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Abstract. The present paper develops a new failure analysis method under plane strain 

conditions considering a generalized linear yield criterion. The yield criterion and the stress 

equilibrium equations constitute a hyperbolic system of equations. It is shown that two auxiliary 

variables satisfy the equation of telegraphy. Simple analytical relationships connect these 

variables and the radii of curvature of the characteristic curves. The calculated radii of curvature 

allow the corresponding characteristic net to be constructed. Then, the stress field is determined 

using another set of analytical relationships. Thus, a numerical procedure is only necessary for 

solving the equation of telegraphy. This equation can be integrated by the method of Riemann. 

In particular, Green’s function is the Bessel function of zero order. A simple example illustrates 

the general method. 

Keywords: linear yield criterion, plane strain, telegraph equation, failure. 

Classification numbers: 5.4.3, 5.4.6. 

1. INTRODUCTION 

The application of stress-based yield (or failure) criteria requires a stress analysis of 

structures. In the case of statically determinate problems, a yield criterion and the stress 

equilibrium equations can be solved independently of the other constitutive equations. The 

present paper deals with such statically determinate systems under plane strain conditions, 

assuming a generalized linear yield criterion. The study is restricted to hyperbolic systems of 

equations. 

Several methods are available for determining stress fields in metal plasticity based on 

pressure-independent yield criteria. In all cases, the methods aim at determining characteristic 

nets. The corresponding stress fields are then found using simple relationships. One of these 

methods derives the equations for the radii of curvature of characteristic lines [1]. It has been 

shown that these radii satisfy separately the equation of telegraphy. This method is usually 

referred to as the R - S method. Another method was proposed by Mikhlin and is sometimes 

named the method of moving coordinates [2, 3]. This method introduces a Cartesian coordinate 

system whose axes are tangent to characteristic lines at each point of a region. The moving 
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coordinates also satisfy the equation of telegraphy. The third method derives the equations for 

principal line coordinates. The coordinate lines of principal line coordinate systems coincide 

with principal stress trajectories. The starting point of this method is the simple relationship 

between the scale factors of the principal line coordinates derived in [4]. As in the previous 

methods, the equation of telegraphy should be solved for calculating characteristic nets.  

Many materials obey pressure-dependent yield criteria, for example, soils, granular 

materials, porous and powder metals, and concrete. The most widely used yield criterion for 

such materials is that of Mohr-Coulomb [5 - 8]. Modified versions of this criterion are also often 

used for various materials [9 - 12]. Other piecewise linear yield criteria have been proposed and 

used in [13 - 15], among many others. 

The methods above have been extended to various linear yield criteria (i.e., the criteria 

represented by linear equations in terms of the principal stresses). The R – S method has been 

extended to the Mohr-Coulomb yield criterion in [16] and the piecewise linear yield criterion 

proposed in [13] in [17]. The method of moving coordinates has been generalized on the Mohr-

Coulomb yield criterion in [18] and a generalized linear yield criterion in [19]. The method 

based on the geometric properties of principal line coordinates has been developed in [20] for 

the Mohr-Coulomb yield criterion and [21] for a generalized linear yield criterion. 

It depends on the specific boundary value problem which of the above methods is most 

convenient. For example, using the moving coordinates method to calculate the stress field near 

curved traction-free surfaces is advantageous [3, 19, 22]. However, it is worth noting that all the 

methods apply in a region where both families of characteristics are curved. On the other hand, 

in many cases, such a region is adjacent to a region where one of the characteristic families is 

straight. In such cases, the R - S method is most advantageous. The present paper develops the 

R-  S method for a generalized linear yield criterion. Thus, it generalizes one of the most used 

methods for solving boundary value problems in plane-strain plasticity on any linear yield 

criterion that results in a system of hyperbolic equations. 

2. SYSTEM OF EQUATIONS 

The phrase ‘piecewise linear yield criterion’ is usually referred to a yield criterion that is 

represented by linear functions of the principal stresses. Under plane strain conditions, the 

general piecewise linear criterion is 

1 2 0,q         (1) 

where 1 and 2 are the principal stresses in the planes of flow, 0 is a reference stress, and q is 

constant. It is assumed without loss of generality that  

1 2.        (2) 

The equations comprising (1) and the stress equilibrium equations are hyperbolic if 0q   

[2]. The present paper is restricted to this case. This section briefly describes the characteristic 

analysis to introduce the equations required for subsequent derivation.  

The characteristic directions are inclined at an angle  to the direction of 1 (Figure 1). This 

angle is determined as 

arctan .q       (3) 
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Figure 1. Characteristic and Cartesian coordinates. 

The two families of characteristics are regarded as the coordinate lines of a curvilinear 

coordinate system  ,  . The line of action of 1 falls in the sector between the positive 

directions of these coordinate lines (Figure 1). Introduce a Cartesian coordinate system  ,x y . 

