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ABSTRACT

State-optimization approach has been proposed to treating various different system
problems in optimal projection equations (OPEQ). While the OPEQ for problems of open-loop
thinking is found consisting of two modified Lyapunov equations, excepting the rank conditions
whereas required in system identification and its related robust problems, the one for closed-loop
thinking consists of two modified either Reccatti or Lyapunov equations, excepting conditions
for compensating system happened to be in a problem like that of order reduction for controller.

Apart from addditonally constrained-conditions and simplicity in the solution form have
been obtainable for each problem, it has been found the system identification problem switching
over to computing the solution of OPEQ and the physical nature of medeled states possibly
retaining in optimal order reduction problem.

1. INTRODUCTION

System problems may be divided into four major parts which are modeling, setting up the
mathematical equations, analysis and design [1]. However, if the discussion is limited to linear
systems described in the state space equations, the system problems may be then regarded to
belong to either open- or closed-loop thinking ones. There have many research workers been
devoted to tackling various different aspects of open- and closed-loop thinking problems from
both theoretical and practical angles. Among the myriad references available in literature, two
notable methodology contributions related with present paper are from the internally system-
theoretic argument and from the treatment in optimal projection equations (OPEQ).

Internal system philosophy based on the contribution of dynamical elements (state
variables) to the system input/output relationship has been originated firstly to so-called singular
values by Moore in 1981 [2] for an open-loop thinking system and further developed to
characteristic values for a closed-loop thinking one by Jonekheere and Silverman [3], and by
Mustafa and Glover [4]. The contribution of states to the system input/ouput relationship can be
measured on the basics of diagonalizing simultaneous both controllability and observability
gramians of the system of any loopwise thinking to the very same diagonalized matrix
(internally balanced conditions). This methodology is found promising for system problems of
both thinking-wises in the analysis part. However, the major drawback lies on the optimality in



Nguyén Thdy Anh, Nguyén Lé Anh

designing as no where optimal design gives to troublesome in closed-looping like the one for the
controller, especially in a problem of projective control. The component cost ranking principle
proposed by Skelton [5] based on determining contributions of dynamical elements to a
quadratic errors criterion, from the opinion of the authors, may be regarded as a special method
of the earlier philosophy since no rigorous guarantee of optimality is possible although the
propose has been guided by an optimality consideration. However, it suggests researches to be
carried out on combining an optimality consideration and the internally balanced conditions for
the design purpose.

Last more than three decades, an American scientists group (Bernstein, Haddad and
Hyland) have devoted a tremendous effort in publishing a series of research papers on different
system problems in both loop-wise thinking [6 - 10]. From the first-order necessary conditions
for an optimality consideration of each problem, an optimal projection matrix has been realized
and used for developing suitable OPEQ. Important significance of treatment in OPEQ
philosophy lies on the question of multi-extreme as certain constraint conditions, bounds like
internally balanced condition, H,, performance bounds, Petersen-Hollt, Guaranteed cost bounds
and so on, are able to be accommodated suitably in due OPEQ development course for each
problem. This methodology is hence found being applicable to both analysis and design
purposes. With a careful analysis, it is found that the minimization has in all the cases been
carried out with respect to parameters, which are inherently non-separable from state-variables
for an output function. This gives rise to a drawback in regards to some difficulties lying on the
complexity of mathematical involvement also on the optimal projection nature, which in most of
the cases is an oblique one, leading to the requirement of other conditions for computing the
solution of OPEQ. Further, although additionally constraint conditions are able to be facilitated
in OPEQ, but not a single provision for retaining the physical nature of desired states in the
result. This disvalues significance of the methodology from the analysis point of view.

Concept of state-optimization has been originated by San [11] from the fact that between
two systems of sate-variable equations there exists always a non-similarity transformation on
each to other state vectors and then the optimality for back-transform is achieved owing the role
of pseudo-inverse of that non-similarity. San has shown that for a given system the non-
similarity transformation may be freely chosen; hence the retaining physical nature of modeled
states is possible in transformed version [17]. If the non-similarity transformation is factorized in
terms of a partial isometry, an orthogonal projection matrix can be formed, facilitating the
possibility of obtaining a simpler form for OPEQ. Thus, the state-optimization methodology
overcomes the drawbacks and enjoys the merits of both early mentioned approaches.

