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Abstract. Hyperelastic materials are primarily common in real life as well as in industry 

applications, and studying this kind of material is still an active research area. Naturally, the 

characteristic of hyperelastic material will be expressed when it undergoes large deformation, so 

the geometrical nonlinear effect should be considered. To analyze the behavior of hyperelastic 

material, the Neo-Hookean model is imposed in this study because of its simplicity. The model 

shows the nonlinear behavior when the deformation becomes large due to the nonlinear 

displacement-strain relation. This constitutive relation also gives a good correlation with 

experimental data. This study performs a meshless method, namely the radial point interpolation 

method (RPIM), to analyze the nonlinear behavior of Neo-Hookean hyperelastic material under 

a finite deformation state in three-dimensional space. The standard Newton-Raphson technique 

is applied to obtain the nonlinear solutions. Unlike mesh-based approaches, the meshless method 

shows its advantages in large deformation problems due to its mesh independence. In this paper, 

the numerical results of three-dimensional problems that undergo large deformation will be 

calculated and validated with solutions derived from previous studies. By investigating the 

obtained results, the superior ability of RPIM in hyperelastic problems can be proved. 

Keywords: three-dimensional hyperelasticity, large deformation, RPIM, Meshless. 
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1. INTRODUCTION 

Hyperelastic materials can totally return to their original shape after undergoing large 

deformation. Unlike other ones, they can easily come to a large deformation state and return 

without any permanent change in shape, and the weight of those is light. Because of those 

properties, this kind of material is widely used in practice, such as in car tires, elastomeric pads 

in bridges, damping systems, or even shock-absorbing matters in many different types of 

devices. Mathematically, in hyperelastic material, the stress is derived from the derivative of the 

strain energy function with respect to the strain, and the constitutive relation is the derivative of 

the stress function. So, the strain energy function needs to be chosen appropriately. There are 



 
 

Hoai Linh Le Nguyen, Vay Siu Lo, Thien Tich Truong, Nha Thanh Nguyen 
 

 

1032 

many kinds of hyperelastic materials [1] depending on the form of the strain energy density 

function, including Neo-Hookean, Mooney-Rivlin, Ogden, etc. In practice, hyperelastic 

materials typically work in large deformation states, so it is appropriate to consider the influence 

of geometrical nonlinearity in the analysis. 

The Finite Element Method (FEM) has been widely used in many fields of mechanics and 

industry in the last few decades [1, 2]. It is an effective and robust method for mechanical 

analysis. Indeed, it can be applied to most fields of mechanics, such as structural analysis, fluid 

flow, heat transfer, etc. Up to now, FEM has already been developed well. One of the 

characteristics of this method is mesh dependence. It can reduce the effectiveness of FEM in 

some types of problems, such as crack growth problems, large deformation analysis, breakage 

simulations, etc. In large deformation analysis, the element shape can be distorted in the regions 

that are subjected to large deformation so that the accuracy of the variable field cannot be 

warranted. The root of all issues mentioned above is the use of mesh in constructing the 

interpolation function. The only way to overcome this drawback is to avoid the mesh 

dependence of FEM. However, it is challenging because the element needs to be predefined, and 

the interpolation functions must also be defined initially for a fixed type of element. 

Because of the motivation to develop a new method that does not depend on predefined 

meshes, many kinds of meshless methods have been developed [3 - 5]. In the early 1990s, there 

were huge attempts in research for weak-form meshless methods. Accordingly, a large number 

of meshless methods were significantly proposed. Examples of these methods include the 

Element Free Galerkin method (EFG) [6 – 8], the reproducing kernel particle method (RPKM) 

[9, 10], the radial point interpolation method (RPIM) [4, 11, 12], etc. Theoretically, a meshless 

method is a method used to establish system algebraic equations for the whole problem domain 

without using a predefined mesh [4]. In meshless methods, the domain of a problem is 

represented by a set of scattered nodes. Different from FEM, the meshless method defines a 

small bounded region, which is also known as the support domain, of a considered point to 

construct the interpolation functions from a small set of nodes that are included. The elimination 

of mesh allows the effective use of the meshless method in many kinds of problems. 

This approach uses the radial point interpolation algorithm to construct the RPIM shape 

function of a considered point, which can be easily imposed on three-dimensional problems. The 

RPIM shape function is high-order continuous and also possesses the Kronecker property, so the 

essential boundary conditions can be simply applied. 

In most cases, three-dimensional structures are ideally modeled into two-dimensional ones. 

Much former research has analyzed the behavior of a body in two-dimensional space [12 - 14]. 

Despite the fact that it can reduce the cost of computation, the generality can be lost. Hence, 

many actual effects of a body are neglected, which leads to failures when analyzing. In some 

cases, if accuracy is a critical concern, three-dimensional analysis should be performed. 

