

Journal of Science and Technology 49, Number 5 (2011) 105-118

105

A FORMAL ANALYSIS FRAMEWORK FOR AADL

Stefan Björnander1, Cristina Seceleanu2, Kristina Lundqvist2,
Paul Pettersson2

1
CrossControl AB Kopparlundsvagen 14, 721 30 Vasteras, Sweden

2
School of Innovation, Design, and Engineering Malardalen University,

Box 883, 721 23 Vasteras, Sweden

Received September 30, 2011

ABSTRACT

As system failure of mission-critical embedded systems may result in serious consequences,

the development process should include verification techniques already at the architectural

design stage, in order to provide evidence that the architecture fulfils its requirements. The

Architecture Analysis and Design Language (AADL) is a language designed for modeling

embedded systems, and its Behavior Annex defines the behavior of the system. However, even

though it is an internationally used industry standard, AADL still lacks a formal semantics and is

not executable, which limits the possibility to perform formal verification. In this paper, we

introduce a formal analysis framework for a subset of AADL and its Behavior Annex, which

includes the following: a denota- tional semantics, its implementation in Standard ML, and a

graphical Eclipse-based tool encapsulating the implementation. We also show how to perform

model checking of AADL properties defined in the Computation Tree Logic (CTL).

1. INTRODUCTION

Mission-critical embedded systems play a vital role in many applications, like air traffic

control and aerospace applications. As system failures may result in serious consequences, the

development process should include verification techniques, in order to provide evidence that

the system’s architecture fulfills its requirements. The architectural design phase is of high

practical interest, since architectural mistakes that cause a system to fail certain requirements are

hard and expensive to correct in later development phases.

The Architecture Analysis and Design Language (AADL) [1] is a standard of the Society of

Automotive Engineers (SAE
1
), and is based on MetaH [2] and UML [1]. AADL is designed for

modeling both the hardware and the software of embedded systems. The standard includes

several annexes, out of which the Behavior Annex [3] provides means of describing the behavior

of the model.

1SEA is presented at http://www.sae.org.

http://www.sae.org/

Stefan Björnander, Cristina Seceleanu, Kristina Lundqvist, Paul Pettersson

 106

Even if appealing and already adopted by industry, AADL still lacks a formal semantics,

which is particularly important for the design of mission-critical embedded systems, since

failures may cause serious damage to people or valuable assets. Such systems are often required

to pass certification processes in order to provide sufficient evidence about their safety.

Moreover, AADL models are not executable, which limits the possibility to formally analyze

their safety and liveness properties.

Consequently, it is highly desirable to overcome such limitations of AADL. To do so, one

has to define AADL formally, as any attempt to achieve formal verification requires a precise

mathematical method. It is also beneficial that the analysis techniques based on the semantics are

supported by tools that are integrated into an AADL tool chain; this would make it easier for an

user with limited knowledge of the underlying formalism, to perform, e.g., model checking of

AADL models.

In this paper, we introduce a formalization of the meanings of a subset of AADL and its

Behavior Annex in denotational style. Our choice of a denotational style for AADL structures is

justified by the simplicity of the semantics models, which is known to improve generality and

ease of reasoning [4].

To complete our analysis framework, we also describe the Standard ML implementation

that forms the basis of our AADL verification tool, called the ABV tool. See Björnander et al.

[5] for a description. The semantics as well as its implementation and CTL verification are

illustrated through a small example.

The results of this contribution together with the recently developed verification tool ABV

define our AADL formal analysis framework that contains the following:

 A denotational semantics defining a subset of AADL and its Behavior Annex that also

include model checking of properties defined in CTL. See Björnander et al. [9] for a

complete specification of the semantics.

 The semantics implemented in Standard ML, and a parser translating a model defined in

AADL and its Behavior Annex as well as a subset of CTL property specification into a

format in Standard ML suitable as input.

 The ABV model checker that encapsulates the semantic implementation and the parser in a

graphical user interface based on the Eclipse Framework. With the help of the tool, the user

is able to verify a subset of CTL properties of the model without knowledge of the

underlying formalism.

