscript comma in Eq. (11) and in 

the below denotes the derivative with respect to the variable that follows, e.g. 0, 0xw w x   . 

Assuming that the element material follows the Hooke’s law, the normal stress ( )x  is 

related to the normal strain in Eq. (11) by 

0 0,( , ) ( , ) ( ),x x xxx z E x z E z w      (12) 

where E is the elastic modulus. 

The axial displacement 
0u  and the transverse displacement 

0w with respect to the ( , )x z

system  are respectively interpolated from their nodal values by linear and cubic polynomials as 

follows 

0 2 0,u wu h u w h θ  (13) 

where  1 2,
T

 θ  and  

2 3 2 3

2 2

0 0 0 0 0

2
, ,u w

x x x x x
h x

l l l l l

 
      

 
h  (14) 

It should be noted that Eqs. (13) and (14) have been written in regard to that 
1 1 2 0.u w w    

Differentiating of 
0u  and 

0w in (13) with respect to x , one gets 

0, 2 0, 0,, ,x u x w xx wu b u w w  b θ c θ  (15) 

where 

2 2

, , 2 2

0 0 0 0 0

, 2 2

0 0 0 0

1 4 3 2 3
, 1 ,

4 6 2 6
,

u u x w w x

w w x

x x x x
b h

l l l l l

x x

l l l l

 
        

 

 
      

 

b h

c b

 (16) 

Because of the membrane locking problem, the normal strain in Eq. (11) and the 

interpolating functions (14) cannot be used directly to generate the vector of local internal forces 

and local matrix of tangent stiffness. To avoid this problem, the membrane strain 
0  in (11) is 

replaced by the following effective strain [20] 

0 0

2

eff . 0 0, 0,

0 00 0

1 1 1
d d

2

l l

x xx u w x
l l

 
 

   
 

   (17) 

Using Eqs. (13), (14) and (15), one can express Eq. (17) in the following form 
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0

eff . 2 2

0 0

1
d

2

l

T T T

u w w ub u x b u
l


 

    
 
 
θ b b θ θ B θ  (18) 

where  
0

0 0

4 11 1
d

1 42 60

l

T

w w x
l

 
   

 
B b b  (19) 

Since the classical structural theories cannot model the microstructural size effects of 

micro-scale structures, the MCST with only one additional material length scale parameter in [9] 

is employed herein to evaluate the elastic energy of the micro-scale beam element as  

   
0

0

1 1
: : d : : d d

2 2

l

V A

U V A x     σ ε m χ σ ε m χ  (20)  

In the above equation, V denotes the element volume; σ  is the stress tensor; ε  is the strain 

tensor; m is the deviatoric part of the couple stress tensor, and χ  is the symmetric tensor of 

curvatures. These tensors have the following form [9] 

21 1
tr( ) 2 , ( ) , ( ) , 2

2 2

T T l                  σ ε I ε ε u u χ β β m χ

 

(21) 

with l denotes the material length scale parameter;  and   are Láme coefficients defined as 

,
(1 )(1 2 ) 2(1 )

E E
 

  
 

  
 (22) 

where   is the Poisson’s ratio; μ is also the shear modulus; β  and u  are, respectively, the 

vectors of rotations and displacements with the following form 

 curl( ), , 0,
T

u w β u u  (23) 

with the classical beam theory adopted herein, the vector of rotations in (23) has the form 

 0,0, , 0
T

xw β  (24) 

using Eq. (24), one can express the χ  and m  in (21) in the form 

0, 0,

2

0, 0,

0 0 0 0
1

0 0 , 0 0
2

0 0 0 0 0 0

x x x x

x x x x

w w

w l w

   
   

   
   
      

χ m  (25) 

The tensors of stresses and strains tensors in the classical   beam theory have the following 

simple form 

0 0 0 0

0 0 0 , 0 0 0

0 0 0 0 0 0

x x    
   

 
   