This research studies the large deformation behavior of a hyperelastic material in three-

dimensional space, which contains both the effects of geometrical and material nonlinearity. The 

Neo-Hookean model, which uses the total Lagrangian formulation, is employed for modeling 

hyperelastic behavior. The radial point interpolation method with 3D shape functions is 

proposed, and the standard Newton-Raphson method is applied in this research. 

This paper is organized as follows: After this Introduction, Section 2 briefly describes 

hyper-elastic materials with the constitutive equations. After that, the 3D RPIM interpolation 

function and the weak form are presented in Section 3. Numerical results are shown in Section 4. 

Lastly, the main findings and comments on the proposed method are set out in Section 5.  
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2. CONSTITUTIVE EQUATIONS OF HYPERELASTIC MATERIAL 

Consider a hyperelastic solid body subjected to some forces and displacements so that its 

configuration changes from the undeformed (denoted by x ) to the deformed (denoted by X ). 
This deformation is characterized by F , which is known as the deformation gradient tensor. 

 





i i

ij ij

j j

x u
F = =

X X
 (1) 

where 
i

u  represents the component of the displacement field, and ij  is the Kronecker Delta. 

For a hyperelastic body, there is the existence of a strain energy density when the body 
deforms. Generally, the form of a strain energy density function can be expressed as [1]: 

      1 2 3 1 2 3
( , , ) 3 3 1



 

   
m n k

mnk

m n k

W I I I A I I I  (2) 

where 
mnk

A  are the coefficients of polynomials, and 
1I , 

2I , 
3I  are three invariants of the right 

Right-Cauchy strain tensor C , which is expressed in terms of deformation gradient F  or 
Lagrangian strain tensor E  as 

 2  T
C F F E 1  (3) 

where 1  is the identity matrix. The Second Piola-Kirchhoff stress is derived from the derivative 
of the strain energy density function with respect to the Lagrangian strain 

 
W W

2
 

 
 

S
E C

 (4) 

Also, the constitutive tensor D  is derived from the second-order derivative of the energy density 
function 

 
2

2

W 
 
 

S
D

E E
 (5) 

The Cauchy stress can be calculated from tensors F  and S  according to the following 

relationship: 

 
1

 T

J
σ FSF  (6) 

where J  is the determinant of the deformation gradient F  which describes the volume change. 
Moreover, J  relates to the third invariant of the strain tensor C  

   2

3det ; J I JF  (7) 

The Neo-Hookean model is adopted in this research, the strain energy density function is 
expressed in terms of 

1I  and J  as in [12]: 

    
2

1

1 1
3 2 ln 1

2 2
       W I J J  (8) 

where   is the shear modulus, and   is the bulk modulus. The Second Piola-Kirchhoff stress 
tensor is derived from the first-order derivative of strain energy density function as follows: 
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    1 11       J JS 1 C C  (9) 

Also, the constitutive tensor is derived from the second-order derivative of the strain energy 
density function with respect to Lagrangian strain 

  , , ,2
1

 
 

   
        
   

J J J J
J J

E E EED  (10) 

where , /  J JE E  is the second-order tensor, and 
2 2

, ,/ /     J J JEE EE E  is the fourth-
order tensor. 

3. RPIM FORMULAS FOR HYPERELASTICITY 

3.1. Radial basic function approximation 

The shape functions of a point in the problem domain are constructed from a set of nodes 

that are bounded by its support domain. The RPIM interpolation can be written as in [5]: 

      
 

    
 

T Tu
α

x R x p x
β

 (11) 

where  u x  is the interpolation field,  T
R x  is the vector radial basic functions (RBFs), 

 T
p x  is the vector of m polynomial basic functions, α  is the vector of coefficients for RBFs, 
β  is the vector of coefficients for polynomial. 

Eq. (11) satisfies all nodes in the support domain of an interested node at x . From that, a 
set of linear equations can be formed in matrix form as below: 

 
     

      
     

T

U R P α
U Ma

0 P 0 β
 (12) 

R  is the moment matrix of RBFs 
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P  is the moment matrix of polynomial 
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P  (14) 

and U  is the vector containing function values. 