Arrangement of the paper as follows: Two lemmas proposed for preliminary are retaken in
2. The first one is related with defining a criterion for the state optimization and the other is with
factorizing a non-similarity transformation in terms of a partial isometry. In III, the results of
three problems in open-loop thinking and related issues are reported. The first result is for a
problem of system identification, more exactly the one of parameter estimation, the second is
related with robust modeling [11] and reduced-order model is the last reported one [13]. In 4 is
for concluding remarks, and suggestions for further researches.

2. PRELIMINARY
2.1. Notations

Throughout the paper, following conventions are used
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- All systems are taken to be linear, time-invariant, causal and multi-variable.

- Bold capital letters are denoted for matrices, while low-case bolt letters are for vectors.

- P stands for real, E(.) for either expectation or average value of (.) when t approaches to
infinity.

-p(L), ()%, ()" stand for rank, transpose, pseudoinverse of (.).

- Stability matrix is the one having all eigenvalues on the left hand side of the S-plane.

- Non-negative (positive) definite matrix is a symmetric one having only non-negative
(positive) eigenvalues.

1/
. 2 2
- All the vectors norms are Euclideans or 1> norms, ||X|| = (Z ,‘xj‘ ) .
J

- Controllability and observability gramians of a system are denoted by
t t
W, = [eVBVBTe" dt, W, = ["' C"CeMar @.1)
0 0

satisfying dual Lyapunov equations

AW +WA"+BVB' =0 2.2
W,A+A"W, +C"RC=0 '

where V = E(uu’ ), R is non-negative weighted matrix of order q.

2.2, Introduction to Pseudo-inverse and Transformation in system problems

Concept of generalized inverse seems to have been first mentioned, called as pseudo-
inverse by Fredholm in 1903, originating for integral operator. Generalized inverses have been
studied extending to differential operators, Green’s functions by numerous authors, in particular
by Hilbert in 1904, Myller in 1906, Westfall in 1090, Hurwitz in 1912, etc. Generalized inverse
has been antedated to matrices on defining first by Moore in 1920 as general reciprocal. The
uniqueness of pseudo-inverse of a finite dimensional matrix has been shown by Penrose in 1955,
satisfying four equations [12]

TXT =T (i), XTX =X (ii), (TX)*=TX (iii), (XT)* = XT (iv) (2.3)
where (.)* denotes for conjugate transpose of (.).

The above four equations are commonly known as Moore-Penrose ones and the unique
matrix X on satisfying these equations is usually referred to as the Moore-Penrose inverse and
often denoted by T".

Assume that an available system (S) and an invited (or assumed) model (AM) are described
in the state-space equations as

X, =A x,+B u,

(S): vy, =C x. 2.4)
X, =A_x +B u,

(AM): y, =C. x. (2.5)
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where the letters n and m in the subscripts stand for (S) and (AM) also for their order numbers
respectively with all of the vectors and matrices are supposed to be appropriately dimensioned.

It was observed that indifferent from orders of the two, there exists always a transformation
between two state vectors (referred to as state transformation) and a transformation between two
output vectors (named as output transformation). If both (S) and (AM) are subjected to the same
input vector, output transformation is seen to be similarity (an invertible matrix) one as
dimension of the output vector of (AM) is the same as that of (S), but it is not the case always
for state transformation. Even if state transformation is a non-similarity one, the output vectors
are match able, however. As non-similarity transformation on state variable vectors is not a bi-
directional one, giving rise to the idea of optimization with respect to the state variables.

2.3. Definitions and Lemmas
2.3.1. Definitions

Problem that deals with system be tackled inherently in closed-loop configuration is
referred to as closed-loop thinking one [1].

