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Abstract. The paper presents a new exact rigid/plastic solution that describes the combined 

elongation (or shortening) and expansion of a tube. The von Mises yield criterion and its 

associated flow rule are adopted. No restriction is imposed on the isotropic hardening behavior 

of the material. The solution is facilitated using a Lagrangian coordinate. A numerical technique 

is only required for evaluating ordinary integrals. The solution applies to the preliminary design 

of tube hydroforming. In particular, the variation of the inner pressure with the current tube’s 

length that ensures a prescribed change in the tube’s radii is determined. Moreover, the modified 

Cockroft-Latham fracture criterion applies to predict ductile fracture initiation. 

Keywords: combined elongation (or shortening) and expansion, rigid plastic material, general hardening 

law, tube hydroforming, analytical solution. 

Classification numbers: 5.1.1, 5.9.3. 

1. INTRODUCTION 

Only few analytical solutions for models of strain hardening plasticity are available in the 

literature. Moreover, some of these solutions are approximate since they do not satisfy all 

boundary conditions. One of the classical rigid perfectly plastic solutions describes the 

compression of a layer between two parallel rough plates (Prandtl’s problem). This solution can 

be found in any monograph on plasticity theory, for example [1]. This solution does not satisfy 

the boundary conditions on the traction-free edges and the symmetry axis. Its extension to strain 

hardening material models has been proposed in [2]. The flow of plastic mass through an infinite 

wedge-shaped channel is another classical problem in the theory of rigid perfectly plastic solids 

(Nadai’s problem). Its solution can also be found in any monograph on plasticity theory, for 

example [1]. This solution has been generalized on a linear hardening material in [3]. The latter 

has been extended to the flow of plastic mass through an infinite conical channel in [4].  Several 

solutions are available for expanding a hollow cylinder with applications to describe the 

autofrettage process. A review of these solutions has been provided in [5]. Solutions for 

expanding a hollow sphere at large strains have been proposed in [6, 7]. Many solutions for 
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elastic/plastic disks subject to various loading conditions have been found, assuming various 

hardening laws. Typically, these solutions are based on Tresca’s yield criterion, which 

significantly simplifies the formulation of the boundary value problem. For example, such 

solutions can be found in [8, 9]. An analytic method for analyzing bending under tension at large 

strains has been developed in [10]. This work has applied the method to elastic/plastic strain 

hardening models. A review of this method has been provided in [11]. Elastic/plastic solutions 

for a circular cylindrical bar subject to simultaneous extension and twist have been found in [12, 

13]. Paper [13] has considered linear hardening, and paper [12] has assumed a power law of 

hardening. 

The present paper provides an exact analytical rigid/plastic solution for a thick-walled tube 

subject to internal pressure and axial compression or tension at large strains. Plastic yielding 

obeys the von Mises yield criterion. No restriction is imposed on hardening behavior. Note that 

closed tubes subject to combined torsion and internal pressure have been considered in [14] 

assuming a rigid perfectly plastic material model at infinitesimal strains.  

The solution found can be used for an approximate analysis of tube hydroforming. A 

review of recent achievements in this modern technology has been provided in [15]. 

1. STATEMENT OF THE PROBLEM 

A tube is subject to expansion and axial deformation (Figure 1). The initial length, inner 

and outer radii of the tube are denoted as 02h , 0a , and 0b , respectively. It is natural to use a 

cylindrical coordinate system  , ,r z  whose z   axis coincides with the tube’s symmetry 

axis. Also, the plane 0z   is the process’ symmetry plane.  

 

 

Figure 1. Initial geometry of a tube subject to expansion and axial deformation. 

 

Therefore, it is sufficient to derive the solution in the region 0z  . The solution is 

independent of  ; the stress and strain rate fields are also independent of z. Let ru  and zu  be 

the radial and axial velocities, respectively. The circumferential velocity vanishes. The boundary 

conditions imposed on the axial velocity are 
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0zu 

  (1) 

for 0z   and 

 zu V
  (2) 

for z h , where h is half the current tube’s length and V is constant. The latter may be positive 

or negative. The radial, circumferential, and axial stresses are denoted as r ,  , and z , 

respectively. These stresses are the principal stresses. The outer surface of the tube is traction 

free. Therefore, 

 
0r 

  (3) 

for r b , where b is the current outer radius of the tube. The speed of the tube’s expansion is 

prescribed at its inner radius: 

 0ru U u
 (4) 

for r a , where u is a function of h, 0U  is constant and a is the current inner radius of the tube. 