Then, Eq. (11) can be rewritten as 



 
 
Nonlinear analysis of three-dimensional hyperelastic problems using radial point interpolation method 

 

1035 

        1   
T T Tu x R x p x M U Φ x U  (15) 

where T
Φ  is the vector of shape functions 

 
     

          

1

1 2 1                        



 

   



T T T

T

n n n m

Φ x R x p x M

x x x x x
 (16) 

Lastly, the vector containing shape functions  T
Φ x  can be obtained: 

         1 2     
TT

nΦ x x x x  (17) 

The nodal field can be expressed as 

    
1




 
n

T

i i

i

u ux Φ x U  (18) 

Also, the derivative of  u x can be obtained effortlessly: 

    , , ,

1




 
n

T

k k i k i

i

u ux Φ x U  (19) 

3.2. The weak form 

Given a continuum of a three-dimensional hyperelastic solid body with a volume  , 
bounded by a surface boundary  , shown in Figure 1. The body is in equilibrium under the 

action of external traction force 


t  on surface boundary  t , prescribed displacements on u  and 
body force b

f .Then, the weak form can be obtained by applying the principle of minimum 
potential energy and written as in [1]: 

 : 0

  

     
T b Td d dS E u f u t  (20) 

The first term denotes the internal energy, which is strain energy of the body and the others are 
the external energy, which is also the work done by the traction and body force. Vector u  is the 
variation of displacement, S  is the second Piola-Kirchhoff stress, and E  is the variation of 
Lagrangian strain. 

 

Figure 1. A hyperelastic solid body is in equilibrium. 
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The discrete version of the weak form is written as 

  int ext

1

0  

  

  
        

  
  

N
T T T b T

n I I I

I

d u d dd B S f t d f f  (21) 

where d  is the variation of the nodal displacement vector, and 
nB  is the nonlinear 

displacement-strain matrix. Assuming Eq. (21) is not satisfied, the residual is then defined as 

  int ext T
R d f f  (22) 

The Newton-Raphson algorithm requires the linearized form of the residual in each iteration, so 
the linearizing of residual R  must be performed. Then, the linearized residual is 

   : : :
 

 
            

 
 

T T T

n n g gL d dR E D E S E d B DB B B d  (23) 

where gB  is the linear displacement-strain matrix, D  is the constitutive tensor. Tensor E  and 

E  are the increment of Lagrangian strain and its variation, respectively. Then, the nonlinear 
equation 0R  can be solved by the Newton-Raphson method, iteratively. It can be written in 
the incremental form as 

  T
d K d R  (24) 

where 

 


 
   
 


T T

n n g g dK B DB B MB  (25) 

M  is a matrix that contains the second Piola-Kirchhoff stress components. 

4. NUMERICAL RESULTS 

4.1. Curved beam problem 

In order to validate the accuracy of the proposed 3D RPIM method, the curved beam 

problem is first studied. The geometry of the curved beam is shown in Figure 2a, with 
dimensions similar to the example in [12] except that it is three-dimensionalized by extending 
the thickness along the x-axis. Also, Figure 2a shows the boundary conditions of the problem, 
which is fixed at the bottom face and subjected to a distributed force f at the right-end face 
(negative x-axis viewing direction). 

The nodal distribution of 672 nodes is shown in Figure 2b. The Neo-Hookean material with 

the behavior of compressibility is used for this problem, the shear modulus is
280.194 /  N mm , and the bulk modulus is 2120.291 /  N mm . Five values of distributed 

load f ( 0.2 , 0.3 , 0.4 , 0.5
2/N mm ) are considered. The displacement convergence criterion is 

used to estimate the convergence of the nonlinear solution with a predefined tolerance of 
610

. 

The accuracy of RPIM is investigated by comparing the displacement in the z-direction of 

point P with the result in [12], as shown in Table 1. The difference between the two solutions is 
relatively small, about 1.2 % for all different values of load f. 
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Figure 2. a) Geometry and boundary conditions, b) Distribution of nodes. 

To examine the convergence of RPIM, various values of nodal distribution number N 
(including four values: 672, 1120, 1820, 3234 nodes) are conjugated with various fixed-number 
of nodes in the support domain n (including six values: 15, 25, 35, 50, 70, 90 nodes). Assuming 
the displacement along the z-direction of point P is a function of n and N, then  ,z zu u n N . 
That function is a surface in three-dimensional created from discrete function values at all 
combinations of n and N, shown in Figure 3. Also, the green line contains all converged values 
at every fixed value of N . In contrast, the blue line includes all converged values at every fixed 
value of n. Hence, the intersection of those lines (the magenta point) is the desired converged 
combination of n and N (n = 35, N = 1120). 

Then, the converged result of point P at various values of load f is shown in Figure 4. The 

deformed geometries of the beam at five values of load f are plotted in Figure 5. Because the 
stress components xxS , xyS , and xzS  are small compared to other components ( yyS , zzS , yzS ), 
only yyS , zzS , and yzS  components of the second Piola-Kirchhoff stress are shown in Figure 6. 