Projection matrix resulted from the first order necessary conditions for an optimality
process is termed as an optimal projection. System of equations resulted from the necessary
conditions for an optimality expressing in terms of components of optimal projection is called as
optimal projection equations (OPEQ) [7, 11].

2.3.2. Lemmas

Lemma 2.1. Let the vector x, of n independently specified states of a (S) be given. Assume that
an (AM) is chosen having vector x,, of m independently specified states, m < n. Then there
exists a non-similarity transformation Te P™", p(T) = m, on x, for obtaining X, such that if the
number of (S) output is less than or equal to that of (AM) order, q < m, then T'x,, leads to the
minimum norm amongst the least-squares of output-errors.

Proof. Details can be found in [11]. It is necessary showing that with the condition mentioned in
lemma one can easily obtain the weighted least-squares criterion on the output errors

J o =J(yn ~¥.) R(y, -y, )dt (2.6)
from the criterion for state optimization
o = [I%, =T, izt 2.7)

with R stands for non-negative weighted matrix of the appropriate dimension.

Usually, order n of (S) is not known, order m of (AM) may be highly chosen. In such a
case, the validity of the lemma is kept; see the remark 1.1 of [11] for the details of argument.

Lemma 2.2. Let the state vector x, of (S) be a transformed state vector of (AM) as

x, =T'x_, Te R™", p(T) =n<m (2.8)
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then T can be factorized as

T=EG=HE 2.9
where, E = E( mez) € P™" is a partial isometry, G = E( XnXI) e P™ H = E( XmXEI) € p™,
both are non-negative definite matrices.

Proof. See [11] for details.

Remark 2.1. It is noted that since T is constant X, = T*x_ is also valid.

It is known thato, =EET,($2 =E"E are optimal in the sense that one state vector is
optimized with respect to the other; moreover both are of orthogonal projection matrix.

Although x, and x,, are definitely specified but T is not unique determined due to mismatch
between the dimensions of two state vectors. The question arises regarding the construction of T
so that x, is obtainable from the knowledge of x,.

3. TYPICAL PROBLEMS IN OPEN-LOOP THINKING
3.1. Problem of parameter estimation

State-descriptive models have been shown avoiding the usage of linear dynamical operators
in supplying derivative measurements of (S) input and output signals for identification purpose
[15, 16]. It has also been shown that by parameter-optimization methodology, the complexity of
mathematical involvement is un-avoided however and optimization with respect to the state
variables is obtained as secondary effects.

3.1.1. Statement of the problem

Let an n-th order (S) be in the state-space equations described by (2.4) and let an m-th
order, known parameters (AM) in the same space be available by (2.5) subjecting to the (S)
input

X, = A x, +B u,
Gy~ ¢'x) 3.1)

x, =A _ x +B u
y, =C,_ x_ (3.2)

where u,, y, and y,, are p-, q- and q-dimensional vectors, matrices A, B,, C,, A,, B, and C,, are
appropriately dimensioned.

(AM):

Assume all the requirements happened to be in the parameter estimation process are
satisfied. The parameters of (S) are estimated on adopting the state-optimization criterion.

3.1.2. Solution of the problem

Theorem 3.1. Let the measurements of a system (S) of order n be available for the parameter
estimation. Let a controllable and observable (AM) of order m, m > n, be chosen with known

5
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parameters. Then there exists an optimal orthogonal projection matrix 6 = EE'€ P™", p(6) = n,
and two non-negative definite matrices Q= HEWCET, P= H+EWOETE P™™ both of rank n, such
that the parameters of the controllable and observable part of (S) are computable from

A,=E'H'AHE, B,=E'"H'B,, C, = KC,HE (3.3)

which satisfy the following conditions
c(H'A_ Q+QA'H"+H'B_VB H" )" =0 (3.4)
¢'(HA'P+PA _H+HCIK'RKC, H)o =0 (3.5)

where E = E(x,_ X, ) € P™" is a partial isometry, H = E(x_X, ) € P™" is a positive definite

matrix, W, and W, are the controllability and observability gramians of the system and K is a
similarity transformation for matching the output of (AM) with that of the system (S).

