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Abstract. This paper investigates fracture mechanics in particle-reinforced composites by using 

the extended finite element method enhanced by the consecutive-interpolation quadrilateral 

element. These composite materials have discontinuous boundaries such as cracks, voids and 

hard inclusions. The extended consecutive-interpolation quadrilateral element (XCQ4) is 

employed to model these boundaries in two-dimensional linear elastic deformation problems. 

XCQ4 combines the enrichment functions in the traditional extended finite element method with 

the consecutive interpolation on a 4-node quadrilateral element. This element uses both nodal 

values and averaged nodal gradients as interpolated conditions. In fracture analysis, the stress 

intensity factors (SIFs) are important parameters that must be defined.  In this study, the values 

of SIFs at the crack tips are evaluated with the help of the interaction integrals approach. The 

critical angle for crack growth direction is based on the maximum circumferential tensile stress 

criterion. The obtained numerical results are compared with other reliable results showing high 

accuracy and convergence rate of the XCQ4 element. 

Keywords: fracture, consecutive-interpolation, CQ4, XCQ4, void/inclusion, hole, crack propagation. 

Classification numbers: 5.4.2, 5.4.3, 5.4.6. 

1. INTRODUCTION 

Particle-reinforced composites are materials that combine hard particles with other matrix 

materials. They have better mechanical properties than traditional materials. In the fracture 

analysis of cracks in particle-reinforced composites, there are discontinuous interface material 

boundaries and the presence of defects such as cracks, voids, and holes. These boundaries are 

hard to simulate with the conventional finite element method since it needs a lot of meshing 
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effort and requires high computational costs. Therefore, an extended algorithm has been 

developed to address crack-related issues. 

The extended finite element method (XFEM) was first introduced in [1, 2]. The improved 

XFEM in the fact that the discontinuity and singularity induced by the crack are effectively 

treated as the mesh is completely independent of the crack geometry, and more interestingly the 

re-meshing in crack propagation is no longer required. XFEM method does not attempt to 

directly model cracks as geometric discontinuities. Instead, mathematical functions namely 

enrichments based on the partition of unity principle are used to capture the effect of 

displacement jump across crack surfaces and stress singularity in the vicinity of the crack tip. 

The method is then widely used in fracture analysis [3 - 5]. 

Since the conventional 4-node quadrilateral element can produce the discontinuous nodal 

gradient, Bui et al. [6] have succeeded in establishing a consecutive-interpolation 4-node 

quadrilateral element (CQ4), based on the idea of [7, 8]. The basic functions of CQ4 are built 

with the twice-interpolation procedure to obtain functions of continuous form and have higher-

order polynomials without increasing the total number of degrees of freedom. The stress field 

becomes continuous without complicated treatment, the calculation results have significantly 

increased convergence compared with the traditional finite element method. This consecutive-

interpolation concept is then applied in the 3D solid structure analysis [9 - 11]. 

 For simulating fracture problems, the concept of XFEM has been incorporated into a 

consecutive-interpolation procedure to form the XCQ4 element [12 - 14]. The method is then 

used for analyzing crack in homogeneous plates [15], crack on the interface of bimaterial plates 

[16] and cracked functionally graded material (FGM) plates [17]. Compared with the standard 

extended 4-node quadrilateral element (XQ4), the new XCQ4 is primarily distinguished by the 

employment of nodal gradients into interpolation due to the consecutive-interpolation procedure 

(CIP). The approximation functions for the consecutive-interpolation quadrilateral element are 

extended to involve known enrichment functions. 

This paper investigates the fracture behavior and the crack growth of cracked plates with 

discontinuous interfaces such as inclusions and voids by using the XCQ4 element. Cracked 

plates including hard inclusions and voids are already studied by the traditional XFEM in [18] 

but are not examined in the XCQ4 approach so far. And due to the authors’ best knowledge, the 

crack propagation in the cracked plate with the combination of multiple inclusions and voids has 

not been reported, even by using the traditional XFEM. This is an important type of problem that 

needs attention because it involves investigating the mechanical properties of particle-reinforced 

composite structures. The accuracy and performance of the XCQ4 element are demonstrated 

through many numerical examples of 2D plane strain problems. The obtained results are 

compared with available numerical results showing good agreement. Moreover, the examples 

also show that the mechanical behavior becomes better when mixing hard particles compared 

with homogeneous material. 