      

σ ε  (26) 

Using Eqs. (25) and (26), one can recast the elastic energy for the element in (20)  in the 

following form 
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   
0 0/2 /2 /2 /2

2 2

0,

0 /2 /2 0 /2 /2

1 1
: : d d d σ ε d d d

2 2

l lb h b h

x x xx

b h b h

U z y x l w z y x
   

        σ ε m χ  (27) 

where  

0 0
0 0 01 , 1 , 0

x x x x
b b h h x l

L L
 

    
        

   
 (28) 

with 
0x  is the abscissa with respect to the beam left end to the 1st node. 

Substituting Eqs. (11)-(18) and (25) into Eq. (27) leads to 

 
0

2 2 2 2 2

2 2

0

1
( ) 2( )( ) ( ) ( ) ( ) d

2

l

T T

u u w wU EA b u b u EI l A x     
  θ Bθ θ Bθ c θ c θ  (29) 

In the above equation, A and I denote the area and second-order moment of inertia of the 

cross-section at ,x respectively, which can be expressed as   

2 43

0 0 0 0
0 0 1 , 1

12

x x b h x x
A b h I

L L
 

    
      

   
 (30) 

The vector of local internal forces inf  is obtained by differentiation of the elastic energy (29) 

with respect to the local degrees of freedom as 

   

   

0

0 0

2 2

2 0

2

2
(2 2) 0 0

2

1 2 2

ˆ( )d ( )

( ) d 2 ( )d

ˆ ˆ ˆ2 ( )

l

T T

u u u u u

l l

T T

w w u u

T

u u

U
f EAb b u x EAb b u

u

U
EI l A x EAb b u x

E l EAb b u








    



    


   



 θ

θ Bθ θ Bθ

f c c θ θ Bθ Bθ
θ

C C θ θ Bθ Bθ

 (31) 

with 

0 0 0

1 2

0 0 0

ˆ ˆ ˆd , ( )d , ( )d

l l l

T T

w w w wA A x I x A x    C c c C c c  (32) 

The local matrix tk  can be split into sub-matrices as 

(3 3)

u u u

t T

u

k



 
  
  

θ

θ θθ

k
k

k k
 (33) 

where the sub-matrices have the form 

   

2

(1 2)2

2

2 1 2

(2 2)

ˆ ˆ, 2 ( )

ˆ ˆ ˆ2 3

Tu u
u u u uu

T

u u

f f
k EAb EAb

u

EAb b u E l 





 
   
 


    


θ

θ

θθ

k θ B
θ

f
k θ Bθ B C C

θ

 (34) 

Having the vector of local internal forces inf  and the matrix of tangent stiffness tk derived, 

the element formulation is completely defined by Eqs. (8) and (9). 

2.3.  Numerical algorithm  
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The derived vector of element forces 
inf  and the matrix of tangent stiffness 

tk  are 

assembled into the global vector and matrix to form the equilibrium equation for the 

microcantilever, which can be written in the form [21], [22] 

( , ) ( ) 0L in L ef   g p q p q  (35) 

where p and qin are the global vectors of degrees of freedom and internal forces at the nodes, 

respectively; qef is the vector of fixed external load, and λL is the scalar loading parameter. The 

vector g in (35) is named as out of balance force vector. 

The arc-length technique in [22] is employed herewith to handle the complex situations, 

e.g. the snap-through and snap-back. This technique considers the loading parameter λL as an 

additional unknown, and the following constraint equation is introduced 

  2 0T T

L ef ef sca l       p p q q  (36) 

where ψ is the scaling parameter, and ∆lsc is a fixed arc length. The nodal displacements and the 

loading parameter can be obtained from Eqs. (35) and (36) by the Newton-Raphson iterative 

method. The arc-length technique and its implementation are given in details in [20], [22] 

A converge criterion is needed for the iterative method. In the present work, a criterion 

based on the Euclidean norm of the out of balance force vector adopted as 

L ef g q  (37) 

with   is the tolerance, taken by 10
-4

 for all numerical example in Section 3. 