Proof. See [11]. Eqgns (3.3) - (3.5) are termed as optimal projection equations (OPEQ).

Converse of Theorem 3.1: Let a controllable and observable (AM) of order m, m > n, be
chosen. Assume that the parameters of (S) are determinable with (3.3) satisfying (3.4) and (3.5).
Then, o, Q and P are optimal.

Proof. It requires to show optimal in the sense of satisfying the criterion for state-optimization
and the quadratically weighted output-errors. The detail is available in [11].

Remark 3.1. Theorem deals with the measurements W, and W, of (S). If (3.4) and (3.5) are
solvable, Q and P are obtainable and E follows. Then, parameters of (S) are determinable
irrespective of the measurability of W.and W,,. A difficulty in solving these equations stands on
the fact that no standard algorithm is available regarding the guarantee for convergence of
solutions.

Eqns (3.4) and (3.5) are seen to be readily decoupled owing the role of partial isometry (o
is always an orthogonal projection matrix). Thus, factorizing T in terms of an isometry has an
effect equivalent to that of an additional constrained-condition.

System identification problem has been shown to switch over to the development of
suitable algorithm for solving the OPEQ, which permits one to avoid using linear dynamical
operators and to get ride off the persistently exciting property (to be imposed on (S) input),
meeting the demand of real-time estimation of (S) parameters.

3.2. Robustness of modeling

A linear uncertain (S) was interpreted to have real-valued, structured parameter uncertainty
[17]. A more reasonable argument, the mentioned (S) has been considered to have uncertain

perturbations on the nominal values of its states. That is, X, () +Ax_(¢) =x_(¢) [11].

3.2.1. Statement of the problem

For a linear uncertainty (S) order n described by

x (1) = A x (1) +B w(r) (3.6)
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y, (1) =Cx (1) (3.7)

and an invited (AM) of order m > n, described by
x ()=A_x, (t)+B_w(t) (3.8)
Yau()=C,x, () (3.9)

with g-dimensional vectors y(f) = y.(t) + Ay, (#) and y,(?), appropriately dimensioned matrices
As = A1) + AAL(D), B, = B,(r) + AB, (1), C, = C,() + AC\(¥), A, By, and C,,, there exists state-
optimization criterion with T + AT =T,

2
Tsop = SupE{ X, —T:meR} , T, P™ (3.10)

and corresponding quadratically weighted output-error criterion with K + AK = K;

o= SupE{ly,, ~K.y,

L} K e P pK) = q. 3.11)

Determine conditions for robust performance, bounds of A, By and C; so that (S) described
by (3.6) and (3.7) is to be controllable and observable.

3.2.2. Solution of problem

1. Sufficient conditions for robust performance:
a) Assumption

° Vector norm and matrix norm be consistent,
e  For a chosen (AM), ||X

o= @
zero eigenvalues of TT".
b) Conditions

o [DT|/IT|= ¢ )" @ )+ n),
o pT)/r|= @,

¢ Jon£ [Dx, |+ DT

= VITI. IPK= (0. 20)/¢.)" (20,5 )
o /@) x| @ ,)"

2. Uncertainty structure

m” = n , which is constant,

=1/, )'> where A, and A, are the maximum and the least non-

= ( 1)1/2.{1_{_ ( n)l/z/((l n)1/2 + n)},

TS

=2,

Xn

© [k

a) Assumption
e V=I,K=R=I,
e A _=diag(-a,.- a,),B Bl = diag(b,.b ),C.C = diag(g,..-g.)

e  Maximum variations of parameters are computed by theorem 3.1.

b) Variation of parameters
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o |DA,||£ 2@l ,)?/n, |DB,|£ )" /n.|DC,
£ @l ) (20,)" + n)/(n+ «.)”).
£ @) (@) +n)/(n+ €,)7),

o g @) 2a,)" n)/(n+ B}

£l )" /(@) +n)
LY

© B

3. Stability, Controllabity and Observability

a) Assumption

*  Positions of poles corresponding to -a , be not shifted to R.H.S of complex-plane,

