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ABSTRACT 

As system failure of mission-critical embedded systems may result in serious consequences, 

the development process should include verification techniques already at the architectural 

design stage, in order to provide evidence that the architecture fulfils its requirements. The 

Architecture Analysis and Design Language (AADL) is a language designed for modeling 

embedded systems, and its Behavior Annex defines the behavior of the system. However, even 

though it is an internationally used industry standard, AADL still lacks a formal semantics and is 

not executable, which limits the possibility to perform formal verification. In this paper, we 

introduce a formal analysis framework for a subset of AADL and its Behavior Annex, which 

includes the following: a denota- tional semantics, its implementation in Standard ML, and a 

graphical Eclipse-based tool encapsulating the implementation. We also show how to perform 

model checking of AADL properties defined in the Computation Tree Logic (CTL). 

1.  INTRODUCTION 

Mission-critical embedded systems play a vital role in many applications, like air traffic 

control and aerospace applications. As system failures may result in serious consequences, the 

development process should include verification techniques, in order to provide evidence that 

the system’s architecture fulfills its requirements. The architectural design phase is of high 

practical interest, since architectural mistakes that cause a system to fail certain requirements are 

hard and expensive to correct in later development phases. 

The Architecture Analysis and Design Language (AADL) [1] is a standard of the Society of 

Automotive Engineers (SAE
1
), and is based on MetaH [2] and UML [1]. AADL is designed for 

modeling both the hardware and the software of embedded systems. The standard includes 

several annexes, out of which the Behavior Annex [3] provides means of describing the behavior 

of the model. 

                                                      
1SEA is presented at http://www.sae.org. 

http://www.sae.org/
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Even if appealing and already adopted by industry, AADL still lacks a formal semantics, 

which is particularly important for the design of mission-critical embedded systems, since 

failures may cause serious damage to people or valuable assets. Such systems are often required 

to pass certification processes in order to provide sufficient evidence about their safety. 

Moreover, AADL models are not executable, which limits the possibility to formally analyze 

their safety and liveness properties. 

Consequently, it is highly desirable to overcome such limitations of AADL. To do so, one 

has to define AADL formally, as any attempt to achieve formal verification requires a precise 

mathematical method. It is also beneficial that the analysis techniques based on the semantics are 

supported by tools that are integrated into an AADL tool chain; this would make it easier for an 

user with limited knowledge of the underlying formalism, to perform, e.g., model checking of 

AADL models. 

In this paper, we introduce a formalization of the meanings of a subset of AADL and its 

Behavior Annex in denotational style. Our choice of a denotational style for AADL structures is 

justified by the simplicity of the semantics models, which is known to improve generality and 

ease of reasoning [4]. 

To complete our analysis framework, we also describe the Standard ML implementation 

that forms the basis of our AADL verification tool, called the ABV tool. See Björnander et al. 

[5] for a description. The semantics as well as its implementation and CTL verification are 

illustrated through a small example. 

The results of this contribution together with the recently developed verification tool ABV 

define our AADL formal analysis framework that contains the following: 

 A denotational semantics defining a subset of AADL and its Behavior Annex that also 

include model checking of properties defined in CTL. See Björnander et al. [9] for a 

complete specification of the semantics. 

 The semantics implemented in Standard ML, and a parser translating a model defined in 

AADL and its Behavior Annex as well as a subset of CTL property specification into a 

format in Standard ML suitable as input. 

 The ABV model checker that encapsulates the semantic implementation and the parser in a 

graphical user interface based on the Eclipse Framework. With the help of the tool, the user 

is able to verify a subset of CTL properties of the model without knowledge of the 

underlying formalism. 

The rest of this paper is organized as follows: Section 2 is preliminaries; describing, among 

other things, the syntax of a subset of AADL and its Behavior Annex. Section 3 defines the 

information gathering part of the denotational semantics. In Section 4, verification by model 

checking techniques is described. Finally, Section 5 discusses related work before concluding 

the paper in Section 6 with conclusions and further work. 



