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Abstract. Silicon carbide (SiC) is a mineral with good technical properties and high economic 

value. However, the synthesis of SiC is expensive because it is synthesized at a high-temperature 

environment (above 1500 
o
C). The synthesis of SiC from biomass can significantly reduce the 

synthesis temperature. One commonly used biomass material for synthesizing SiC is rice husk. 

However, the ability to synthesize SiC depends on the shape of the rice husk. The influence of 

the morphology of rice husk on the ability to synthesize SiC was studied in this study. 

Experimental results showed that the original rice husk would give better SiC formation capacity 

than the rice husk powder. The amount of SiC formed using the original rice husk when 

impregnated by sodium silicate solution and pyrolysis at 1200 
o
C is 18.3 % (wt%.). With rice 

husk powder, it is 15.12 % (wt%.). The results of analysis of the mineral composition, functional 

groups, and morphologies by X-ray diffraction (XRD), Fourier Infrared Transform Method (FT-

IR), and Scanning Electron Microscopy (SEM) found that the polymorphy of SiC is α-SiC and 

β-SiC. These minerals are the basis for SiC from rice husks, which can be applied as wear-

resistant materials. 
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1. INTRODUCTION  

Silicon Carbide is a mineral with the main composition of silicon (Si) and carbon (C). It is 

a material with the chemical formula. Silicon Carbide is a new material widely used in many 

fields thanks to its unique properties. SiC usually exists as small particles, thin sheets, or large 

plates. It is black and can have a hardness comparable to a diamond. 

SiC has a larger band gap than traditional silicon (Si) semiconductors. Therefore, SiC is a 

very potential semiconductor material [1]. Due to its large bandgap energy, it can withstand 

stronger electric fields, high operating temperatures, and higher voltage increases than silicon. 



 
 

Kieu Do Trung Kiem, Ong Dieu Hanh, Nguyen Hoang Thien Khoi, Huynh Ngoc Minh  

 

SiC could become an ideal material for high-power electronic applications. Silicon Carbide is 

used to fabricate power electronic components such as motor control circuits, inverters, voltage 

stabilizers, and industrial electrical cabinets [2, 3]. Its high voltage and heat resistance helps 

increase efficiency and reduce the size of power electronic systems [4]. SiC can fabricate blue, 

green, and white LEDs [5, 6]. SiC LED has high brightness, long life, and energy saving 

compared to traditional LEDs [7]. In addition, SiC is used in power conversion and control 

devices, including applications such as solar inverters, electric vehicles, and electrical systems in 

aircraft, ships, and hybrid cars [8, 9]. 

Besides potential applications in the fields of electricity and electronics, SiC can also be 

applied as mechanical and heat-resistant materials thanks to its mechanical strength and high 

temperature resistance. SiC has been used in the production of mechanical parts that require high 

hardness, high temperature resistance, and wear resistance [10, 11]. Applications include wear-

resistant machinery parts, bearings, transmissions, and heat-resistant parts. SiC has good heat 

resistance, so it is used in highly heat-resistant applications such as refractories, insulation 

materials, heat resistant pipes, and components in furnaces, boilers, and heating systems [12]. 

SiC is used in the automotive industry to enhance critical components' hardness and wear 

resistance, such as brakes, bearings, valves, and pistons [13]. SiC can also be used in 

applications to improve engine performance and reduce weight [14]. In addition to being the 

primary raw material, SiC can also act as an additive to synthesize materials. SiC can be 

considered a foaming additive in ceramic products. When heating SiC in an O2 atmosphere, SiC 

will form CO2 gas and contribute to the foaming of ceramic products [15]. Carbon produced 

during the decomposition of SiC can also be used as an additive in the production of Cr2AlC 

[16]. Cr2AlC is a potential compound in photocatalytic applications. 

The above properties and applications show the role and potential of SiC materials. 

Currently, in industry, SiC materials are usually made through a chemical reaction between 

compounds containing carbon (C) and silicon (Si). Commonly used materials for this synthesis 

are SiO2 and C powder. The temperature to synthesize SiC is above 1500 
o
C [17]. 

With the traditional method, SiC is usually formed at other high temperatures (above               

1500 
o
C). Therefore, the synthesis of SiC is quite tricky, so the cost of this material is increased. 