¢  Number of non-zero eigenvalues of BSB;r and of C;FCS be kept unchanging (none of
eigenvalues of B B! and C!C, be annulled due to DB, and DC, ),

en eigenvalues of BSBST be differed from those of CZC

S’
1/2

*{DoH"A,.DoH" (B,B])

m

}, {(ClCm )1/2 HDo,A HDo }be stabilizable,

detectable.

b) Conditions

2@ )k @) Gt 6,) L @)+ n)E @)
*H'A_ DQ+DQA'H" =W(Q), HA'DP+DPA_H =W®P),
*H'A_Q+QA"H"+W(Q)+H'B_B'H" =0,

HA'P+PA H+WP)+HC'C H=0
o ||D Q”, ||DP|| are bounded.

Proof. See [11] for the details.

Remark 3.2. If (AM) is not properly chosen, estimated (S) may turn out to be uncontrollable,
unobservable. (AM) plays the role as that of initial linear model in a recursive process.

State-optimization approach permits the norms of vectors and of matrices to be employed
in tackling different robust problems while optimality equations serve as sufficient conditions
for characterizing the robustness.

3.3. Problem of order reduction for model

3.3.1. Statement of the problem

Given an n-th order (S) described in state-variable equations with appropriately
dimensioned matrices and vectors as follows
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X, =A X +Bu (3.12)
y,=Cx, (3.13)
Determine a model of order r,q£ r£ n
X, =A X +Bu (3.14)
y, =Cx, (3.15)

Satisfying following coditions

e ], model-reduction criterion,
e (A_B_C,): Controllable and observable; (A B ): Stabilizable, (A ,,C,): Detectable.

3.3.2. Solution of the problem

Theorem 3.2. For a given linear, time-invariant (S) of the order n, there exists always an rxn
partial isometry E and an nxn non-negative definite matrix such that the optimal parameters of
the reduced-order model are given by

A, =EHA H'E", B, =EHB,, C, =C,H'E" (3.16)

Further, there exists an nxn optimal projector ¢ and two nxn non-negative definite matrices
Q and P such that if the optimal model is to be controllable and observable, then the following
conditions are to be satisfied

6 HA,Q+QAH+HB,V,B Hl=0 (3.17)
H'AP+PA H'+H'C,R,C H' 5 =0 (3.18)
where V, = E (uuT ), R, is weighted matrix in the criterion for order reduction.

Proof. See [13, 22] for the details.

Remark 3.3. Non-similarity transformation T is chosen rather freely, which permits physical
significances of various different particularly modeled states to be retained in the reduced model.

A considerable effort is reduced for finding the global amongst multi-local extreme due to
the effect of factorizing T in terms of a partial isometrics E.

Robustness of reduced-order model can be carried out by adopting the same manner as that
of robustness modeling. A great effort would be reduced in tackling the mentioned robustness by
adopting the state-optimization approach with respect to the parameter-optimization technique.

It is found also that robust problems play an important role in estimating technology
standard, which is on the direction for further researchs.

5. CONCLUDING REMARKS

Optimal projection equation (OPEQ) has been recognized to play an important contribution
to finding the uniqueness amongst multi-extreme in the effect sense of an aditionally constrained

9
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condition. However, a complexity happened to be in mathematical involvement of that OPEQ on
adopting parameter-optimization process from both aspects; in the establishment and in the
solution to the mentioned OPEQ. State-optimization has been found removing that complexity
due to the role of factorization in term of a partial isometry and mentioned factorization has an
effect of that of an additionally constrained condition to the optimization process.

State-optimization approach can be employed to treating different various problems where
an optimization is asked for. In the case of an infinite-dimensional (S) like distributed parameter,
non-linear modeled by a series, ect., where partial or functional equations are required, then the
concept of generaliazed Green function and its inverse are to be adopted, however. This may
gives rise to the concept of a poly-optimization in stead of state-optimization and various
researches can be carried out in this direction apart from treating the above mentioned infinite-
dimensional (S) also for treating many different optimization problems happened to be in non-
finite dimensional space.