The rest of this paper is organized as follows: Section 2 is preliminaries; describing, among

other things, the syntax of a subset of AADL and its Behavior Annex. Section 3 defines the

information gathering part of the denotational semantics. In Section 4, verification by model

checking techniques is described. Finally, Section 5 discusses related work before concluding

the paper in Section 6 with conclusions and further work.

A Formal Analysis Framework For AADL

107

Listing 1. The AADL syntactic rules.

+ one or ore, * zero or more, ? zero or more

Model ::= Sysem+ SystemImpl

System ::= system Identifier Features? Annex? end ;

Features ::= features Feature+

Feature ::= Identifier : in event port;

 | Identifier : out event port;

SystemImpl ::= system implementation Identifier .

 Identifier Subcomponents? Connections

 end ;

Subcomponents ::= subcomponents Subcomponent+

Subcomponent ::= Identifer : system Identifier ;

Connections ::= connections Connection

Connection ::= event port Identifier . Identifier ->

 Identifier . Identifier ;

2. PRELIMINARIES

In AADL, there are two kinds of systems: the system that defines the port interface and an

optional behavior annex, and the system implementation that defines the subcomponents and the

port connections between them. In this paper, we have chosen a subset of the AADL model that

includes at least one system and exactly one system implementation, which occurs at the end of

the definition. The subcomponents of the system implementation are instances of earlier defined

systems (equivalent to objects and classes in object-oriented languages) and the connections are

made between input and output ports of the subcomponents, not the systems. The syntax of our

AADL subset is given in Listing 1.

In order to increase the expressiveness of AADL, it is possible to add annexes. One of them

is the Behavior Annex [6, 7] that models an abstract state machine [8]. Each component of the

model describes its logic by defining a behavior state machine, which consists of the parts State

Variables, Initializations, States, and Transitions. The corresponding syntax is given in Listing 2.

CTL is a branching-time temporal logic, that is, it models time as a tree structure with a

non-determined future. There are several different paths; any one of them may be realized. There

are several quantifiers and operators available in CTL; among them, the universal, all, and

existential, exists, quantifiers over paths together with the global and eventually path-specific

operators.

In an AADL model, identifiers are bound to values that need to be stored for further use.

Therefore, we need to utilize the data types list, table, set, and tree to holds the values. See

Björnander et al. [9] for their complete semantic definitions.

Stefan Björnander, Cristina Seceleanu, Kristina Lundqvist, Paul Pettersson

 108

Listing 2. The Behavior Annex syntactic rules.

Annex ::= annex Identifier {** StateVariables?

 Initializations? States? Transitions? **} ;

StateVariables ::= state variables StateVariable+

StateVariable ::= Identifier : integer ;

StateVariable ::= states State+

State ::= Identifier : initial state ;

 | Identifier : state;

Initializations ::= initializations Action+

Transitions ::= transitions Transition+

Transition ::= Identifier - [Expression] -> Identifier ;

 | Identifier - [Expression] -> Identifier

 { Action+ }

Action ::= Identifier := Expression ;

 | Identifier !;

Expression ::= Identifier

 | Expression ArithmeticOperation Expression

ArithmeticOperation ::= + | - | * | / |

3. THE SEMANTICS OF AADL STRUCTURAL ELEMENTS

In this section, we define the semantics of the subset of AADL and its Behavior Annex

described in Section 2. We formalize the meaning of the latter by constructing mathematical

objects, called denotations (see functions in Listing 4 and 5). The denotational semantics

consists of the mathematical models of meanings (model [[S SI]] in Listing 4 and system [[S1 S2]]

and system[[system I SB end ;]] in Listing 5) and the corresponding semantics functions,

respectively (model : Model  Table in Listing 4 and system : System  Table in Listing 5).

In the approach we have chosen, the semantics can be divided into three phases:

information gathering, state space generation, and state space tree evaluation. This section

describes the information gathering phase briefly, since it is a rather straightforward process.

The other phases are described in more detail in Section 4.