It is assumed that 0 0U    and 0u  . It is also possible to assume without loss of generality 

that 1u   at the initial instant. 

The only stress equilibrium equation that is not identically satisfied is 

 
0.rr

r r

  
 

   (5) 

The constitutive equations are the von Mises yield criterion and its associated flow rule. The 

elastic portion of strain is neglected. In the case under consideration, the von Mises yield 

criterion can be represented as 

 
   2 2 2

0

3
.

2
r z eqs s s     

  (6) 

Here 0  is the initial tensile yield stress, r rs    , s    , z zs    ,   is the 

hydrostatic stress, eq  is the equivalent strain, and  eq  is an arbitrary function of its 

argument. This function must satisfy the conditions:  0 1   and   0eq eqd d    for all 

eq . The following equation defines the equivalent strain: 

 
,

eq

eq

d

dt




  (7) 

where t is the time, d dt  denotes the convected derivative, and eq  is the equivalent strain rate. 

In the case under consideration, the latter is defined as 

 
 2 2 22

,
3

eq r z     
  (8) 

where r ,  , and z  are the radial, circumferential, and axial strain rates, respectively. The 

plastic flow rule associated with (6) is 



 
 
An exact rigid/plastic solution for a thick-walled tube subject to internal pressure … 
 

 

801 

 r rs 
,     

s  
,      and  

,z zs 
  (9) 

where   is a non-negative multiplier. It follows from (9) that the material is incompressible, 

i.e., 

 
0.r z    

  (10) 

The strain rate components are expressed in terms of the velocity components as 

 
,r

r

u

r




      

,ru

r
 

   and    
.z

z

u

z




   (11) 

Using the following dimensionless quantities is convenient: 

 0

a

a
 

,  

0
0

0

a

h
 

, 

0
0

0

b

a
 

,  0

b

a
 

,  0

r

a
 

,  0

h

h
 

,   and    

0

0 0

.
Va

s
U h



  (12) 

Since the material is incompressible,    2 2 2 2

0 0 0h b a h b a   . Using (12), one can 

rewrite this equation as 

 

 2

02 2
1

.


 



 

  (13) 

2. GENERAL SOLUTION 

Taking into account the boundary conditions (1) and (2), one can reasonably put  

 
.z

z
u V

h


  (14) 

Substituting (11) into (10) and using (14) yields 

 
0.r ru u V

r r h


  

   (15) 

This equation can be immediately integrated to give 

 

0 0

2
r

CU a Vr
u

r h
 

, (16) 

where C is constant. Using the first equation in (4) and (12), one can transform (16) to 

 

2

2

0

1 .
2

ru u s

U

  

  

 
   

    (17) 

By definition, rdr dt u  and dh dt V , where t is the time. Employing (12) and (17), one 

combines these equations to arrive at 

 

2

2
1 .

2

d u

d s

   

   

 
   

    (18) 

It is convenient to use the following substitution: 



 
 

Elena Lyamina 
 

 

802 

 
2. 

  (19) 

Then, equation (18) becomes 

 

22
.

d u

d s

   

  
  

 
Since it is a linear ordinary differential equation, its general solution can be found using standard 

methods. In particular, 

 

     
2

2

1 1

2 1
,

R
u d d

s

 

        
  

   
  (20) 

where R is the Lagrangian coordinate such that R   at the initial instant. 

By definition, 0da dt U u . This equation can be transformed to 

 

.
d u

d s






  (21) 

using (12). Substituting this equation in the first term on the right-hand side of (19) and 

integrating by parts, one gets 

 

       2 2

1 1

2 1 1
.u d d

s

 

         
  

   
  (22) 

It has been taken into account here that 1   at 1  . Equations (20) and (22) combine to give 

the following equation: 

 

 
2

2 1
.