 
 

A Formal Analysis Framework For AADL 

 

 

 
107 

 

Listing 1. The AADL syntactic rules. 

+ one or ore, * zero or more, ? zero or more 

Model ::= Sysem+ SystemImpl 

System ::= system Identifier Features? Annex? end ; 

Features ::= features Feature+ 

Feature ::= Identifier : in event port; 

            | Identifier : out event port; 

SystemImpl ::= system implementation Identifier . 

                      Identifier Subcomponents? Connections 

                      end ; 

Subcomponents ::= subcomponents Subcomponent+ 

Subcomponent ::= Identifer : system Identifier ; 

Connections ::= connections Connection 

Connection ::= event port Identifier . Identifier -> 

                        Identifier . Identifier ; 

 

2. PRELIMINARIES 

In AADL, there are two kinds of systems: the system that defines the port interface and an 

optional behavior annex, and the system implementation that defines the subcomponents and the 

port connections between them. In this paper, we have chosen a subset of the AADL model that 

includes at least one system and exactly one system implementation, which occurs at the end of 

the definition. The subcomponents of the system implementation are instances of earlier defined 

systems (equivalent to objects and classes in object-oriented languages) and the connections are 

made between input and output ports of the subcomponents, not the systems. The syntax of our 

AADL subset is given in Listing 1. 

In order to increase the expressiveness of AADL, it is possible to add annexes. One of them 

is the Behavior Annex [6, 7] that models an abstract state machine [8]. Each component of the 

model describes its logic by defining a behavior state machine, which consists of the parts State 

Variables, Initializations, States, and Transitions. The corresponding syntax is given in Listing 2. 

CTL is a branching-time temporal logic, that is, it models time as a tree structure with a 

non-determined future. There are several different paths; any one of them may be realized. There 

are several quantifiers and operators available in CTL; among them, the universal, all, and 

existential, exists, quantifiers over paths together with the global and eventually path-specific 

operators. 

In an AADL model, identifiers are bound to values that need to be stored for further use. 

Therefore, we need to utilize the data types list, table, set, and tree to holds the values. See 

Björnander et al. [9] for their complete semantic definitions. 
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Listing 2. The Behavior Annex syntactic rules. 

Annex ::= annex Identifier {** StateVariables?  

               Initializations? States? Transitions? **} ; 

StateVariables ::= state variables StateVariable+ 

StateVariable ::= Identifier : integer ; 

StateVariable ::= states State+ 

State ::= Identifier : initial state ; 

             | Identifier : state; 

Initializations ::= initializations Action+ 

Transitions ::= transitions Transition+ 

Transition ::= Identifier - [ Expression ] -> Identifier ; 

                   | Identifier - [Expression ] -> Identifier  

                  { Action+ } 

Action ::= Identifier := Expression ; 

             | Identifier !; 

Expression ::= Identifier 

                     | Expression ArithmeticOperation Expression 

ArithmeticOperation ::= + | - | * | / | 

3. THE SEMANTICS OF AADL STRUCTURAL ELEMENTS 

In this section, we define the semantics of the subset of AADL and its Behavior Annex 

described in Section 2. We formalize the meaning of the latter by constructing mathematical 

objects, called denotations (see functions in Listing 4 and 5). The denotational semantics 

consists of the mathematical models of meanings (model [[S SI]] in Listing 4 and system [[S1 S2]] 

and system[[system I SB end ;]] in Listing 5) and the corresponding semantics functions, 

respectively (model : Model  Table in Listing 4 and system : System  Table in Listing 5). 

In the approach we have chosen, the semantics can be divided into three phases: 

information gathering, state space generation, and state space tree evaluation. This section 

describes the information gathering phase briefly, since it is a rather straightforward process. 

The other phases are described in more detail in Section 4. 