Formally, an AADL system is a tuple S, s0, I, Var, Pin, Pout, T where S is a non-empty

finite set of states and s0 S is a compulsory initial state. Var is a possible empty finite set of

state variables. Pin and Pout are the possible empty finite sets of input and output ports,

respectively. I  (Var  Expr)  Pout is a possible empty set of initializations.

T  (S  Exp r  S  A)  Pout is a possible empty set of transitions, where A  (Var  Expr) 

Pout is a possible empty action set and Expr is made up by a state variable, a constant value or an

arithmetic expression. The input port expression is of Boolean type.

The values of a system are formally defined in Listing 3. As there can only be one system

implementation, its subcomponents are stored in the subcomponent list.

A Formal Analysis Framework For AADL

109

Listing 3. The Values of a System

Connection = Integer × Identifier ×

 Integer × Identifier

Expression = value Value + identifer Identifier +

 eq (Expression × Expression) +

 add (Expression × Expression) +

Action = assign (Identifier × Expression) +

 send Identifier

Transition = Identifier × Expression ×

 Identifier × List

System = Integer × Table × List × List

Value = state Integer + boolean Boolean +

 integer Integer + action Action +

 transition Transition + system System

In an AADL model, identifiers are bound to values that need to be stored for further use. In

order to store these values, several tables and lists are needed:

 The system table holds the systems of the model. The information of each system is

stored in the tuple (state, symbol-table, initJist,transdist), where state is the current

state of the annex (initialized to zero, representing the initial state), symbol-table holds

the input and output ports of the system as well as states and state variables of the

annex, init-list holds the list of initializations, and transdist holds the list of transitions.

For each system, its tuple is associated with the name of the system in the system table.

 The subcomponent table and subcomponent list hold the subcomponents of the system

implementation. They hold the same subcomponents, the table is used to look up states

and states variable in the CTL property specification (see Section 2) and the list is used

to keep track of connections between the subcomponents.

 The connection list holds the connections between the subcomponents. In order to

identify the sending and receiving subcomponents, it uses the index in the

subcomponent list above.

 The local system table. Each system has a symbol table, holding the input and output

ports as well as the states and state variables of the behavior annex. Each system also

holds a local initialization list and transition Listing This information is originally

stored for each system and copied to the subcomponents instantiating the systems.

For each syntactic rule in Section 2, one corresponding semantic rule is defined. The

semantic rules of this section work in a way similar to a traditional compiler; they gather

information that is stored in the structures listed above. Due to limitation of space, we confine

our self to showing the model (Listing 4) and system (Listing 5) rules in this paper. See

Björnander et al. [9] for the complete definitions of the rules.

Stefan Björnander, Cristina Seceleanu, Kristina Lundqvist, Paul Pettersson

 110

Listing 4. The model semantic function

model : Model  Table

model  S SI =

 let system_table = system S in

 system_impl SI system_table

Listing 5. The system semantic function

system : System  Table

system  1 2S S =

 let system_table1 = system S1 in

 let system_table2 = system S2 in

 table_merge system_table1 system_table2

system  system I SB end ; =

 table_set I (system_body SB) table_empty

All observably distinct elements have distinct denotations in form of semantic functions,

which ensures the soundness of the set of semantic rules. The semantic functions are structure-

preserving functions, in such that each morphism of the semantic model is a denotation of an

architectural element, which ensures the completeness of the same rule set.

4. VERIFICATION BY MODEL CHECKING

In this section, we describe the verification of CTL properties of AADL models. The main

difference between this section and Section 3 is that in Section 3 semantic rules were used to

gather information about the model, while we, in this section, utilize that information to perform

model checking.

The main idea is to generate a state space tree (a state space is the sum of the states of all

the annexes of the system; technically: a subcomponent list) that becomes traversed with regard

to the CTL property specification.