To solve this problem, many research groups have studied the preparation of SiC from biomass 

sources. Synthesis of SiC from biomass materials can produce SiC at temperatures above 700 
o
C 

[18]. As a result, SiC production costs will be lower. SiC materials may be more commonly used 

in civil applications. Creating SiC from biomass is also one of the methods that can be applied to 

treat agricultural wastes. M. Khangkhamano et al. have studied the fabrication of SiC from 

bagasse. Bagasse has been pulverized and reacted with silicon at high temperatures. As a result 

of the study, SiC was formed at a temperature of 1800 
o
C [19]. SiC can also be synthesized from 

sawdust. Using the same method, V. C. Bringas-Rodriguez et al. also obtained SiC from sawdust 

at 500 
o
C [20]. In the studies on SiC fabrication from biomass materials, rice husk is commonly 

used [18]. With the characteristic that rice husk contains a lot of silicon and carbon, this is a 

suitable source of raw materials to create SiC.  

However, few studies on rice husk mention the ability to form SiC when using rice husk 

material with different morphology. In this study, we fabricated SiC from crushed and original 

rice husks. By analytical methods such as chemical composition, X-ray diffraction, Fourier 

transform infrared spectroscopy, and scanning electron microscopy, the ability to form SiC was 

investigated. The obtained results provide information on the influence of rice husk morphology 

on the ability to synthesize SiC.  

 



 
 
Effect of rice husk morphology on the ability to synthesize silicon carbide by pyrolysis method  

2. MATERIALS AND METHODS 

Rice husk material (RH) is taken from Long An province - Vietnam. The chemical 

composition of rice husks was determined by X-ray Fluorescence and Isotope Ratio Mass 

Spectrometry methods. The results are presented in Table 1. Rice husks were washed and dried 

at 90 
o
C for 24 hours. After drying, the husks were divided into two groups. Group 1 (symbol 

G1) was preserved with the original rice husk. Group 2 (symbol G2) was milled in a crushing 

machine. The average particle size of group 2 is 47.71 µm. The particle size distribution of 

group 2 is shown in Figure 1. Sodium silicate (Na2SiO3.nH2O – symbol SS) was also used to add 

the silicon component. The density and module of sodium silicate are 1.5 g/ml and 2.9. 

Table 1. Chemical composition (% wt.) of RH. 

C N H Si Fe Mg Na K Al P S Mn Othes 

45.91 3.12 6.12 8.38 0.38 0.05 0.09 0.18 0.09 0.11 0.01 0.02 35.53 

SiO2 Na2O K2O Fe2O3 Al2O3 LOI Others 

6.71 0.38 0.23 0.19 0.15 92.13 0.12 

 

Figure 1. The particle size distribution of the crushed rice husks. 

Two groups of RH were soaked in SS solution at the ratio of 5g rice husk/ 1 liter of SS. The 

soaking time of RH was 24 hours. After 24 hours, SS would adhere to the surface of the rice 

husk. Thanks to that, the RH would be supplied with Si for the SiC generation reaction. RH and 

SS mixtures were dried at different temperatures until the weight remained constant. After 

drying, the mixtures were sintered at 1200 
o
C in a prevent oxygen environment with a heating 

rate of 10 
o
C/min. Finally, the sintered samples were analyzed for properties such as the formed 

SiC content, microstructure, and mineral composition to evaluate the reactivity to generate SiC 

of 2 groups of materials. 

The sintered powders were milled to a particle size of less than 150 µm. Samples were 

taken according to ISO 5022 standards. The SiC content in the product was determined 

according to ISO 21068:2008 standards. The functional group was analyzed by Fourier 

transform infrared spectroscopy (FT-IR). Scanning ranges are 450 - 4000 cm
-1

. The scan step is 

0.96425 cm
-1

. The mineral composition was analyzed by X-ray diffraction (XRD). Samples were 

measured at 2θ from 5 to 70º with a scan step of 0.019º. The microstructure was evaluated by 

scanning electron microscopy (SEM). 

3. RESULTS AND DISCUSSION 
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RH is the source of Si and C for the SiC generation reaction. T. D. Dinh et al. have shown 

that RH can be a source of raw materials to provide SiO2 [21]. However, the Si content in RH is 

low. It is necessary to add materials to provide Si components. In this study, SS is the raw 

material to provide Si. In addition, SS also contains the sodium element. In many studies, 

sodium has been shown as one of the ingredients that can act as an additive to promote SiC 

generation. Sodium acts as an early liquid phase-forming agent. Thanks to the surface tension of 

this liquid phase, the crystallization process of SiC takes place more easily. Therefore, more SiC 

can be formed at lower temperatures. RH (solid phase) is mixed with SS (liquid phase) by 

impregnation. Figure 2 is the result of determining the adhesion ability of SS on the RH surface 

in two groups of RH particles at different drying temperatures. 