2. METHODOLOGY 

2.1. The consecutive-interpolation 4-node quadrilateral element (CQ4) 

To begin with the concept of consecutive-interpolation procedure, let an arbitrary point x = (x, y) 

located inside a four-node (i, j, k and m) quadrilateral element (see Figure 1). Denoting Si, Sj, Sk 

and Sm, in that order, are neighbor elements that share the same node i, j, k and m. The 
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supporting nodes for the point x in this CQ4 element involve all nodes of Si, Sj, Sk and Sm 

elements. 

The approximation equation at point x is written as 

 
1

ˆ ˆˆ( ) ( )


  N(x)u
sn

l l

l

u x N x u  (1) 

In equation 1, the consecutive-interpolation shape function ˆ
lN is determined by [12] 
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in which [ ]i

lN  is the shape function with respect to node i, and ns is the total number of the 

supporting nodes in regard to the point x. 

 

Figure 1. Illustration of CQ4 element and its supporting node in 2-D domain. 

According to [12] and [13], the formulation of the average derivative of the shape functions 

at node i is given as the following expression 

    [ ] [ ][ ] [ ] [ ][ ];
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where the term [ ][ ]i e

l,xN  is the derivative computed in element e, and 
eω is the weight function of 

element e ∈ Si, which is defined as 
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in which Δe
is area of the element e. 

In equation 2, the functions i
, ix

, and iy forming the polynomial basis associated with 

node i must satisfy the following conditions: 
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where l is any one of the indices i, j, k, and m, and 
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1, if 

0, if 
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The polynomial basis functions , ,i ix iy    for the quadrilateral element are given as 
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with b =1/2 and the functions , , , , , , , , and        j jx jy k kx ky m mx my  can be also calculated in the 

same manner by a circulatory permutation of indices i, j, k, and m. In addition, Ni, Nj, Nk and Nm 

are the Lagrange basis function. 

2.2. The extended consecutive-interpolation 4-node quadrilateral element (XCQ4) 

Figure 2 shows the typical discontinuities often occur in particle composite. Based on the XFEM 

approach, the XCQ4 approximation of the displacement field is written as follows 

            
1 1 1

ˆ ˆ ˆˆ ˆ
  

    
sn np m

enr l l

j j k k

j l k

N u N ahu x u x u x x x x  (10) 

where the first term on the right-hand side is the familiar approximation by CQ4 (see equation 

1), np is the number of discontinuous conditions (crack, inclusion, void) that occur for an 

element containing x, m is the number of enriched nodes in each np, ̂  is the enrichment 

function in each condition np.  

 

Figure 2. Discontinuous boundaries in a particle composite material includes defects such as cracks, 

voids, and hard inclusions. 

The discrete system of linear equilibrium equation under small strain condition can be 

expressed as 

 
h

Ku = F  (11) 

where u
h
 contains the normal displacements u and the enriched degrees of freedom a  
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Th u u, a  (12) 

K is the global stiffness matrix and F is the external load vector, for enriched elements, the 

elementary stiffness matrix is obtained as 

;
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The B-operator is the matrix of the derivatives of shape functions and is expressed as 
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and D is the material matrix, for the plane strain state 

  
 

1 0
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1 1 2

0 0 1 2 / 2
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D                                 (16) 

The enrichment functions ̂ (x) of the XCQ4 for cracks, hard inclusions, and voids in the 

composite material are shown below. 

2.2.1. XCQ4 approximation for cracks 

 

Figure 3. Support domains of XCQ4 and XQ4, and their enriched nodes. 

The support domains of a Heaviside enriched node for a continuous element e and a crack-tip 

enriched node i are schematically shown in Figure 3. It can be recognized that the support 

domain with respect to an enriched node would result in the continuity of the nodal derivatives 

[7]. However, due to the discontinuity, the C
0
-continuity at nodes is expected. One alternative 

option is to improve the computation of the average nodal gradient for enriched nodes as [8] 
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For the split nodes, enrichment functions ̂ (x) is the Heaviside function H(x). The 

Heaviside function is used in elements which have their support completely cut by the crack [15] 
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f(x) is the sign distance function. 