Table 1. The comparison of z-displacement, zu , at point P. 

f 
2( / )N mm  

z-displacement of point P (mm) 

RPIM (672 nodes) iRPIM Error (%) 

0.2  6.2757  6.3523  1.20586  

0.3  11.1948  11.3343  1.23078  

0.4  13.7247  13.8685  1.03688  

0.5  15.0610  15.1995  0.91121  

Consider nodes whose coordinate is  , 8.59,5.12 T
ix : ix (0, 0.5, 1, 1.5, 2, 2.5, 3) as 

shown in Figure 7a. The displacement components of those are not exactly the same along the x-
direction. As shown in Figure 7b, the x-displacement of a node is slightly higher as it gets closer 
to the boundary. In contrast, the y- and z-displacements tend to decrease, as shown in Figure 7c, 
and Figure 7d. This shows precisely the natural behavior of a beam subjected to a shearing force. 
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Figure 3. Convergence surface of RPIM. 

 

Figure 4. Converged result of point P at various values of load f. 

 

Figure 5. Deformed geometries of the beam subjected to various values of distributed load f.
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Figure 6. Components of the second Piola-Kirchhoff stress of the beam under load 
20.5 /f N mm . 

 

Figure 7. Distribution of displacement components along the x-axis under load
20.5 /f N mm . 

4.2. Cook’s membrane problem 

The second problem is Cook’s membrane [12]. Its dimensions are shown in Figure 8, it is 
fixed at the left end face and subjected to a distributed force f on the right end face. The Neo-
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Hookean material is used to mathematically describe the compressible behavior of the problem. 
Also, its shear modulus and bulk modulus are 280.194 /  N mm and 2120.291 /  N mm , 
respectively. Firstly, the convergence of RPIM needs to be studied under the action of the force 

28 /f N mm . It is the same as the previous problem, various combinations of two parameters, 
n and N, are conjugated to calculate the z-displacement of considered point P (shown in Figure 
8) for investigating the most converged one. Then, the most converged combination of n and N 
is (65, 2268), the nodal distribution of N = 2268 nodes is plotted in Figure 9. The accuracy of 
RPIM is evaluated by comparing its results with the reference results obtained from the Finite 
Element method (ANSYS), as shown in Table 2. Note that the error in the table is calculated by 

comparing with ground-true results obtained from the Finite Element method with a very fine 
mesh. Accordingly, the rate of convergence of PRIM can be visualized in the comparison table. 

Table 2. Displacement in z-direction at point P, zu , obtained using RPIM and FEM. 

2
( )

N
f

mm
 

RPIM (2268 nodes) FEM (2268 nodes) 

( 45)zu n

 
Error (%)  

( 65)zu n

 
Error (%)  

zu  Error (%)  

8  11.434  0.0147  11.433  0.0094  11.347  0.7435  

12  14.818  0.1216  14.813  0.0911 14.731  0.4662  

16  17.470  0.1874  17.453  0.0912  17.376  0.3498  

20  19.701  0.2197  19.669  0.0558  19.593  0.3307  

 

Figure 8. Geometry of the membrane. 

 

Figure 9. Nodal distribution of 2268 nodes. 

Using the nodal distribution of N = 2268 and the fixed number of nodes in the support 

domain n = 65, various values of load f are subjected to the body in order to find its behavior 

under the condition of large deformation. The deformed configurations of the membrane under 

various values of load f are shown in Figure 10. Moreover, the components of the second Piola-

Kirchhoff stress are shown in Figure 11, in the case of load 28 / .f N mm  

To investigate the behavior of the displacement along the thickness (x-direction), several 

nodes whose coordinate is  , 48, 60 T
ix , ix (0, 3.33, 6.66, 10, 13.33, 16.66, 20) are 

considered. Figure 12 represents the distributions of displacement components of these nodes 
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under load 28 /f N mm . Obviously, the displacement components of these nodes are 

symmetric due to the boundary condition, which cannot be seen if the plane strain analysis is 

performed. 

 

Figure 10. Deformed configurations of the membrane under various values of load f. 

 

Figure 11. Second Piola-Kirchhoff stress components
2( / )N mm  in the case of

28 /f N mm . 
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Figure 12. Distributions of displacement components of the considered nodes under load 
28 /f N mm . 

5. CONCLUSIONS 

In this paper, the behavior of hyperelastic material in a three-dimensional problem is 

studied using the approach of RPIM. There are two types of non-linearity taken into account in 

this study including geometric and material behavior. Two hyperelastic material problems are 

presented to investigate the effective use of meshless methods in the general 3D model, and they 

both offer good convergence. By using the radial point interpolation algorithm to construct the 

3D shape function, the proposed RPIM approach for non-linear problems can give a more 

accurate solution using the same number of degrees of freedom as conventional finite element 

analysis. Moreover, RPIM can handle finite-deformation problems well by eliminating the 

highly distorted behavior of elements, which exists in mesh-based methods. It is also shown that 

if the actual behavior of a body is a concern, it must be performed as a three-dimensional 

problem rather than a modelized two-dimensional one. The proposed method can be further 

applied to more complicated non-linear problems such as crack growth, damage, or contact 

analysis in hyperelastic material. 
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