Formally, an AADL system is a tuple S, s0, I, Var, Pin, Pout, T where S is a non-empty 

finite set of states and s0 S is a compulsory initial state. Var is a possible empty finite set of 

state variables. Pin and Pout are the possible empty finite sets of input and output ports, 

respectively. I  (Var  Expr)  Pout is a possible empty set of initializations.                              

T  (S  Exp r  S  A)  Pout  is a possible empty set of transitions, where A   (Var  Expr)  

Pout is a possible empty action set and Expr is made up by a state variable, a constant value or an 

arithmetic expression. The input port expression is of Boolean type. 

The values of a system are formally defined in Listing 3. As there can only be one system 

implementation, its subcomponents are stored in the subcomponent list. 
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Listing 3. The Values of a System 

Connection = Integer × Identifier × 

                   Integer × Identifier 

Expression  = value Value + identifer Identifier + 

                   eq (Expression × Expression) + 

                 add (Expression × Expression) + 

Action  = assign (Identifier × Expression) + 

              send Identifier 

Transition  = Identifier × Expression × 

                  Identifier × List 

System  = Integer × Table × List × List 

Value  = state Integer + boolean Boolean +  

            integer Integer + action Action +  

           transition Transition + system System 

 

In an AADL model, identifiers are bound to values that need to be stored for further use. In 

order to store these values, several tables and lists are needed: 

 The system table holds the systems of the model. The information of each system is 

stored in the tuple (state, symbol-table, initJist,transdist), where state is the current 

state of the annex (initialized to zero, representing the initial state), symbol-table holds 

the input and output ports of the system as well as states and state variables of the 

annex, init-list holds the list of initializations, and transdist holds the list of transitions. 

For each system, its tuple is associated with the name of the system in the system table. 

 The subcomponent table and subcomponent list hold the subcomponents of the system 

implementation. They hold the same subcomponents, the table is used to look up states 

and states variable in the CTL property specification (see Section 2) and the list is used 

to keep track of connections between the subcomponents. 

 The connection list holds the connections between the subcomponents. In order to 

identify the sending and receiving subcomponents, it uses the index in the 

subcomponent list above. 

 The local system table. Each system has a symbol table, holding the input and output 

ports as well as the states and state variables of the behavior annex. Each system also 

holds a local initialization list and transition Listing This information is originally 

stored for each system and copied to the subcomponents instantiating the systems. 

For each syntactic rule in Section 2, one corresponding semantic rule is defined. The 

semantic rules of this section work in a way similar to a traditional compiler; they gather 

information that is stored in the structures listed above. Due to limitation of space, we confine 

our self to showing the model (Listing 4) and system (Listing 5) rules in this paper. See 

Björnander et al. [9] for the complete definitions of the rules. 
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Listing 4. The model semantic function 

model : Model  Table 

model  S SI  =  

      let system_table = system S in  

           system_impl SI system_table 

 

Listing 5. The system semantic function 

system : System  Table 

system  1 2S S  =  

      let system_table1 = system S1 in  

      let system_table2 = system S2 in  

           table_merge system_table1 system_table2 

system  system I SB end ; = 

      table_set I (system_body SB) table_empty 

All observably distinct elements have distinct denotations in form of semantic functions, 

which ensures the soundness of the set of semantic rules. The semantic functions are structure-

preserving functions, in such that each morphism of the semantic model is a denotation of an 

architectural element, which ensures the completeness of the same rule set. 

4.  VERIFICATION BY MODEL CHECKING 

In this section, we describe the verification of CTL properties of AADL models. The main 

difference between this section and Section 3 is that in Section 3 semantic rules were used to 

gather information about the model, while we, in this section, utilize that information to perform 

model checking. 

The main idea is to generate a state space tree (a state space is the sum of the states of all 

the annexes of the system; technically: a subcomponent list) that becomes traversed with regard 

to the CTL property specification. 