4.1. Generation

In this section, we generate the state space tree that is initially made up of one single node

holding the initial state space; that is, the subcomponent list in its initial state. Then traverse-

subcomponent-list (Listing 7) traverses the subcomponents and for each subcomponent

traverse_transition_list (Listing 8) traverses the transitions. For each transition that can be taken,

execute_transition (Listing 9) updates the state space so that the transition is taken and creates a

new sub tree with the new state space as root value. Then it attaches the sub tree as a child tree

to the main tree. Finally, it calls generate^tree (Listing 6) which recursively continues to create

sub trees until no more transitions can be taken. However, in order to prevent infinite tree

generation the generation becomes aborted if a previous state space reoccurs

A Formal Analysis Framework For AADL

111

Listing 6. The generate_tree semantic function

generate_tree : List × List × Set × Tree  Tree

generate_tree subcomp_list conn_list set1 main_tree =

 if not (set.exists subcomp_list set1) then

 let set2=set_add subcomp_list set1 in

 let sub_tree1 = tree_create subcomp_list in

 let subcomp_list2 = traverse_connection_list

 conn_list subcomp_list in

 let sub_tree2 = traverse_subcomponent_list

 subcomp_list2 conn_list set2 sub_tree1 in

 tree_add_child sub_tree2 main_tree

 else main_tree

Listing 7. The traverse_subcomponent_list semantic function

traverse_subcomponent_list : Integer × List ×

 List × Set × Tree  Tree

traverse_subcomponent_list ints_index subcomp_list

 conn_list set tree1 =

 if inst_index < (list.size subcomp.list) then

 let system (state, symbol_table, init_list,

 trans_list) = list_get inst_index subcomp_list in

 let tree2 = traverse_transition_list trans_list

 inst_index subcomp_list conn_list set tree1

 in traverse_subcomponent_list (inst_index + 1)

 subcomp_list conn_list set tree2

 else tree1

4.2 Evaluation

When the state space tree of section 4.1 has become generated, it becomes evaluated

against the CTL property specification. The evaluate_children (Listing 10) and evaluate_tree

(Listing 11) semantic functions call each other alternately. Initially, evaluate_tree is called with

the root node; it calls evaluate_children for its children, which in turn calls evaluate^tree for

each of the children. These alternately calls continue until the property specification has been

satisfied or a leaf in the tree has been reached.

The evaluate_tree traverses the children of the root node of a tree. If there are no children,

we have reached a leaf of the tree. Different values are returned depending of the depth operator.

Stefan Björnander, Cristina Seceleanu, Kristina Lundqvist, Paul Pettersson

 112

In case of the global operator, the property has to hold for each node on the path from the root

node to the leaf. Therefore, the and operator is applied to the node property values, and true is

returned at the end of the path. In case of the eventually operator, it is enough that one property

holds for the path from the root node to the leaf node. Therefore, the or operator is applied to the

node property values and false is returned at the end of the path.

Listing 8. The traverse_transition_list semantic function

traverse_transition_list : List × Integer × List × List ×

 Set × Tree  Tree

traverse_transition_list trans_list ints_index subcomp_list

 conn_list set tree1 =

 if (list.size trans_list) > 0 then

 let (head, tail) = list_split trans_list in

 let tree2 = execute_transition head inst_index

 subcomp_list conn_list set tree1 in

 traverse_transition_list tail inst_index

 subcomp_list conn_list set tree2

 else tree1

If the root node of the tree has one child, we simple evaluate it by calling evaluate_tree.

However, if it has more than one child, we need to examine the quantifier. In case of the all

quantifier, the property has to hold for all child nodes, why we apply the and operator between

the property value of the first child node and the evaluation of the rest of the children. In case of

the exists quantifier, the property has to hold for only one of the children, why we instead apply

the or operator.

The evaluate_tree semantic rule evaluates the property of the root node of the tree and

compares it with the children. In case of the global operator, the property has to hold for the root

node and all the nodes on the path to the leaf nodes. In case of the eventually operator, it is

enough if the property holds for one of them.

The evaluate_node semantics rule calls evaluate_node, which is relative simple and

therefore has been omitted due to space limitations.