 

Figure 2. The mass increase of RH material groups after soaking (% wt.) 

 

Figure 3. The SEM images of RH of group 1 (G1) and group 2 (G2). 

The results of Figure 2 also show a significant mass difference between the G1 and G2 

groups. Considering the same drying temperature, the G1 sample with a large particle size 

gained less mass than the G2 sample. The results show that the particle size affects the ability to 

retain SS. The smaller the particle size of the material, the greater the ability to keep SS. In this 

case, the ability to keep SS is related to the surface area of the material. Observing the SEM 

image in Figure 3, the G2 sample has a grain size many times smaller than the G1 sample. If the 

material has a small particle size, the surface area of the material will increase. As the area 

exposed to SS increases, the ability to retain SS also increases. The ability to hold SS also 
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contributes to an increase in the amount of Si for the G2 sample. Therefore, the G2 sample is 

expected to form a lot of SiC after calcination. 

When comparing different drying temperatures, the results of Figure 2 show that the higher 

the drying temperature, the lower the amount of SS kept. As the drying temperature increases, 

the drying speed will also increase. SS components will be swept away by water evaporation. 

Therefore, the amount of SS retained in the RH decreases.  

The G1 and G2 samples, after being impregnated with SS and dried at different 

temperatures (40, 60, 80, and 100 
o
C), would be sintered at 1200

o
C to synthesize SiC. The 

sintered G1 and G2 samples were analyzed to determine the amount of SiC formed. Figure 4 is 

the result of determining SiC content according to ISO 21068:2008 standards. 

 

Figure 4. The SiC content of G1 and G2 samples after sintered at 1200 
o
C (% wt). 

The results of Figure 4 show that SiC was synthesized when the samples were sintered at 

1200 
o
C. The results of SiC content decreasing with increasing drying temperature in Figure 4 

show the role of SS in the process of SiC generation. As the drying temperature increased, the 

amount of SS kept on the RH surface decreased (Figure 3). The Si composition in the system 

also reduces, so the amount of formed SiC during the heating process also decreases. 

Considering the two groups of particles, the results of Figure 4 contrast the results of Figure 

3. In Figure 3, the G2 group with a small particle size and large surface area should keep a lot of 

SS during the impregnation process. Theoretically, with the increase of SS, the content of SiC in 

the G2 group will also be higher than in the G1 group. However, experiments have shown the 

opposite results. The G1 group materials showed higher SiC content than the G2 group in all 

samples. Some previous studies have demonstrated that the SiC generation reaction will be 

reduced when the COx content in the system increases [22, 23]. The mechanism of SiC 

formation is shown in chemical equation from (1) to (5). As the COx content increases, the 

balance of the chemical reaction that produces SiC will shift to the left of (1), (4), and (5) 

reactions. So, the SiC content will also decrease. In this case, the space between the particles 

increases because the G1 group has a larger particle size than the G2 group. The COx formed 

during the pyrolysis of RH was quickly released. Since then, the COx content in the system has 

also been reduced. It helps SiC to create more. 

SiO2 (s) + 3C (s)  SiC (s) + 2CO (g)     (1) 
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SiO2 (s) + C (s)  SiO (g) + CO (g)     (2) 

SiO2 (s) + CO (g)  SiO (g) + CO2 (g)     (3) 

SiO (g) + 2C (s)  SiC (s) + CO (g)     (4) 

SiO (g) + 3CO (g)  SiC (s) + 2CO2 (g)     (5) 

Figure 3 and Figure 4 show that the G1 sample with high ventilation gives a higher SiC 

content than the G2 sample under the same synthesis conditions. In addition, 40 
o
C and 60 

o
C are 

suitable temperatures for drying SS and RH. However, 40 
o
C will give more drying time than           

60 
o
C. Therefore, 60 

o
C is chosen for drying the SS and RH. Samples of the sintered G1 and G2 

group at 1200 
o
C will be analyzed by FTIR and XRD to analyze the composition of mineral 

composition. Figure 5 is the result of the FTIR analysis, and Figure 6 is the result of the XRD 

patterns. 