4.1. Generation 

In this section, we generate the state space tree that is initially made up of one single node 

holding the initial state space; that is, the subcomponent list in its initial state. Then traverse-

subcomponent-list (Listing 7) traverses the subcomponents and for each subcomponent 

traverse_transition_list (Listing 8) traverses the transitions. For each transition that can be taken, 

execute_transition (Listing 9) updates the state space so that the transition is taken and creates a 

new sub tree with the new state space as root value. Then it attaches the sub tree as a child tree 

to the main tree. Finally, it calls generate^tree (Listing 6) which recursively continues to create 

sub trees until no more transitions can be taken. However, in order to prevent infinite tree 

generation the generation becomes aborted if a previous state space reoccurs 
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Listing 6. The generate_tree semantic function 

generate_tree : List × List × Set × Tree  Tree 

generate_tree subcomp_list conn_list set1 main_tree = 

       if not (set.exists subcomp_list set1) then 

           let set2=set_add subcomp_list set1 in 

           let sub_tree1 = tree_create subcomp_list in 

           let subcomp_list2 = traverse_connection_list 

               conn_list subcomp_list in 

           let sub_tree2 = traverse_subcomponent_list 

               subcomp_list2 conn_list set2 sub_tree1 in 

               tree_add_child sub_tree2 main_tree 

          else main_tree 

  

Listing 7. The traverse_subcomponent_list semantic function 

traverse_subcomponent_list : Integer × List × 

                                              List × Set × Tree  Tree 

traverse_subcomponent_list ints_index subcomp_list 

                                             conn_list set tree1 = 

      if inst_index < (list.size subcomp.list) then 

             let system (state, symbol_table, init_list,  

                       trans_list) = list_get inst_index subcomp_list in 

             let tree2 = traverse_transition_list trans_list 

                              inst_index subcomp_list conn_list set tree1 

             in traverse_subcomponent_list (inst_index + 1) 

                       subcomp_list conn_list set tree2 

            else tree1 

4.2  Evaluation 

When the state space tree of section 4.1 has become generated, it becomes evaluated 

against the CTL property specification. The evaluate_children (Listing 10) and evaluate_tree 

(Listing 11) semantic functions call each other alternately. Initially, evaluate_tree is called with 

the root node; it calls evaluate_children for its children, which in turn calls evaluate^tree for 

each of the children. These alternately calls continue until the property specification has been 

satisfied or a leaf in the tree has been reached. 

The evaluate_tree traverses the children of the root node of a tree. If there are no children, 

we have reached a leaf of the tree. Different values are returned depending of the depth operator. 
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In case of the global operator, the property has to hold for each node on the path from the root 

node to the leaf. Therefore, the and operator is applied to the node property values, and true is 

returned at the end of the path. In case of the eventually operator, it is enough that one property 

holds for the path from the root node to the leaf node. Therefore, the or operator is applied to the 

node property values and false is returned at the end of the path. 

Listing 8. The traverse_transition_list semantic function 

traverse_transition_list :  List × Integer × List × List × 

                                              Set × Tree  Tree 

traverse_transition_list trans_list ints_index subcomp_list 

                                             conn_list set tree1 = 

      if  (list.size trans_list) > 0  then 

             let (head, tail) = list_split trans_list in 

             let tree2 = execute_transition head inst_index 

                              subcomp_list conn_list set tree1 in 

                              traverse_transition_list tail inst_index 

                                         subcomp_list conn_list set tree2 

            else tree1 

If the root node of the tree has one child, we simple evaluate it by calling evaluate_tree. 

However, if it has more than one child, we need to examine the quantifier. In case of the all 

quantifier, the property has to hold for all child nodes, why we apply the and operator between 

the property value of the first child node and the evaluation of the rest of the children. In case of 

the exists quantifier, the property has to hold for only one of the children, why we instead apply 

the or operator. 