Example 1. Let us investigate the AADL model of Listing 12 and 13 (originally introduced

in [5]). There are two subcomponents: subsystem1 and subsystem2. For each subcomponent,

traverse_transition_list traverses the transactions and, for each transition that is ready to be

taken, calls execute_transition. Finally, execute_transition calls generate-tree recursively with

the new child node as parameter in order to attach child nodes recursively. That is, each taken

transitions represent a new state space that is dealt with by generate-tree as it was the initial state

space. This call chain continues until no more transitions are ready to be taken or until a

previous state space reoccurs (Fig. 1) for an illustration of the process.

A Formal Analysis Framework For AADL

113

(a) Initial State (b) State 2 (c) State 3 (d) State 4 (e) Final State

Figure 1. The Main System States

5. RELATED WORK

The approach we feel is closest to ours is Olveczky et al. [10]. The authors have defined a

translational semantics from AADL into their object-oriented language Maude, which includes

components, port connections, and the Behavior Annex.

Listing 9. The execute_transition semantic function

execute_transition : Value × Integer × List × List ×

 Set × Tree  Tree

execute_transition trans_value ints_index subcomp_list1

 conn_list set main_tree =

 let transition (source_state, guard_expr,

 target_state, action_list)=trans_value in

 let record1 = table_get inst_index subcomp_list in

 let system (state, symbol_table1, init_list,

 trans_list) = record1 in

 let (boolean is_guard, symbol_table2) =

 evaluate guard_expr symbol_table1 in

 if (state = sourceState) and is_guard then

 let symbol_table3 = traverse_action_list

 init_list symbol_table2 in

 let record2 = system (target_table,

 symbol_table3, init_list, trans_list)

 let subcomp_list2 = list_set inst_index

 record2 subcomp_list1 in

 generate_tree subcomp_list2 conn_list

 set main-tree

 else main-tree

Stefan Björnander, Cristina Seceleanu, Kristina Lundqvist, Paul Pettersson

 114

The AADL components and their subcomponent instances are translated into Maude

classes and objects. Maude is capable of simulations and model checking of Linear Temporal

Logic (LTL) [11] on embedded systems. However, they have chosen an AADL subset that

differs from the subset of this paper.

An approach that is also close to ours is the formal semantics defined by Boz-zano et al. [12].
It is centered on the concept of components. For each component, its type, interface, and
implementation are given. The component interaction is described by a finite state automaton
[8]. Their work includes model checking. However, it is centered around detection of errors, as
opposed to the semantics of this paper that focuses on system behavior.

Another interesting approach is Yang et al. [13]. The authors introduce a formal semantics
for the AADL Behavior Annex using Timed Abstract State Machine (TASM) [14]. They give
the semantics of the AADL default execution model and formally define some aspects of the
Behavior Annex. In their translation, each behavior annex is mapped into a TASM main
machine. However, even though TASM is a user-friendly and powerful simulation tool, it does
not support model checking. Instead, they propose further mapping of the TASM state machine
into UPPAAL [15].

We finally mention Abdoul et al. [16] that presents an AADL model transformation
providing a formal model for model checking activities and covers the three aspects structure,
behavior description, and execution semantics. The authors extend the AADL meta model in
order to improve the system behavior and they define a translation semantics into the IF
language [17], which is a language for simulation of systems and processes. However, the
system behavior is not defined in the Behavior Annex, but rather in the IF internal format.

Listing 10. The evaluate_children semantic function

evaluate_children : TreeProp × List × WidthOp ×

 DepthOp  Boolean

evaluate_childre TP child_list quantifier operator =

 case (list_size child_list) of

 0 => case operator of

 global => true

 | eventually => false

 | 1 => evaluate_tree TP (list.get 0 child.list)

 quantifier operator

 | default => let (head, tail) = list.split

 child.list in

 case quantifier of

 all => (evaluate_tree TP head

 quantifier operator) and

 (evaluate_children TP tail

 quantifier operator)

 | exist => (evaluate_tree TP head

A Formal Analysis Framework For AADL

115

 quantifier operator) or

 (evaluate_children TP tail

 quantifier operator)