R
  




 

  (23) 

Employing (11), (12), (14), (17), and (20), one can calculate the normal strain rate 

components in the cylindrical coordinate system as 

 0

,z

V

h



     

2

0

1 ,
2

V u s

h s


 


  

  
    

        

2

0

1 .
2

r

V u s

h s

 


  

  
     

     (24) 

Substituting (24) into (8) and using (23) leads to 

 
 

 
 

2
2 2

4 2 2

22 2

0

3 1
4 .

3 1
eq

RV
s u u s

h s R


     



  
    
  
    (25) 

Replacing differentiation with respect to t with differentiation with respect to   and employing 

(25), one can rewrite (7) as 

 
 

 
 

2
2 2

4 2 2

22 2

1

3 11 1
4 .

13
eq

R
s u u s d

Rs

 
      



  
    
  
 


  (26) 
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It is understood here that   and u are functions of  . Numerical integration in (26) allows the 

equivalent strain to be calculated as a function of R at any process stage. Therefore, the right-

hand side of (6) is also determined as a function of R. 

Equation (6) is satisfied by the following substitution: 

 

    

  

0 0

0

2 1
sin , sin 3 cos ,

3 3

1
sin 3 cos .

3

r eq eq

z eq

s s

s

      

   

     

  
  (27) 

Eliminating   between the first and third equations in (9), one gets 

 
.r z z rs s 
  (28) 

Equations (24), (27), and (28) combine to give 

 
 2

4
3 cot 1 .

2

s

u s




  
 

 
  (29) 

It is assumed that the tube is expanding. In this case, 0  , and the second equation in (9) 

demands 0s  . Then, it follows from the second equation in (27) that 

 
sin 3 cos 0.  

  (30) 

If 0V  , then 0z  , and the third equation in (9) demands 0zs  . Then, it follows from the 

third equation in (27) that 

 
sin 3 cos 0.  

  (31) 

Equations (30) and (31) combine to yield 

 

2
,

3 3

 
 

  (32) 

if 0V  . Repeating the line of reasoning above for 0V   leads to 

 
.

3 3

 
  

  (33) 

The value of   can be uniquely determined from (29) using (32) or (33). 

Using (12), (20), and (23), one can rewrite (5) as 

 

 
2 2

0.
1

rr
s s R

R R






 

     (34) 

This equation can be further transformed by employing (27) as 

 

  
 2

0

3 sin cos
0,

2 3 1

eq
r

  

   

 
 

  
  (35) 

where 
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2.R 

  (36) 

Since R is a Lagrangian coordinate, the boundary condition (3) becomes 0r   for 0R   or, 

using (36), for 
2

0  . Then, the solution of equation (35) can be represented as 

 

  
 2

0

2
0

3 sin cos1
.

12 3

eq
r d





  


  

 


 


  (37) 

It is understood here that eq  and   are functions of   and   to be determined from (26) and 

(29). The pressure over the inner radius is determined from (37) as 

 

  
 

2
0

0

2

1

3 sin cos
.

12 3

eq

P d

   


 

 


 


  (38) 

2. APPLICATION TO TUBE HYDROFORMING DESIGN 

Tube hydroforming is an important metal forming process for modern industry [15, 16]. 

The inner pressure and axial displacement greatly affect the appearance of various defects during 

this process [17]. Various methods are used to design the tube hydroforming process [18, 19]. 

The solution provided in the previous section can be adopted for the preliminary design of this 

process. In particular, even simpler solutions based on the assumption that V = 0 have led to 

reasonable results confirmed by experimental data [20, 21]. However, these solutions cannot 

predict the effect of axial displacement.  

The calculations below have been carried out for stainless steel tubes whose hardening 

behavior is described by the following equation (in our nomenclature) [22]: 

 

 
0

1 ,

m

eq

eq






 
   

    (39) 

where 0 0.06   and 0.624m   are the constitutive parameters found experimentally. 