Now the matrix a
B  for the split nodes (in Eq. (15)) has the following form 
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For the tip nodes, enrichment functions ̂ (x) is the function  F x . Crack tip enrichment 

functions embed the crack tip singularity into the enriched element 
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The near crack tip enriched a
B  matrix in equation 15 now has the form 
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1 2 3 4   
tip tip tip tip tip

i i i i iB B B B B                                             (22) 

2.2.2. XCQ4 approximation for inclusions 

As stated in the first section, this study aims to examine cracked plates with inclusions and voids 

inside. To model the discontinuity due to the appearance of hard inclusions in an extended 

concept, an appropriate enrichment function must be used. The enrichment function for 

inclusion [16, 19] is defined as follows 

 ˆ ˆ( ) ( ) ( ) ( ) ( )  i i i i

i i

N f N f x x x x x  (23) 

where  if x  is distance function of node i can be defined as 

 ( )   c cf rx x x  (24) 

in which 
cx and 

cr  are center and radius of the inclusion. 

The entries of the a
B  matrix for inclusions 
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where the derivative of ( ) x with respect to x and y are computed as 
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2.2.3. XCQ4 approximation for voids 

Besides inclusion, void is also a feature that the study concerns. According to [20, 21] void 

enrichment function is used in elements which contain void boundary  
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Now the matrix a
B  for voids has the following form 
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2.4. Stress intensity factors calculation 

In the interaction integral approach, two states of a cracked body are considered: the actual state 

#1 (
(1) (1) (1), ,ij ij iσ ε u ) and the auxiliary state #2 (

(2) (2) (2), ,ij ij iσ ε u ). The relation between the interaction 

integral and the mixed-mode stress intensity factors (SIFs) is as follows 

  (1 2) (1) (2) (1) (2)

*

2
I I II IIM K K K K

E

 =  (29) 

where *

21




E
E



 
is the effective Young’s modulus for the plane strain state.  

M is the interaction integral, which can be computed as 

 

(2) (1)
(1 2) (1,2) (1) (2)

1


   
   

    


i i
j ij ij

j j jA

u u q
M W dA

x x x
  =  (30) 

in which q(x) is the weight function which has the value of 1 on the open set containing the 

crack tip and 0 on the outer prescribed contour (the red curve in Figure 4). 
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By choosing KI
(2)

 = 1, KII
(2)

 = 0 for mode I and KI
(2)

 = 0, KII
(2)

 = 1 for mode II, the 

corresponding SIFs are obtained 

 
* *

(1) (1, ) (1) (1, );
2 2

ModeI ModeII

I II

E E
K M K M   (31) 

It is noted that by incorporating CIP into the approximation, the support domain for the 

element belonging to J-domain in terms of the XCQ4 (denoted by the blue dash line) is larger 

than that of the standard XQ4.  

 

Figure 4. J-integral domain in XCQ4. 

2.5. Crack growth simulation 

 

Figure 5. Critical angle in crack growth simulation. 

To model crack growth in this paper, the maximum circumferential tensile stress criterion is 

adopted. The critical angle 
c  (see Figure 5) of the propagation direction is defined from the 

SIFs of the mixed-mode problem [22] 

 

 

2
1 1 8

2arctan
4

  
 
  
 

II I

c

II I

K K

K K
                                           (32) 

The procedure to simulate crack propagation in the XCQ4 approach is similar to the 

procedure of the traditional XFEM and can be found in [23]. 

3. RESULTS AND DISCUSSIONS 

3.1. A rectangular plate containing an edge crack 

A rectangular plate containing an edge crack is considered for the validation study (see Figure 

6). The dimension of the rectangular plate is 72 mm × 36 mm. The plate is fixed on the bottom 
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edge and subjected to tensile stress σ = 1.1 N/mm
2
 on the top edge [24]. Various crack lengths 

are considered with the ratios a/W = 0.3, 0.4, 0.5 and 0.6. The material properties of 

polycarbonate are given as: E = 2.50 GPa and ν = 0.38.  