3. NUMERICAL INVESTIGATION 

The nonlinear response of the tapered microcantilever to a concentrated load/moment at the 

free end is predicted in this section. The following non-dimensional parameters are introduced 

for the tip displacements, the length scale parameter and external load 

2

0 0 0

ˆ ˆ ˆˆ ˆ, , , , ,
( / 2)

L L Lu w l PL ML
u w P M

L L h EI EI


 


       (38) 

where 
Lu , and 

Lw  are, respectively, the tip displacements in x  and z  directions; 
L  is the tip 

rotation; P and M are the concentrated load and moment acting at the free end, respectively; I0 is 

the moment of inertia of the clamped section. Otherwise stated, a beam made of steel with 

210 GPa,E  0.3  and a ratio 
0/ 50L h   is employed in the below. 

3.1. Formulation verification 

Because no data on the large deformation of microcantilever are found by the authors in the 

literature, a macro-scale cantilever beam made of steel, previously studied by Lee et al. in Ref. 

[17], is considered. The cantilever is linearly tapered in the width direction,  0( ) 1 xb x b
L

  , 

and with a ratio 
0 / 3LI I   ( = 2/3). The non-dimensional parameters for the external loads are 

[17]: 
2ˆ ( )LP PL EI  and ˆ ( )LM ML EI , with IL as the moment of inertia of the tip.  Table 1 

compares the tip normalized responses of the tapered cantilever beam under a combination of 

the tip load and moment obtained by the present formulation with the results of Ref. [17]. One 

can see from the table that the displacements and rotation obtained by the present formulation 
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agree very well with that of Ref. [17], where the classical beam theory and Runge-Kutta method 

have been employed. It is noted that the results in Table 1 are obtained by using six elements, 

and no improvement is seen by using more than six elements.  

Table 1. Comparison of tip responses of a macro-scale tapered cantilever under a combination of 

transverse tip load and tip.  

P̂  M̂  
Present  Ref. [17] 

û  ŵ  ̂   û  ŵ  ̂  

5 0 0.1670 0.4918 0.5408  0.1678 0.4926 0.5428 

0 2 0.1411 0.4137 0.6994  0.1411 0.4136 0.6994 

5 2 0.3635 0.6429 1.0085  0.3640 0.6433 0.9969 

To verify the ability of the element in bending analysis of microbeam, Table 2 compares 

the dimensionless maximum linear deflection of a pinned-pinned (PP) uniform microbeam 

subjected to uniform distributed load q0 obtained herein with the results of Ref. [23]. In the 

reference, various beam theories are used to analyze the linear bending problem. The result in 

the table is obtained by present formulation by deleting the nonlinear terms. The deflections in 

Table 2 are given for various values of , and the following data: E = 427 (MPa),  = 0.17, L/h = 

10, b = h. Good agreement between the maximum deflections obtained by the present 

formulation with that of Ref. [23] is noted from Table 2, irrespective of the scale parameter. 

Noting that the scale parameter in Table 2 is defined in accordance with the cited reference. 

Table 2. Comparison of the maximum deflection (
4

max 0 0100 / ,w w E I q L 3 /12I bh 0 70GPaE  )                 

for PP microbeam with linear bending model. 