Moreover, it has been assumed that 0 0.2   and 1u  . Then, equation (21) supplies 

 

1
.

s

s




 


  (40) 

It has been taken into account here that 1   at 1  . 

In the case of hydroforming, the range of s important for engineering application is 0s  . 

The variation of the dimensionless pressure, 0p P  , with   found from (38) is depicted in 

Figure 2 for several s – values. The solutions resulting in negative p-values are mathematically 

correct. However, these solutions are not feasible for engineering applications. Therefore, the 

range of applicability of the solutions illustrated in Figure 2 is 1m   . The dependence of 

the value of m  on s is provided in Table 1. 
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Figure 2. Effect of s-value on the inner pressure. 

Table 1. Range of validity of the engineering solution. 

s -1 -0.8 -0.6 -0.4 -0.2 

m  0.67 0.6 0.53 < 0.5 < 0.5 

 

The wall’s thickness is an essential technological parameter [23, 24]. This thickness is 

determined as W b a  . Using (12) and (13), one can find the dimensionless thickness as 

 

 2

02

0

1
.

W
w

a


   




     

  (41) 

It is understood here that    should be eliminated employing (40). The variation of w with   is 

depicted in the range 1m    in Figure 3 for the same s-values for which the dimensionless 

pressure has been calculated.  

Empirical fracture criteria are often used for predicting ductile fracture initiation in metal 

forming processes [25]. The modified Cockroft-Latham criterion proposed in [26] is one of the 

most often used. An advantage of this criterion is that its form contains no stress in the case of 

free surface fracture. In particular, the modified Cockroft-Latham criterion reduces to [27] 

 1 22 .C  
  (42) 

if the fracture occurs at a traction free surface. In equation (42), C  is a constitutive parameter, 

and 1  and 2  are the in-surface principal strains satisfying the inequality 1 2  . In the case of 

the tube hydroforming process under consideration, 1  is the circumferential strain, and 2  is 

the axial strain. Using (12) and (24), one can derive the equations for calculating the axial and 

circumferential strains as  
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1z

 




       and     

21
1 .

2

u

s

  

   

 
   

  
  (43) 

The first of these equations can be immediately integrated using the initial condition 0z   at 

1   to give 

 
ln .z 

  (44) 

 

Figure 3. Effect of s-value on the wall’s thickness. 

Using (23) and (40) and taking into account that 1u   and 0R   at the outer radius, one can 

transform the second equation in (43) to 

 

   

     

3 2 2 2

0

2 2 2
1 0

2 2 1 11
.

2 2 1 1 1

s s
d

s s





  
 

      

    
 

      
 


  (45) 

Equations (42), (44), and (45) combine to give 

 

 
   

     

3 2 2 2

0

2 2 2
1 0

2 2 1 1
ln .

2 1 1 1

s s
d C

s s

   
  

      

    
    

      
 


  (46) 

The function    is depicted in the range 1m    in Figure 4 for the same s-values for 

which the dimensionless pressure has been calculated. The value of C should be determined 

from experiments. Once this value has been found, equation (46) can be used to predict                                    

fracture initiation.  
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3. CONCLUSIONS 

A new analytical rigid/plastic solution has been found. The solution describes a thick-

walled tube's combined expansion and axial deformation at large strains. The specific 

calculations illustrated in Figures 2 to 4 have been carried out to the maximum value of the axial 

strain 0.7z  . The material obeys the von Mises yield criterion and its associated flow rule. 

The general isotropic hardening law has been adopted. The solution has been facilitated by using 

the Lagrangian coordinate R.  A numerical technique is only necessary to evaluate the ordinary 

integrals in (26), (37), and (38). The solution supplies the dependence of the inner pressure on 

the axial displacement. The loading path is controlled by the parameter s.  

 

Figure 4. Geometric interpretation of the modified Cockroft-Latham criterion at the outer radius. 

The solution has been adopted for the preliminary design of tube hydroforming processes 

(Figures 2 to 4). In particular, these figures illustrate the effect of the loading path on the inner 

pressure, the wall's thickness, and the occurrence of ductile fracture according to the modified 

Cockroft-Latham criterion.  
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