It will show in the coming report, through the consideration some typical closed-loop
thinking problems, great efforts would be reduced with respect to parameter-optimization
approach on adopting the results obtained for opened-loop thinking ones.

Acknowledgment. Authors record their indebtedness to Professor Nguyen Ngoc San, D.Sc.(Eng)
of the Posts and Telecommunication Institute of Technology for suggesting and keeping on
discussions about the paper. The authors are thankful to referrers for their useful comments and
suggestions on the first version of the paper.
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TOM TAT

VE PHUGNG PHAP TOI UU THEO TRANG THAI VOI CAC BAI TOAN HE
THONG: XU LI THEO TU DUY HE HO

C6 thé phan céc bai toan thudc linh vyc 1i thuyét hé thdng thanh 4 nhém chinh: mé phong,
xdc 1ap phuong trinh to4n hoc, phén tich hé va thiét ké hé théng. Khi giéi han nhimng ban luan ddi
voi mot hé thong dwoc mo ta boi hé phuong trinh trong khong gian trang théi thi ¢6 thé phan cac
bai todn thanh nhém phu thudc vao kiéu xu If: céch cua tu duy h¢ hé va céch cta tu duy hé kin.
Gan day nhat, c6 hai phuong phdp tiép can déng chi y d6i voi ca hai kiéu xu 1f 1a su dung didu
kién cin bang ndi va hé phuong trinh quy chiéu téi wu (OPEQ). Phuong phdp dé xuét trén co s
diéu kién cin bang ndi c6 wu diém ndi troi 1a sir dung duoc tinh bit bién vé déng gép cua dong
hoc vao qua trinh tao ra quan hé vao ra cua h¢, nhung lai bi han ché 16n nhin trén quan diém tdi wu
do khong biét dugc nghiém t6i wru mac dt doi chd van c6 dung mat tiéu chi nao day Phuong phép
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xdy dung OPEQ loai bo dugc han ché Vé tinh t6i vu nhung lai d6i mat v0i tinh phurc tap vé mat st
dung todn hoc trong qué trinh phat trién, tim nghiém cua OPEQ, tuy rang phuong phip OPEQ
duoc xdc dinh 1a tim ra diéu kién rang budc thém vao cdc diéu kién ban du cta bai todn tdi uu.
Phuong phdp tdi wu theo trang thdi do San dé xuat duoc minh ching da thu hudng céc uu diém,
b6 lai han ché ctia ca hai phwong phép da néu ma con tao ra hiéu tmg nhu ciia mot didu kién rang
budc méi thém vao nhd vao viéc thira sb hod phép bién dbi khong dong nhat (non-similarity
transformation) gitta cac vector trang thai cta hai hé¢ ddng hoc theo dé“ing cu thanh phﬁn (partial
isometry).

Phan dau cta bai bdo nay gianh dé giéi thiéu téng quét vé ndi dung ctia bai bdo. Phan thir
hai gianh dé tém tit hai d& xuét co ban lién quan dén tiéu chi t6i wu trang thdi va thira s6 hod
bién d6i khong ddng nhat lam so cir dé giai quyét céc bai todn dién hinh cua i thuyét hé thong
can dugc xur 1i bang cach cua tu duy hé hd dugc trinh bay trong phan thr ba. Tuy céc phép chiéu
t6i wu tim thiy boi phuong phdp toi wu trang thai déu vudng lam don gian ddng ké, nhung tinh
phirc tap vé mit todn hoc van con hién dién khd rd nét & qué trinh xr 1f, xdy dung hé phuong
trinh OPEQ di véi hau hét céc qua trinh xdc dinh nghiém cua cdc bai todn vé tinh bén viing.

Phan cudi cling gianh dé binh pham, néu dinh huéng nghién ctru dp dung két qua da thu
dugc dbi véi nhitng cha dé ké tiép cua cdc bai todn thudc linh vuc 1f thuyét hé thong, ké ca
nhitng ndi dung s& cong b trong cong trinh tiép theo.
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