The FT-IR results in Figure 5 are typical for SiC products synthesized from biomass 

sources. The vibration at 3100 – 3600 cm
-1

 on the FT-IR spectrum is characteristic of the O-H 

group [24]. The O-H group represents the moisture in the samples—the vibration characteristic 

for the Si-C covalent bond at position 789 cm
-1

 [24]. In addition, because the precursor is a 

source of biomass, the product will contain C=O, C=C groups at the position of wavenumber 

1720, 1632 cm
-1

 [25]. The vibrations of the Si-O, Si-O-Si bonds at 1059, 812, and 464 cm
-1

 [24, 

26] are typical for the Si component that does not react entirely and is oxidized to SiO2 

afterward. From the FT-IR results, there was a formation of SiC at 1200 
o
C in both the G1 and 

G2 groups. However, the formed SiC contains many impurities. Impurities formed after 

sintering are typical by-products of SiC synthesis from biomass sources [27]. SiC made from 

biomass sources can be used in applications with low SiC purity. If some chemical and thermal 

methods remove other components, such as C and SiO2, pure SiC can be completely formed 

from rice husks. 

 

Figure 5. The FTIR spectrum of G1 and G2 samples after sintered at 1200 
o
C. 

The XRD method was also used to determine the mineral composition of the G1 and G2 

groups after sintering (Figure 6). The samples' XRD pattern after sintering shows the similarity 

in mineral composition. The XRD results also confirmed the mineral composition of the product 

as indicated in the FTIR spectrum. In the G1 and G2 samples, minerals, including cristobalite 

(SiO2), α-SiC, and β-SiC, were formed after sintering. The mineral cristobalite (JCPDS card No. 

39-1425) is represented at the 21.99
o
, 36.5

o
, and 54.2

o
 diffraction positions [28]. Cristobalite is 
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the high temperature polymorph of SiO2. It is formed by heating SiO2 without a catalyst [29]. 

Mineral β-SiC (JCPDS card No. 29-1129) is present at 35.6
o
, 41.6

o
, and 60

o
 diffraction positions 

[24]. β-SiC is a low-temperature polymorph of SiC. This is a common mineral that occurs with 

low-temperature SiC synthesis methods. It is also a transition mineral before the formation of α-

SiC. The α-SiC mineral (JCPDS card No. 01-073-1664) is represented at the 34.1
o
, 38

o
, and 

66.5
o
 diffraction position [24]. α-SiC is the high-temperature polymorph of SiC. Previous studies 

showed that α-SiC usually forms at sintered temperatures above 1500 
o
C. This result indicates 

that it is possible to create different SiC polymorphs at low temperatures by sintered RH 

impregnated with SS. 

 

Figure 6. The XRD patterns of G1 and G2 samples after sintered at 1200
o
C. 

In addition to forming similar minerals in the G1 and G2 groups, the XRD patterns of the 

two samples also show the difference in the intensity of the peaks related to SiC minerals. This 

difference is easily observed when comparing the intensity ratio of the SiC peaks to the 

cristobalite peaks. The results show that the intensity of SiC peaks in the G1 sample is higher 

than in the G2 sample. It proves that SiC crystals in the G1 sample grow better than in the G2. 

This observation again proves that the formation of SiC minerals in the G1 sample is more 

favorable than in the G2 sample. The reason for this advantage is that the ventilated form of the 

G1 model allows COx to escape quickly. 

4. CONCLUSIONS 

In this study, SiC was made from RH impregnated with SS and sintered at 1200 
o
C. The 

analysis results of SS keeping capacity, chemical composition, functional group, and mineral 

composition also showed the ability to create SiC of two groups of raw materials, original RH 

(G1 group) and crushed RH (G2 group). The G2 group with small particle size and large surface 

area will be better able to keep SS during RH impregnation with SS. However, the G1 group 

with good ventilation will help the COx formed during the pyrolysis to release quickly. As a 

result, the balance of the chemical equation for the formation of SiC will shift from left to right. 

The content of SiC of the G1 sample is formed more than the G2 sample. The formed SiC has 

two polymorphs, including β-SiC and α-SiC. They are two low- and high-temperature 

polymorphs of SiC. In addition, there is also the presence of cristobalite (SiO2) and carbon in the 

composition of the samples after sintering. They are products that form when the C and Si 
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precursors react uncompletely. Therefore, SiC synthesized from biomass can be used in 

applications without high purity. This can also be a precursor to forming pure SiC through C and 

SiO2 reduction processes.  
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