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Abstract. This paper studies the crack propagation of microplates in mix-mode based on a 

modified couple stress theory (MCST) and the phase-field method. Compared to the stress 

couple hypothesis, the MCST contains many novel aspects, most notably the symmetry of the 

couple stress tensor and the involvement of a single internal length scale parameter. These 

features make the modified couple stress theory easier to use. The formulas are established 

based on the finite element method (FEM). When calculated using the MCST versus classical 

theory (regardless of size effect), the calculation results unmistakably demonstrate the 

differences in the mechanical characteristics of the system during the crack development. The 

difference is demonstrated by specific examples, with clear explanations and many physical 

meanings. This work will be helpful for researchers studying the process of microstructural 

fracture formation. 
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1. INTRODUCTION  

Nano- and micro-sized materials and structures are now widely used in modern 

engineering. In particular, the problem of studying the mechanical behavior of these structures 

plays an important role in the design and manufacturing processes. Scientists have developed 

many different theories and achieved much in solving these problems. In 1994, Fleck et al. [1] 

introduced a theoretical and experimental study on strain gradient plasticity. Using dislocation 

theory, a strain gradient theory of rate-independent plasticity was invoked. The build-up of both 

randomly stored and geometrically essential dislocations was believed to cause hardening. 

Stölken and Evans [2] carried out a microbend test method for measuring the plasticity length 

scale. Stelmashenko et al. [3] explored the microindentation on W and Mo oriented single 

crystals. Nix and Gao [4] investigated the indentation size effects in crystalline materials using 
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the law of strain gradient plasticity. Poole and co-workers [5] examined the micro-hardness of 

annealed and work-hardened copper polycrystals. Lam et al. [6] carried out an experimental and 

theoretical study of strain gradient elasticity. Some other typical and important works can also be 

found in [7-14]. 

Leppington and Atkinson [15] introduced some calculations of the energy release rate G for 

cracks in micropolar and couple-stress elastic media. Then, they studied the effect of a couple 

stresses on the tip of a crack [16]. Daneshmehr and Homayounfard [17] discussed the study of 

size-dependent energy release rate formulation of notched beams based on the MCST. 

Georgiadis and Gourgiotis [18] applied an approach based on distributed dislocations and 

disclinations for crack problems in couple-stress elasticity. Georgiadis and Baxevanakis [19] 

developed a displacement-based formulation for interaction problems between cracks and 

dislocation dipoles in couple-stress elasticity. Placidi et al. [20] formulated a linear elastic 

second gradient isotropic two-dimensional continuum model accounting for irreversible damage. 

Barchiesi and Placidi [21] carried out the energy method for brittle fracture in strain-gradient 

modeling. Suh and colleagues [22] developed a phase field model for cohesive fracture in 

micropolar continua. Thom et al. [23] presented the new numerical results of the vibration 

behavior of cracked FG plates based on phase-field theory and the FEM. 

Using the phase-field hypothesis to simulate cracks, the current work proposes a strategy 

for addressing the crack model problem of modified couple-stress elasticity. As shown by 

research [25 - 31, 41 - 46], this strategy has a number of advantages for managing fracture 

problems. This is a fascinating research topic since it illustrates the difference in crack formation 

between ignoring the size-effect and considering the modified pair stress theory. In addition, this 

is the first research to illustrate the influence of macro and micro parts on the formation of 

cracks. The results of this work illuminate a number of fascinating physical properties of 

micromaterial fractures. This paper's structure is broken into five sections. Section 2 provides a 

concise overview of the MCST for 2D issues. In Section 3, the phase-field hypothesis and 

MCST-derived finite element formulations for the growing fracture problem are presented. 

The fourth section shows and analyzes the numerical results. In concluding section 5, some 

significant discoveries are highlighted. 

2. FORMULATION 

Based on the standard pair stress hypothesis [13, 14], the MSCT [32] takes into account the 

equilibrium of the moments of couples, resulting in a symmetric couple stress tensor. Thus, 

strain and just the symmetric component of the rotation gradient tensor contribute to the power, 

and the amount of material length-scale factors is reduced to one. The modified pair stress 

theory has also been empirically [6] and computationally [33] confirmed. Moreover, it has been 

acknowledged by a large number of researchers.  

For the sake of completeness, the theory is briefly stated below. Both the rotation vector
k   

and the strain tensor ij  are connected to the vector ui. 