Let  be the angle between the x-axis and the direction of 1 , measured from the axis 

anticlockwise. Then, the equations of the  and  lines are 

 tan
dy

dx
   and  tan ,

dy

dx
        (4) 

respectively. The characteristic relations are  

 

 

1 0

1

1 0

1

1
0 along an line,

1
0 along a line.

q
d d

q

q
d d

q

 
  

 
  

     

     

   (5) 

These equations can be rewritten as 

0 along an line,

0 along a line,

d d

d d

 

 

  

  
     (6) 

where 

 
  1

0

ln 1 1 .
1

q
q

q





 
    

  
     (7) 

In a region where both families of characteristics are curved, the equations in (6) can be 

represented as 

02     and 02 .        (8) 

Here is a constant whose value will be specified later, and 0  is a constant of integration. 

Solving the equations in (8) for and  , one gets 



 
 
A new method of failure analysis 
 

173 

 0      and  .          (9) 

3. METHOD OF CALCULATING CHARACTERISTIC NETS 

Equations (1), (7), and (9) allow the stress field to be found if a characteristic net is 

determined. A method of calculating characteristic nets is developed in this section. 

The radii of curvature of the and  lines are denoted as R and S, respectively.  It is 

seen from (3) that the angle between each characteristic direction and the line of action of the 

stress 1 is constant. Therefore, the radii of curvature of the characteristic curves can be defined 

by the following equations: 

1

R s





and
1

,
S s


 


     (10) 

where s  and s  are space derivatives taken along the  and  lines, respectively. It 

follows from the geometry of Figure 1 that 

   

   

cos , cos ,

sin , sin .

x x

s s

y y

s s

 

 

   

   

 
   

 

 
   

 

    (11) 

Using (9) and (10), one can transform (11) to 

   

   

cos , cos ,

sin , sin .

x x
R S

y y
R S

     
 

     
 

 
    

 

 
    

 

   (12) 

The compatibility equations are 

2 2x x

   

 


   
and

2 2

.
y y

   

 


   
    (13) 

Substituting (13) into (12) and employing (9) yields 

       

       

cos cos sin sin 0,

sin sin cos cos 0.

R S
R S

R S
R S

        
 

        
 

 
          

 
          

                    (14) 

These equations can be solved for the derivatives R   and S   . As a result, 

sin 2 cos2 0
R

R S   



  


andsin 2 cos2 0.

S
S R   




  


  (15) 

Introduce 0R and 0S by the following relationships: 

 0 expR R n m   and  0 exp ,S S n m       (16) 
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where n and m are constant. Substituting (16) into (15) yields 

 

 

0
0 0

0
0 0

sin 2 sin 2 cos2 0,

sin 2 sin 2 cos2 0.

R
m R S

S
n S R

    


    



   




   



    (17) 

Put 

sin2 , cos2 ,m    and cos2 .n      (18) 

Then, equation (17) becomes 

0
0 0

R
S




 


and 0

0 0.
S

R



 


      (19) 

It is seen from these equations that 0R and 0S separately satisfy the equation of telegraphy. 

Methods of solving this equation in conjunction with typical boundary conditions adopted in 

plasticity theory are well-developed [2]. Also, equations (9) and (16) become 

 0 sin2     and  sin2 .         (20) 

and 

 0 exp cos2R R       and  0 exp cos2 .S S         (21) 

Using (21), one can rewrite (12) as 

   

   

   

   

0

0

0

0

sin 2 cos exp cos2 ,

sin 2 cos exp cos2 ,

sin 2 sin exp cos2 ,

sin 2 sin exp cos2 .

x
R

x
S

y
R

y
S

     


     


     


     



    


     


    


     

    (22) 

Having (20) and a solution of the equations in (19), one can integrate the equations in (22) along 

any path in characteristic space. 

4. STRENGTH OF A WELDED JOINT 

Welded joints are an important class of structures. A distinguished feature of the highly 

under matched welded joints is that plastic yielding occurs in the weld, whereas the base 

material remains elastic at plastic collapse [23 - 25]. The simplest structure of this type is a 

welded panel subjected to tension (Figure 2). The thickness of the weld is 2H, and the width of 

the panel is 2 W. It is required to determine the distribution of the principal stresses along the 

center line of the weld. It is possible to assume without loss of generality that 1H  . 

The general structure of the characteristic net is shown in Figure 3. The characteristics of 

both families are straight in Region 1. Therefore, and are constant. The edge is traction-free. 

Therefore, 2 0  in Region 2. 
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Figure 2. Schematic diagram of the tensile welded joint. 