Listing 11. The evaluate_tree semantic function

evaluate_tree : TreeProp × Tree × WidthOp ×

 DepthOp  Boolean

evaluate_tree PS tree quantifier operator =

 case operator of

 global => let (single subProp) = PS in

 (is_true (evaluate_prop_spec subProp tree))

 and (evaluate_children PS

 (tree_get_children tree) quantifier operator)

 | eventually => let (single subProp) = PS in

 (is_true (evaluate_prop_spec subProp tree))

 or (evaluate_children PS

 (tree_get_children tree) quantifer opertor)

Listing 12. The main System.

system implementation MainSystem.impl

 subcomponents

 subsystem1: system Subsystem1;

 subsystem2: system Subsystem2;

 connections

 event port subsystem1.CriticalLeave 

 subsystem2.CriticalEnter;

 event port subsystem2.CriticalLeave 

 subsystem1.CriticalEnter;

end MainSystem.impl;

Listing 13. The Subsystem.

system Subsystem1

features

CriticalEnter: in event port ;

CriticalLeave: out event port ;

annex SubsystemAnnex1

Stefan Björnander, Cristina Seceleanu, Kristina Lundqvist, Paul Pettersson

 116

{**

initializations

 CriticalLeave ! ;

states

Waiting : initial state ;

Critical: state ;

transitions

Waiting – [CriticalEnter?]  Critical;

Critical – [true]  Waiting

 {CriticalLeave !;}

 **};

end Subsystem1;

Listing 13. The Subsystem.

system Subsystem1

features

CriticalEnter: in event port ;

CriticalLeave: out event port ;

annex SubsystemAnnex1

{**

initializations

 CriticalLeave ! ;

states

Waiting : initial state ;

Critical: state ;

transitions

Waiting – [CriticalEnter?]  Critical;

Critical – [true]  Waiting

 {CriticalLeave !;}

 **};

end Subsystem1;

A Formal Analysis Framework For AADL

117

6. CONCLUSION AND FURTHER WORK

In this paper, we have presented a formal analysis framework including a de- notational
semantics for a subset of AADL and its Behavior Annex [9], and an implementation of the
semantics in Standard ML. The framework is completed by our recently developed graphical
Eclipse-based tool [5] that performs model checking of CTL properties, in a user-friendly way.

We have given precise meaning in denotational style for a subset of AADL and its Behavior
Annex, with a straightforward implementation in Standard ML. This contribution provides an
expressive enough formal framework for the formalization of the AADL constructs that we have
looked at. An advantage of our approach is the fact that the implementation in Standard ML
maps the elements of the semantic model straightforwardly.

There are several ways to continue the work of this paper. One obvious approach is to
optimize the algorithms behind the semantics when it comes to state space generation and
property specification evaluation. It is possible to evaluate the state space “on the fly”; that is,
the evaluation taking place during the state space generation. A technique that has proven
efficient in other model- checking tools, including SPIN and UPPAAL.

Another interesting extension of the semantics is to add time annotation to the transitions in
order to perform real-time model checking.

Acknowledgment. This research work was partially supported by swedish research council (vr),
and the swedish foundation for strategic research via the strategic research center progress.

REFERENCES

1. P. H. Feiler, D. P. Gluch, and J. J. Hudak - The Architecture Analysis and Design

Language (AADL): An Introduction, Society of Automotive Engineers, Tech. Rep.

CMU/SEI-2006-TN-011, 2006.

2. S. Vestal and J. Krueger - Technical and Historical Overview of MetaH, Honeywell

Technology Center, Tech. Rep. MN 55418-1006, 2000.

3. The SAE Technical Standards Board - The annex behavior specification, SAE

International, Tech. Rep. AS5506, 2007.

4. C. Elliott - Denotational design with type class morphisms (extended version),

LambdaPix, Tech. Rep. 2009-01, March 2009. [Online]. Available:

http://conal.net/papers/type-class-morphisms

5. S. Björnander, C. Seceleanu, K. Lundqvist, and P. Pettersson, “ABV - A Verifier for the

Architecture Analysis and Description Language (AADL),” in ICECCS ’11: Proceedings

of the Sixth IEEE International workshop on UML and AADL, 2011.