The evaluate_tree semantic rule evaluates the property of the root node of the tree and 

compares it with the children. In case of the global operator, the property has to hold for the root 

node and all the nodes on the path to the leaf nodes. In case of the eventually operator, it is 

enough if the property holds for one of them. 

The evaluate_node semantics rule calls evaluate_node, which is relative simple and 

therefore has been omitted due to space limitations. 

Example 1. Let us investigate the AADL model of Listing 12 and 13 (originally introduced 

in [5]). There are two subcomponents: subsystem1 and subsystem2. For each subcomponent, 

traverse_transition_list traverses the transactions and, for each transition that is ready to be 

taken, calls execute_transition. Finally, execute_transition calls generate-tree recursively with 

the new child node as parameter in order to attach child nodes recursively. That is, each taken 

transitions represent a new state space that is dealt with by generate-tree as it was the initial state 

space. This call chain continues until no more transitions are ready to be taken or until a 

previous state space reoccurs (Fig. 1) for an illustration of the process.  
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(a) Initial State (b) State 2 (c) State 3 (d) State 4 (e) Final State 

Figure 1. The Main System States 

5.  RELATED WORK 

The approach we feel is closest to ours is Olveczky et al. [10]. The authors have defined a 

translational semantics from AADL into their object-oriented language Maude, which includes 

components, port connections, and the Behavior Annex.  

 

Listing 9.  The execute_transition semantic function 

execute_transition :  Value × Integer × List × List × 

                                              Set × Tree  Tree 

execute_transition trans_value ints_index subcomp_list1 

                                             conn_list set main_tree = 

      let  transition (source_state, guard_expr,  

              target_state, action_list)=trans_value in 

      let record1 = table_get inst_index subcomp_list in 

      let system (state, symbol_table1, init_list,  

                                                 trans_list) = record1 in 

      let (boolean is_guard, symbol_table2) =  

                               evaluate guard_expr symbol_table1 in 

           if (state = sourceState) and is_guard then 

                 let symbol_table3 = traverse_action_list 

                        init_list symbol_table2 in 

                 let record2 = system (target_table,  

                             symbol_table3, init_list, trans_list) 

                 let subcomp_list2 = list_set inst_index 

                             record2 subcomp_list1 in 

                            generate_tree subcomp_list2 conn_list 

                                                   set main-tree 

            else main-tree 
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The AADL components and their subcomponent instances are translated into Maude 

classes and objects. Maude is capable of simulations and model checking of Linear Temporal 

Logic (LTL) [11] on embedded systems. However, they have chosen an AADL subset that 

differs from the subset of this paper. 

An approach that is also close to ours is the formal semantics defined by Boz-zano et al. [12]. 
It is centered on the concept of components. For each component, its type, interface, and 
implementation are given. The component interaction is described by a finite state automaton 
[8]. Their work includes model checking. However, it is centered around detection of errors, as 
opposed to the semantics of this paper that focuses on system behavior. 

Another interesting approach is Yang et al. [13]. The authors introduce a formal semantics 
for the AADL Behavior Annex using Timed Abstract State Machine (TASM) [14]. They give 
the semantics of the AADL default execution model and formally define some aspects of the 
Behavior Annex. In their translation, each behavior annex is mapped into a TASM main 
machine. However, even though TASM is a user-friendly and powerful simulation tool, it does 
not support model checking. Instead, they propose further mapping of the TASM state machine 
into UPPAAL [15]. 

We finally mention Abdoul et al. [16] that presents an AADL model transformation 
providing a formal model for model checking activities and covers the three aspects structure, 
behavior description, and execution semantics. The authors extend the AADL meta model in 
order to improve the system behavior and they define a translation semantics into the IF 
language [17], which is a language for simulation of systems and processes. However, the 
system behavior is not defined in the Behavior Annex, but rather in the IF internal format. 