 

 

 

 

 

(a) (b) (c) 

Figure 6. Rectangular plate containing an edge crack: (a) Geometry, boundary conditions and loadings, 

(b) The mesh used in XCQ4 and XFEM, (c) The mesh used in FEM. 

Firstly, the obtained results from XCQ4 are compared with XQ4 and the analytical solution 

[25]. The analytical results of KI can be calculated as 

 

2 3 4

1.12 0.231 10.55 21.72 30.39  
        

            
         

I

a a a a
K a

W W W W
  (32)                                 

Table 1. The values of KI in different methods and mesh sizes. 

Method 10×20 15×30 20×40 25×50 30×60 

Analytical [25] 36.4850 36.4850 36.4850 36.4850 36.4850 

XQ4 33.0533 34.4073 35.0227 35.3687 35.5886 

XCQ4 33.5438 35.0235 35.7183 36.1154 36.3718 

 

Figure 7. Convergence of KI with respect to the number of nodes. 

The a/W ratio is assumed to be 0.6 in this case. The values of KI computed with various 

meshing models using both XCQ4 and XQ4 approaches are provided in Table 1, together with 



 
 

Binh Hai Hoang, Vay Siu Lo, Bang Kim Tran, Thien Tich Truong 
 

906 

the analytical solution. Figure 7 further demonstrates the convergence of KI evaluated by XCQ4 

and XQ4 elements with respect to number of nodes. The numerical results of mode-I SIF 

quickly approach the analytical solution. However, it can be seen that the XCQ4 has higher 

accuracy than the conventional XQ4.  

The distribution of normal stress component 
y  obtained by both XCQ4 and XQ4 

elements is shown in Figure 8. It can be seen that by using XCQ4, the stress 
y  varies smoothly 

across element edges, while that by XQ4 is non-physically discontinuous. Therefore, the XCQ4 

element is better in the context of providing a smoother stress field. 

 
(a) XQ4 (b) XCQ4 

Figure 8. Comparison of stress distribution 
y (unit: N/mm

2
) between (a) XQ4 and (b) XCQ4.  

Now consider the variation of KI when the crack length varies. A 30×60 mesh is used for 

both XCQ4 and XQ4 approaches (Figure 6 (b)). The mesh of the finite element model is 

adaptive with different crack lengths (Figure 6 (c)), so the total number of nodes is not fixed but 

ranges from 11513 to 12059 nodes (the Plane183 element is used). The FEM model from now 

on is conducted by using the ANSYS commercial software. The ANSYS set-up is calibrated in 

this example for use in subsequent problems. 

Table 2. Values of KI in different a/W ratios and methods. 

Method a/W = 0.2 0.3 0.4 0.5 0.6 

Analytical [25] 7.1708 10.6357 15.5630 23.3794 36.4850 

FEM 7.1067 10.5870 15.6070 23.3460 36.4780 

XQ4 7.0753 10.5032 15.3786 22.8981 35.5886 

XCQ4 7.2684 10.7819 15.7709 23.5246 36.3718 

 

Figure 9. Variation of KI with respect to a/W for an edge crack plate under tensile loading. 
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Table 2 and Figure 9 show the variation of KI with respect to the a/W ratio in different 

methods. From the figure one can notice that KI tends to increase as the crack length increases. 

Furthermore, XCQ4 is observed to be in good agreement with analytical solutions, extended 

finite element method and the conventional finite element method.  

3.2. A rectangular plate containing an edge crack and a single inclusion/void 

 
                 (a) (b) (c) (d)          (e) 

Figure 10. An edge crack plate with a single inclusion/void under tensile loading. 