Source Theories  = 0  = 1  = 1/2  = 1/4  =1/ 8 

Ref. [23] Classical Beam Theory 0.2133 0.0348 0.0935 0.1616 0.1976 

 First-order Beam Theory 0.2181 0.0364 0.096 0.1653 0.2021 

 Third-order Beam Theory (TBT) 0.2181 0.0352 0.0949 0.1647 0.2018 

 Sinusoidal Beam Theory (STB) 0.2181 0.0352 0.0949 0.1647 0.2018 

 Quasi-3D TBT 0.2179 0.0352 0.0949 0.1646 0.2016 

 Quasi-3D SBT 0.2178 0.0352 0.0949 0.1646 0.2016 

Present Classical Beam Theory 0.2135 0.0348 0.0935 0.1616 0.1976 

3.2. Microbeam under a tip transverse load  

The tapered microcantilever subjected to a transverse tip load P is analyzed. In Table 3, the 

non-dimensional tip displacements of the microbeam corresponding to ˆ 5P   are given for some 

values of the tapered ratio α and the non-dimensional scale parameter η. The significant 

influence of the tapered ratio and the size-scale effect on the nonlinear behavior of the 

microbeam can be seen clearly in the table. The increase of the tapered ratio increases the tip 

displacements, while they are decreased when increasing the non-dimensional scale parameter η. 

Thus, ignoring the size effect leads to an overestimation of the tip displacements of the 

microcantilever.  
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The influence of the tapered ratio and the size scale parameter on the nonlinear behavior of 

the tapered micro-scale cantilever beam can also be seen from Figure 3, where the curves of 

load-displacement relation of the microcantilever are depicted for several values of the non-

dimensional scale parameter η and the tapered ratio α. At a given transverse load, as can be seen 

from Figure 3a, the increase of the scale parameter results in a decrease of the tip displacements, 

while, as expected, the increase of the tapered ratio results in the increase of the tip response 

(Figure 3b).  The different influence of the scale parameter and the tapered ratio on the nonlinear 

response of the microcantilever can also be seen in Figure 4, where the deformed configurations 

of the microbeam are depicted for several values of the non-dimensional size-scale parameter 

and the tapered ratio. The result obtained in this sub-section confirms the important role of the 

size-scale parameter on the nonlinear response of the micro-scale beam and the tip 

displacements of the microcantilever are considerably underestimated when ignoring the micro-

scale size effect. It is noted that the numerical result in this sub-section is convergence by six 

elements also. 

Table 3. Tip normalized displacements of tapered microbeam corresponding to ˆ 5P   for different       

tapered ratios and dimensionless scale parameters. 

  Response 
  

0 0.25 0.50 0.75 1.00 

0.0 û  0.3876 0.3209 0.1928 0.0963 0.0461 

 ŵ  0.7139 0.6636 0.5355 0.3896 0.2737 

0.1 û  0.4105 0.3428 0.2101 0.1068 0.0516 

 ŵ  0.7233 0.6759 0.5523 0.4067 0.2877 

0.2 û  0.4338 0.3656 0.2289 0.1188 0.0582 

 ŵ  0.7314 0.6870 0.5689 0.4247 0.3029 

0.3 û  0.4570 0.3888 0.2492 0.1326 0.0660 

 ŵ  0.7380 0.6967 0.5850 0.4435 0.3197 

0.4 û  0.4799 0.4122 0.2710 0.1484 0.0754 

 ŵ  0.7433 0.7049 0.6002 0.4631 0.3381 

0.5 û  0.5018 0.4353 0.2942 0.1667 0.0869 

 ŵ  0.7476 0.7117 0.6143 0.4831 0.3583 
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a)  = 0.2                                       b)  = 0.5 

Figure 3. Load-displacement curves of tapered microcantilever subjected to tip load for different 

dimensionless scale parameters and tapered ratios. 

 
a)  = 0.2 

 
                        b)  = 0.5 

Figure 4. Deformed configurations of microcantilever under tip load corresponding to ˆ 10P   for 

different non-dimensional scale parameters and tapered ratios. 

3.3. Roll-up of microcantilever by end moment   

Roll-up of a tapered microcantilever due to a moment M acting at the free end is studied in 

this sub-section. In Table 4,  the non-dimensional tip displacements of the microcantilever 

corresponding to ˆ 1.2M   are listed for several values of the tapered ratio and the size-scale 

parameter. Similar to the case of the microcantilever under the tip transverse load, an increase in 

the tapered ratio leads to an increase in the tip displacements. On the other hand, the response of 

the microcantilever is more conservative when the micro-size effect is taken into consideration, 

and this tendency is more pronounced for the microcantilever with a higher scale parameter.   