6. R. B. Franca, J. P. Bodeveix, M. Filali, J. F. Rolland, D. Chemouil, and D. Thomas - The

AADL behaviour annex - experiments and roadmap, In: ICECCS. IEEE Computer

Society, 2007, pp. 377-382.

7. P. Feiler and B. Lewis - SAE Architecture Analysis and Design Language (AADL) Annex

Volume 1, Society of Automobile Engineers, Tech. Rep. AS5506/1, 2006.

8. E. Borger and R. Stark - Abstract State Machines - A Method for High-level System

Design and Analysis, Springer-Verlag Berlin And Heidelberg Gmbh and Co. Kg, 2003.

http://conal.net/papers/type-class-morphisms

Stefan Björnander, Cristina Seceleanu, Kristina Lundqvist, Paul Pettersson

 118

9. S. Björnander, C. Seceleanu, K. Lundqvist, and P. Pettersson - The architecture analysis

and design language and the behavior annex: A denotational semantics, Malardalen

University, Technical Report ISSN 1404-3041 ISRN MDH- MRTC-251/2011-1-SE,

January 2011.

10. P. C. Olveczky, A. Boronat, and J. Meseguer - Formal Semantics and Analysis of

Behavioral AADL Models in Real-Time Maude, In: Formal Techniques for Distributed

Systems, Joint 12th IFIP WG 6.1 International Conference, FMOODS 2010 and 30th IFIP

WG 6.1 International Conference, FORTE 2010, Amsterdam, The Netherlands, June 7-9,

2010. Proceedings, ser. Lecture Notes in Computer Science, J. Hatcliff and E. Zucca,

Eds., vol. 6117. Springer, 2010, pp. 47-62.

11. B. Banieqbal, H. Barringer, and A. Pnueli (Eds.) - Temporal Logic in Specification,

Springer-Verlag, 1987.

12. M. Bozzano, A. Cimatti, J.-P. Katoen, V. Y. Nguyen, T. Noll, M. Roveri, and R. Wimmer

- A model checker for AADL, In: Computer Aided Verication, 22nd International

Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings, ser, Lecture

Notes in Computer Science, T. Touili, B. Cook, andP. Jackson, Eds., vol. 6174. Springer,

2010, pp. 562–565. [Online]. Available:http://dx.doi.org/10.1007/978-3-642-14295-6.

13. Z. Yang, K. Hu, D. Ma, and L. Pi - Towards a formal semantics for the AADL behavior

annex, in DATE. IEEE, 2009, pp. 1166–1171.

14. M. Ouimet and K. Lundqvist - The TASM Toolset: Specification, Simulation, and Formal

Verification of Real-Time Systems, In: Computer Aided Verification, 19
th
 International

Conference, CAV 2007, Berlin, Germany, ser. Lecture Notes in Com-puter Science, vol.

4590. Springer, July 2007, pp. 126–130.

15. G. Behrmann, A. David, and K. G. Larsen - A Tutorial on UPPAAL, In: 4th Inter-national

School on Formal Methods for the Design of Computer, Communication, and Software

Systems (SFM-RT04), vol. 3185. Springer-Verlag, 2004.

16. T. Abdoul, J. Champeau, P. Dhaussy, P. Y. Pillain, and J.-C. Roger - AADL execution

semantics transformation for formal verification, In ICECCS. IEEE Computer Society,

2008, pp. 263–268. [Online]. Available: http://dx.doi.org/10.1109/ICECCS.2008.24

17. M. Bozga, S. Graf, and L. Mounier - IF-2.0: A validation environment for component-

based real-time systems, Lecture Notes in Computer Science, vol. 2404, 2002.

Corresponding author:

Stefan Björnander

CrossControl AB Kopparlundsvagen 14, 721 30 Vasteras, Sweden

Email: stefan.bjornander@crosscontrol.com

mailto:stefan.bjornander@crosscontrol.com