Figure 10 (a)-(e) shows the geometry of a rectangular plate containing an edge crack and a 

single inclusion/void. The plate is subjected to a uniform distributed load σ = 1.1 N/mm
2
 on the 

top edge and the bottom edge is fixed. The geometry dimensions are: 72 mm × 36 mm, various 

crack length ratios are considered a/W = 0.2, 0.3, 0.4 and 0.5. The radius of the circular hard 

inclusion is 6 mm, and the position of the hard inclusion is shown in Figure 10 (a)-(e). The 

material properties of polycarbonate are given as: E = 2.50 GPa and ν = 0.38. The hard inclusion 

is made of AZ61 with the ratio Einclusion/E = 18. For the XCQ4 and XQ4 models, the plate is 

discretized into 30×60 nodes, and for the FEM model used in ANSYS, the total number of nodes 

is not fixed but ranges from 7589 to 10063 nodes (the Plane183 element is used). 

Table 3. The values of KI in different a/W ratios and methods. The case of a single hard inclusion. 

Model Method a/W = 0.2 0.3 0.4 0.5 

Figure 10 (a) 

XCQ4 7.2388 10.6697 15.7944 23.5950 

XQ4 6.8809 10.1279 14.7602 22.0228 

FEM 7.0068 10.3530 15.1680 22.7620 

Figure 10 (b) 

XCQ4 7.3740 10.6175 15.2286 21.8592 

XQ4 7.0035 10.0673 14.2187 20.3904 

FEM 7.1310 10.2620 14.6040 21.0410 

Figure 10 (c) 

XCQ4 7.6263 10.9425 15.4913 20.4670 

XQ4 7.2428 10.3724 14.4426 19.5411 

FEM 7.3770 10.6250 14.8250 19.4980 

Figure 10 (d) 

XCQ4 7.2446 10.6758 15.7998 23.5979 

XQ4 6.8809 10.1278 14.7599 22.0219 

FEM 6.9987 10.3400 15.1430 22.7280 

Figure 10 (e) 

XCQ4 7.0325 10.7446 16.1860 24.2050 

XQ4 6.6966 10.2002 15.1129 22.5693 

FEM 6.8104 10.3950 15.4990 23.3390 
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The results of mode-I SIF calculation are presented in Table 3. Similar to the first example, 

KI tends to increase as the a/W ratio increases. Compared to the results of the previous example, 

it is shown that the stress intensity factor is significantly improved when a homogeneous plate 

material is reinforced with hard inclusion. For example, in the case of a/W = 0.5 and the position 

of the inclusion is as in Figure 10 (c), mode-I SIF decreases by approximately 12%. 

In the second case, the void is considered instead of the inclusion. The geometry is 

illustrated in Figure 10, a circular void of radius R = 6 mm replaces the circular hard inclusion. 

The meshes for XCQ4, XQ4 and ANSYS are set up the same as the first case. The results of 

mode-I SIF calculation are presented in Table 4. Although the hard inclusion is replaced by the 

void, KI still increases as the a/W ratio increases. In contrast to the reinforced material with hard 

inclusions, the mode-I SIF significantly increases when a void appears. For example, at the crack 

tip located near the hole (Figure 10 (c) and a/W=0.5), the stress intensity factor increase by up to 

30% compared to the homogeneous material. 

Table 4. The values of KI in different a/W ratios and methods. The case of a single void. 

Model Method a/W = 0.2 0.3 0.4 0.5 

Figure 10 (a) 

XCQ4 7.4635 11.4452 17.3346 25.8259 

XQ4 7.0993 10.8535 16.1621 24.0358 

FEM 7.2328 11.1360 16.7080 25.0160 

Figure 10 (b) 

XCQ4 7.0538 11.4693 18.6905 30.7334 

XQ4 6.7151 10.8974 17.4691 28.6780 

FEM 6.8238 11.1360 18.0840 30.1130 

Figure 10 (c) 

XCQ4 6.3747 10.4669 17.2571 31.3872 

XQ4 6.0696 9.9490 16.1611 29.1860 

FEM 6.1393 10.1600 16.5910 30.8450 

Figure 10 (d) 

XCQ4 7.4512 11.4032 17.2619 25.7456 

XQ4 7.1108 10.8451 16.1325 23.9991 

FEM 7.2066 11.0710 16.5990 24.8880 

Figure 10 (e) 