Then, it follows from (1) and (7) that 

0
1

b


  and

 
ln

1

q
q

q
  


    (23) 

in Region 1. The direction of the principal stress 1 dictates the orientation of the characteristic 

lines. In particular, the base  and  lines are shown in Figure 3. It is worthy of note that 

0  on the base  line and 0  on the base  line. Choosing the Cartesian coordinate 

system shown in Figure 3 is convenient. In this case, 0  in Region 1. 

Figure 3. The general structure of the characteristic net. 

Consider Region 2. The  lines are straight in this region. To construct the characteristic 

field on the right to the base and  lines employing the method developed in the previous 
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section, one must find the radii of curvature of these lines. To this end, it is convenient to use a 

polar coordinate system  ,r  . This coordinate system's origin is at point 1O (Figures 3 and 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Characteristic and polar coordinates in Region 2. 

Since the angle between the and  lines equals 2 , the equation for a generic  line is 

 tan 2 tan 2 .
rd

dr


           (24) 

The general solution of this equation is 

 0

0

ln cot 2 ,
r

r
          (25) 

where 0r and 0 are constant. The base  line passes through point O. It is seen from the 

geometry of Figure 4 that the coordinates of this point are 

0

1

cos
r


 and 0 .

2


       (26) 

It follows from (25) and (26) that the equation of the base  line is 

1
exp cot 2 .

cos 2
r


  



  
     

  
    (27) 

The radius of curvature of this line is determined from the following equation: 

 
3/2

2 2

2

'
.

2 ' ''
b

r r
R

r r rr




 
     (28) 

Here the subscript ‘b’ emphasizes that it is the radius of curvature of the base  line. Moreover,

'r dr d and
2 2''r d r d . It is seen from Figure 3 and equation (10) that 0bR  . Therefore, 

substituting (27) into (28) gives 
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 
1

exp cot 2 .
sin 2 cos 2

bR


  
 

  
    

  
   (29) 

It follows from the geometry of Figure 4 that  

.
2


          (30) 

Since 0  on the base  line, the second equation in (20) transforms to 

sin2 .        (31) 

Equations (29), (30), and (31) combine to give 

 
1

exp cos 2 .
sin 2 cos

bR  
 

        (32) 

Comparing (32) and the first equation in (21) at 0  shows that 

0

1

sin 2 cos
R

 
      (33) 

for 0  . It is seen from Figure 4 that 0  at point A. Then, it follows from (30) and (31) that 

2
.

sin 2
A

 





      (34) 

here A is the value of at point A. The y-coordinate of this point is determined from the third 

equation in (22). In particular, 

   0

0

sin 2 sin exp cos2 .
A

Ay R d



              (35) 

Substituting 0  , (31), and (33) into (35) and integrating, one gets 

1
tan exp cot 2 .

cos 2
Ay


  



  
    

  
   (36) 

Region 2’ (Figure 3) can be treated similarly. As a result, 

0

1

sin 2 cos
S

 
       (37) 

for 0  , 

2
,

sin 2
B

 





        (38) 

and 

1
tan exp cot 2 .

cos 2
By


  



  
    

  
   (39) 

Here B and By are the  and y coordinates of point B (Figure 3), respectively.  
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Consider Region 3 (Figures 3 and 5). The characteristics of both families are curved in this 

region. Therefore, equation (19) is valid. The equations in (19) can be rewritten as 

0
0 0

R
R

 


 

 
and 0

0 0.
S

S
 


 

 
   (40) 

Each of these equations is integrated by the method of Riemann. In particular, the Green’s 

function is 

    0, , , 2 ,G a b J a b      
 

   (41) 

where  0J z is the Bessel function of zero order. Note that 

 , , , 1G a b a   and  , , , 1.G a b b     (42) 

Using (33) and (37), one can integrate the equations in (19) along the base characteristics to get 

0

1

sin 2 cos
S



 


       (43) 

on 'OA and 

0

1

sin 2 cos
R



 


       (44) 

on 'OB . 

Figure 5. Representation of characteristic curves for Riemann’s method of integration. 

Assume one must find 0S at point P (Figure 5). Consider closed contour B’PA’OB’. The 

method of Riemann leads to 

0 0
0 0

' '

0 0
0 0

' '

                                0.