 

û ŵ û ŵ
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Table 4. Tip normalized displacements of tapered microcantilever corresponding to ˆ 1.2M  for different 

tapered ratios and size-scale parameter.  

  Response 


 
0 0.25 0.50 0.75 1.00 

0.0 û
 

0.2233 0.1384 0.0509 0.0185 0.0076 

 ŵ  0.5314 0.4330 0.2714 0.1653 0.1064 

0.1 û
 

0.2972 0.1802 0.0638 0.0225 0.0091 

 ŵ  0.5793 0.4768 0.2982 0.1802 0.1154 

0.2 û
 

0.4040 0.2402 0.0815 0.0280 0.0112 

 ŵ  0.6178 0.5233 0.3294 0.1978 0.1260 

0.3 û
 

0.5517 0.3271 0.1068 0.0356 0.0140 

 ŵ  0.6189 0.5657 0.3657 0.2188 0.1387 

0.4 û
 

0.7120 0.4494 0.1437 0.0465 0.0179 

 ŵ  0.5691 0.5851 0.4072 0.2442 0.1543 

0.5 û
 

0.7318 0.5977 0.1993 0.0630   0.0239 

 ŵ  0.5078 0.5504 0.4518 0.2755 0.1738 

The effects of the size-scale parameter and the tapered ratio on the behavior of the  

microbeam can also be seen clearly in Figure 5 and Figure 6, where the curves of load-

displacement relation and the deformed configurations are respectively illustrated for several 

values of the scale parameter and tapered ratio. An increase in the size-scale parameter leads to a 

decrease in the tip displacements (Figure 5a), while the tip response of the microcantilever 

increases by increasing the tapered ratio (Figure 5b).  

 
             a)  = 0.2                                       b)  = 0.5 

Figure 5. Load-displacement curves of tapered microcantilever under tip moment for different 

dimensionless size-scale parameters and tapered ratios.  

 

û ŵû
ŵ
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a)  = 0.2                            b)  = 0.5 

Figure 6. Deformed configurations of cantilever microcantilever corresponding to ˆ 4M  for various 

values of dimensionless size-scale parameter and tapered ratio. 

The deformed configurations of the microbeam corresponding to ˆ 4M   as illustrated in 

Figure 6 for different non-dimensional size-scale parameters and tapered ratios also confirm the 

impacts of the size effect and the tapered ratio on the nonlinear response of the tapered 

microcantilever. The microcantilever is more conservative when it is associated with a higher 

size-scale parameter (Fig. 6a), while it is more flexible by increasing the taper ratio (Fig. 6b). 

4. CONCLUSIONS 

      The size-dependent nonlinear behavior of a micro-scale tapered cantilever beam was studied  

using a co-rotational element. The MCST was employed with the classical beam theory to derive 

the vector of internal forces and the matrix of tangent stiffness. Newton-Raphson's iterative 

method was adopted with the arc-length technique to solve the nonlinear equation and to 

compute the equilibrium paths. The impacts of the tapered ratio and the size-scale parameter on 

the nonlinear response of the microcantilever under a tip transverse load/end moment have been 

investigated in detail.  The numerical result has confirmed that the derived formulation is 

efficient, and it can predict accurately large deflections of the microbeam by using a small 

number of elements. The obtained result also reveals that the influence of the size-scale 

parameter and the tapered ratio on the nonlinear response of the microcantilever is opposite. 

While the increase of the tapered ratio enhances the tip displacement response of the 

microcantilever, the nonlinear response is more conservative by considering the microstructural 

size effect, and this is more pronounced for a microcantilever having a higher material length 

scale parameter. 
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