XCQ4 8.1038 11.3110 16.2953 24.1237 

XQ4 7.6661 10.7208 15.2289 22.5092 

FEM 7.8747 10.9680 15.6280 23.2720 

3.3. A rectangular plate containing an edge crack and mixing inclusions and voids 

 
                      (a)  (b) (c)            (d) 

Figure 11. An edge crack plate with a single inclusion/void under tensile loading. 
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This example examines a more complex problem where cracks, hard inclusion, and void are 

included. A rectangular plate containing an edge crack and mixing single hard inclusion and 

single void under tensile loading is shown in Figure 11. The plate dimension is 72 mm × 36 mm, 

various crack length ratio a/W is considered. Material properties of the plate and inclusions are 

considered the same as the previous example. The position of void and inclusion is shown in 

Figure 11. For the XCQ4 and XQ4 models, the plate is discretized into 30×60 nodes, and for the 

FEM model used in ANSYS, the total number of nodes is around 8500 nodes (the Plane183 

element is used). 

Mode I- SIFs are determined by XCQ4 for various crack length ratios a/W as shown in 

Table 5. It is observed from the table that KI increases by increasing crack length ratio (a/W) for 

all four cases under tensile loading, maximum KI is found in the mixing void and hard inclusion 

(case (b)); and minimum in two hard inclusions (case (a)). In addition, in the case where void 

and inclusion are on the right side of the plate (case (a)) when replacing inclusion with void 

(case (b)), the SIF changes significantly. While void and inclusion are on the left side of the 

plate (case (c) and (d)), this change is very small. This may be because the position of the void in 

case (b) (bottom) and in case (d) (top) is different. 

Table 5. The values of KI in different a/W ratios. The case of mixing inclusion and void. 

Model Method a/W=0.2 0.3 0.4 0.5 0.6 

Figure 11 (a) 

XCQ4 7.1330 10.4211 15.3572 22.9995 36.3425 

XQ4 6.7764 9.8923 14.3597 21.4845 33.9809 

FEM 6.8905 10.0920 14.7130 22.1390 35.2170 

Figure 11 (b) 

XCQ4 7.3640 11.1746 16.8367 25.1457 38.6504 

XQ4 7.0282 10.6321 15.7459 23.4585 36.0711 

FEM 7.1222 10.8480 16.1840 24.2950 37.5710 

Figure 11 (c) 

XCQ4 6.72784 10.5823 16.1493 24.2227 37.6082 

XQ4 6.4143 10.0461 15.0720 22.5795 35.1063 

FEM 6.5063 10.2190 15.4290 23.3100 36.4890 

Figure 11 (d) 

XCQ4 7.7921 11.1396 16.2552 24.1407 37.5201 

XQ4 7.3776 10.5585 15.1848 22.5189 35.0333 

FEM 7.5618 10.7840 15.5560 23.2430 36.4070 

3.4. A rectangular plate containing an edge crack and mixing two inclusions and two voids 

In this example, a rectangular plate containing an edge crack with two inclusions and two voids 

is investigated (see Figure 12 (a)). The plate dimension is 72 mm × 36 mm. Material properties 

of the plate and inclusions are considered the same as the previous problems. The position of 

voids and inclusions is shown in Figure 12 (a). For the XCQ4 and XQ4 models, the plate is 

discretized into 30×60 nodes, and for the FEM model used in ANSYS, the total number of nodes 

is around 7600 nodes (the Plane183 element is used). 

Table 6 shows the values of KI determined by XCQ4 for various crack length ratios a/W. It 

is observed that KI increase with the increase of the crack length ratio (a/W) for all cases under 

tensile loading. The obtained results are very good approximations to the results from the 

conventional finite element method and the extended finite element method. 
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Table 6. Values of KI in different a/W ratios and methods.  

The case of mixing two inclusions and two voids. 