 

Listing 10.  The evaluate_children semantic function 

evaluate_children :  TreeProp × List × WidthOp ×  

                             DepthOp  Boolean 

evaluate_childre TP child_list quantifier operator = 

        case (list_size  child_list) of 

                0 => case operator of 

                               global => true 

                               | eventually => false 

               | 1 => evaluate_tree TP (list.get 0 child.list) 

                                                 quantifier operator 

               | default => let (head, tail) = list.split 

                                                        child.list in 

              case quantifier of 

                        all => (evaluate_tree TP head 

                                 quantifier operator) and 

  (evaluate_children TP tail 

  quantifier operator) 

       | exist => (evaluate_tree TP head 
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  quantifier operator) or 

  (evaluate_children TP tail 

  quantifier operator) 

 

Listing 11.  The evaluate_tree semantic function 

evaluate_tree :  TreeProp × Tree × WidthOp ×  

                             DepthOp  Boolean 

evaluate_tree PS tree quantifier operator = 

        case operator  of 

                global => let (single subProp) = PS in 

                       (is_true (evaluate_prop_spec subProp tree)) 

                      and (evaluate_children PS 

                      (tree_get_children tree) quantifier operator) 

                | eventually => let (single subProp) = PS in 

                       (is_true (evaluate_prop_spec subProp tree)) 

                       or (evaluate_children PS 

                      (tree_get_children tree) quantifer opertor) 

 

Listing 12. The main System. 

system implementation MainSystem.impl 

 subcomponents 

  subsystem1: system Subsystem1; 

  subsystem2: system Subsystem2; 

 connections 

  event  port  subsystem1.CriticalLeave  

    subsystem2.CriticalEnter; 

  event  port  subsystem2.CriticalLeave  

    subsystem1.CriticalEnter; 

end MainSystem.impl; 

Listing 13. The Subsystem. 

system Subsystem1 

features 

CriticalEnter: in event port ; 

CriticalLeave: out event port ; 

annex SubsystemAnnex1 
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{** 

initializations 

              CriticalLeave ! ; 

states 

Waiting : initial state ; 

Critical: state ; 

transitions 

Waiting – [CriticalEnter?]  Critical; 

Critical – [true]  Waiting 

 {CriticalLeave !;} 

 **}; 

end Subsystem1; 

 

Listing 13. The Subsystem. 

system Subsystem1 

features 

CriticalEnter: in event port ; 

CriticalLeave: out event port ; 

annex SubsystemAnnex1 

{** 

initializations 

              CriticalLeave ! ; 

states 

Waiting : initial state ; 

Critical: state ; 

transitions 

Waiting – [CriticalEnter?]  Critical; 

Critical – [true]  Waiting 

 {CriticalLeave !;} 

 **}; 

end Subsystem1; 
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6.  CONCLUSION AND FURTHER WORK 

In this paper, we have presented a formal analysis framework including a de- notational 
semantics for a subset of AADL and its Behavior Annex [9], and an implementation of the 
semantics in Standard ML. The framework is completed by our recently developed graphical 
Eclipse-based tool [5] that performs model checking of CTL properties, in a user-friendly way. 

We have given precise meaning in denotational style for a subset of AADL and its Behavior 
Annex, with a straightforward implementation in Standard ML. This contribution provides an 
expressive enough formal framework for the formalization of the AADL constructs that we have 
looked at. An advantage of our approach is the fact that the implementation in Standard ML 
maps the elements of the semantic model straightforwardly. 

There are several ways to continue the work of this paper. One obvious approach is to 
optimize the algorithms behind the semantics when it comes to state space generation and 
property specification evaluation. It is possible to evaluate the state space “on the fly”; that is, 
the evaluation taking place during the state space generation. A technique that has proven 
efficient in other model- checking tools, including SPIN and UPPAAL. 

Another interesting extension of the semantics is to add time annotation to the transitions in 
order to perform real-time model checking.  

Acknowledgment. This research work was partially supported by swedish research council (vr), 
and the swedish foundation for strategic research via the strategic research center progress. 
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