B P PA

A O OB

S G G S
G S d S G d

S G G S
G S d S G d

 
   

 
   

     
      

      

     
      

      

 

 

 (45) 
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Consider the first two integrals .Since b  on 'B P , it follows from (42) that 1G  and 

0G    in the integrand of the first integral. Therefore, 

0 0
0 '

' 0

,

a

P B

B P

S G S
G S d d S S 

  

   
    

   
      (46) 

where PS is the value of 0S at point P and 'BS is the value of 0S at point 'B . The latter is given by 

(37). Then, equation (46) becomes 

0
0

'

1
.

sin 2 cos
P

B P

S G
G S d S

   

  
   

  
     (47) 

The second integral in (45) can be treated similarly, except that (43) should be used instead of 

(37). As a result, 

0
0

'

1
.

sin 2 cos
P

PA

G S a
S G d S

   

   
   

  
    (48) 

Integrating by parts and employing (41) and (43), one can represent the third integral in (45) as 

 

 
   

00
0

' 0

0 0

0

2

sin 2 cos

12 1
2 2 .

sin 2 cos sin 2 cos sin 2 cos

a

A O

a

S GS G G
G S d d

a
J b a d J ab

 
    

 
     

   
     

     


   
 

 



 (49) 

Substituting (37) into the fourth integral in (45) yields 

 0
0 0

' 0

1 1
1 2 .

sin2 cos sin2 cos

b

OB

G S G
S G d d J ab 

      

                
 

  

(50) 

Substituting (47) – (50) into (45) supplies 

   0 0

0

1 1
2 2 .

sin2 cos sin2 cos

a

PS J b a d J ab 
   

    
    (51) 

Put  2 .b a   Then, 

.
2

d d
b


        (52) 

Replacing integration with respect to with integration with respect to in (51), one arrives at 

   
0

0 0

2

1 1
2 .

2 sin2 cos sin 2 cos
P

ab

S J d J ab
b

  
   

     (53) 

It is known that 

 
 1

0 ,
d J

J
d

 
 



       (54) 
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where  1J  is the Bessel function of the first order. Using (54), one can transform (53) to 

   

   

0

1 0

2

1 0

1 1
2

2 sin 2 cos sin 2 cos

1 1
                                                  2 2 .

sin 2 cos sin 2 cos

P

ab

S d J J ab
b

a
J ab J ab

b

 
   

   

    

 



  

(55) 

Since 0ab  , it is convenient to rewrite (55) as 

   1 0

1
2 2 ,

sin 2 cos
P

a
S I ab I ab

b 

 
   

  

  (56) 

where  0I  and  1I  are the modified Bessel functions of zero and first orders, respectively.  

The y-coordinate of point P can be determined from the fourth equation in (22) as 

   '

0

sin2 sin exp cos2 ,

b

A Py y S a d              (57) 

where 'Ay is the y-coordinate of point 'A and is found from (20) as 

 sin2 .a        (58) 

The value of 'Ay is determined from the third equation in (22) at 0  . As a result, with the use 

of (20) and (33), 

   

 
 

'

0

1
sin sin 2 exp cos2

cos

sin sin 2
                                                  tan exp cos2 .

cos

a

Ay d

a
a

     


 
 



   


 


 (59) 

Using (56), one can represent PS involved in (57) as 

   1 0

1
2 2 .

sin 2 cos
P

a
S I a I a 

  

 
   

  

  (60) 

Since    at the symmetry axis, the y-coordinate of point P at this axis is found from (57) as 

   '

0

sin2 sin exp cos2 .

a

A Py y S a d     


         (61) 

Using (58) and (60), one can evaluate the integral involved in (61) numerically. This result 

and (59) provide the value of y at the symmetry axis. The parameter a varies in the range

0 A   , where A is given in (34). The value of at this point follows (20). Then, the 

stress 1 is determined from (7) and the stress 2 from (1). The continuity of the stresses across 

AOB and (24) require that 
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 0 ln .
1

q
q

q
  


    (62) 

Figure 6. Distribution of the principal stress 1  along the center line of the welded joint. 

Figure 7. Distribution of the principal stress 2  along the center line of the welded joint. 

Figures 6 and 7 illustrate the effect of on the distribution of the principal stresses along the 

center line. In these figures, s is the distance from the edge (Figure 2). It is seen from Figure 3 that  

tan .s y       (63) 

The curves in Figures 6 and 7 correspond to 4  (pressure-independent material),
 

1 4 48      , 2 4 24      , 3 4 48      and 4 4 24      . 
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The solution for pressure-independent material has been provided in [1]. The solution 

above reduces to this solution if 4  , which confirms its correctness. 

4. CONCLUSIONS 

The present paper has developed a general method for determining stress fields considering 

a generalized linear yield criterion. The method is applied to the models described by hyperbolic 

systems of equations. It has been shown that calculating stress fields in regions where both 

characteristic families are curved is reduced to solving the telegraph equation and several 

analytical relationships. A simple example illustrates the general method. In this case, a 

numerical procedure is only necessary to evaluate the ordinary integral in (61). Some numerical 

results are depicted in Figures 6 and 7. They show that the constitutive parameter involved in the 

yield criterion significantly affects the stress field at the center line of the tensile welded joint 

(Figure 2).  
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