Method a/W = 0.2 0.3 0.4 0.5 0.6 

XCQ4 7.8505 11.4972 16.9938 25.1799 38.6132 

XQ4 7.4695 10.9356 15.9054 23.5035 36.0456 

FEM 7.5614 11.1170 16.2250 24.1140 37.2760 

3.5. Crack growth in the plate with different loads and defects 

In this final example, crack propagation problems are investigated. The plate dimension is 72 

mm × 36 mm and the crack length a = 10.8 mm (a/W = 0.3). For the propagation simulation, the 

crack is assumed to grow in every step. 10 steps of propagation are simulated, the crack growth 

increment for each step 2 a  mm. The material properties of the plate and inclusions are 

identical to the previous problems. For the XCQ4 model, the plate is discretized into 30×60 

nodes. 

First, the position of the circular voids and hard circular inclusions is considered in Figure 

12. The rectangular plate is fixed at the bottom edge. Three different load cases applied on the 

top edge are examined: tensile load, shear load and the combination of tensile and shear load. 

The magnitude of the uniform distributed load  21.1  N mm  .   

 
                     (a) (b)                   (c) 

Figure 12. An edge crack plate with two inclusions and two voids. (a) tensile load, (b) shear load and                  

(c) combination of tensile and shear loads. 

Figure 13 shows the crack growth paths of three different load cases. In the figure, the 

magenta circle denotes the boundary of the hard inclusions while the black circle represents the 

boundary of the voids. The crack path in the case of the tensile load is a horizontal line (Figure 

13 (a)), this is similar to the case of the homogeneous plate subjected to tensile load. In the two 

other cases, with the appearance of the shear load, the crack tends to propagate at an incline 

angle to the bottom edge. However, there is also a slight difference that can be observed in the 

two crack lines of cases (b) and (c). 
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(a) (b) (c) 

Figure 13. Crack growth paths of three different load cases. (a) tensile load, (b) shear load and                              

(c) combination of tensile and shear loads. 

 
                        (a) (b)              (c) 

Figure 14. An edge crack plate with different positions of inclusions and voids compared to Figure 14.  

(a) tensile load, (b) shear load and (c) combination of tensile and shear loads. 

   

(a) (b) (c) 

Figure 15. Crack growth paths of: (a) tensile load, (b) shear load and (c) combination of tensile and shear. 
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In the second case to be considered, the positions of the voids and the hard inclusions are 

interchanged so that the effect of the relative positions of the defects on the crack growth path 

can be observed. Similar to the first case, three different load cases are examined: tensile load, 

shear load and the combination of tensile and shear load (see Figure 14). The rectangular plate is 

also fixed at the bottom edge. 

Figure 15 shows the crack growth paths of three different load cases. Different from Figure 

13 (a), the crack path in Figure 15 (a) of the tensile load case is slightly upward toward the 

above circular hole. Meanwhile, in the remaining two cases, the influence of shear force is still 

strong enough to pull the crack path downward. However, the initial propagation angle is less 

inclined than the case in Figure 13 (b) and (c), but at the final propagation simulation step this 

inclined angle suddenly increases. In addition, the crack path in Figure 15 (b) is slightly more 

inclined than that in Figure 15 (c). 

4. CONCLUSIONS 

In this study, the XCQ4 is extended from the CQ4 element and combined with the enrichment 

functions to model discontinuous boundaries such as cracks, voids, and hard inclusions for the 

first time. Through many numerical examples, the SIF results obtained by XCQ4 agree well with 

the analytical and reference results. XCQ4 is shown to have a smoother stress field compared to 

XFEM due to the continuous gradient computation. With the inherent properties of XFEM, the 

XCQ4 element is convenient for those discontinuous boundaries without the need of conforming 

meshing these boundaries. Furthermore, the XCQ4 approach provides better distributions of 

stress near the crack tip, which is rarely obtained by the standard Q4 elements. This is a 

promising method for further application to other complex engineering problems. 

The example with hard inclusions shows that the mechanical properties have become better 

when mixing hard particles compared with homogeneous materials and highlights the 

outstanding advantages of composites. In contrast, the fracture behavior of the plate with voids 

near the crack is worse. For both cases of discontinuity, KI increases with the increase in crack 

length. The crack propagation simulation is also conducted. Different crack path predictions 

show the influence of the type of loads and the location of defects on the crack propagation path. 

The analysis provides valuable insights into predicting the structural strength of materials when 

designing structures containing different types of discontinuities. 
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