 , , ,/ 2;   / 2ij i j j i k kij j iu u e u                                     (1) 

in which kije  is Levi-Civita symbol; ui and uj are displacements along the x and y axes. the 

curvature tensor (χij) is: 

 , , / 2ij i j j i                                                                (2) 
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The density of energy   can be estimated as [21]: 

 
1 1

2 2
ij ij ij ij ij ij,                                                    (3) 

in which ij is Cauchy stress tensor and ij  is the deviatoric component as follows: 

2;   2ij ijkl kl ij ij

ij ij

D l
 

    
 

 
   
 

                                       (4) 

in which µ is shear modulus, Dijkl represents the elasticity tensor, and l is the length-scale 

parameter.  

All components of the potential energy are represented by the following equation: 

1 1

2 2 t q

ij ij ij ij i i i i i i i id d f u d y d t u dS q dS

 

      
   

                     (5) 

By applying the variational law  = 0, we can derive the equilibrium equation and initial 

provisos: 

 , , , / 2 0 in ji j jki lj lk k j ie y f      ;        

     , ,,
/ 2 /2 or j ji jki j lk l pq p q k i ijk j l l i ikk

n e n n n y t e n q n u u              (6) 

                               or  on ij j pq p q i i l l i i in n n n q q n n         

in which it , iq , iu , and i  are the boundary values that have been given. 

The parameter i  was introduced by Garg et al. [34], which is distinct from i . Hence, 

with the parameter i , one gets: 

 2

, ,2 ;   / 2ij ij ij i j j il                                              (7) 

It is set i = i  due to the intrinsic differences between i  and i . To account for this 

disparity, the Lagrange parameter i  must be included. 

When dealing with circumstances that only involve two dimensions, the total potential 

energy (using Lagrange multipliers) may be determined as:  

 
1

2

      
t q

L

ij ijkl kl ij ij i i i

i i i i i i i i

D d d d

f u d y d t u dS q dS

 

       

 

  

 

      

     

  

   
                              (8) 

According to [17, 26], the constraint term on the surface  i i i d  


   may become 

zero if the mesh is refined further. 

The expression that arises from using the variational idea is as follows: 

   

      
t q

L

ijij ijkl ij kl ij ij i i i i i i

i i i i i i i i

D d d d d

f u d y d t u dS q dS

 

          

   

   

 

        

   

   

   
   (9) 
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3. PHASE-FIELD FORMULATION 

Marigo and Francfort [35] presented the application of the phase-field hypothesis to 

fracture problems, which was later acquired by Miehe et al. [36], [37] for fracture issues. With a 

few small modifications, we use this continuous phase-field model to investigate fractures. The 

total energy of the fracture model is indicated by:  

   

 

2 2

2
2

2

0 1 2

0

1 1

2 2

               

1
                 +  

4

t q

L

ijij ijkl ij kl ij ij i i i

i i i i i i i i

c crack force

U ,s s D d s d d

f u d y d t u dS q dS

s
K l s d U U U U

l

 

       

 

  

 



    

   

 
       
 
 

  

   



                 (10) 

where 

 

 

2
2

22 2

1 2 0

0

11 1

2 2 4

 
t q

ij ij ijkl ij kl ij ij crack c

force i i i i i i i i i i i

s
U s D d ,U s d ,U K l s d

l

U f u d y d t u dS q dS d

 

   

    

  

  

 
        
 
 

       

  

    

 (11) 

where U1 and U2 represent microstrain energies, Ucrack represents surface/crack energy, l0 

represents the length-scale characteristic of the crack, and Kc represents the rate at which the 

critical strain energy is set free. The parameter s has a value from 0 to 1, which distinguishes 

between fragmented and unbroken material (s = 0 and s = 1). Several unique degrading roles 

have been hypothesized in the literature and are thoroughly explored in [18], [38], [41-46]. 

Yet, the primary purpose of this work is to analyze crack propagation in mix-mode to 

obtain deeper knowledge. As a result, as mentioned in Eq. (10), isotropic strain energy 

degradation is applied in this study. 

By using the virtual work principle, the weak form is: 

 

2 2

t q

ij ij ijkl ij kl ij ij

i i i i i i i i i i i

s D d s d

f u d y d t u dS q dS d

   

      

 

   

 

      

 

    
       (12) 

Controlling the evolution of s is: 

 
 

0

0

1
2  + 0

2
ij ij ijkl ij kl ij ij c c

s
s D K l s K

l
   


                            (13) 

The weak form of s is produced. 

 
0

0

1
2 0

2
c c ijij ijkl ij kl ij ij

s
K sd K l s sd s D sd s sd

l
       

   


          (14) 

It is possible to discretize the field associated with each independent variable as follows: 

; ; ;θ H θ   u H u   λ H λ   s H su s                                (15) 
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This work employs a three-node element with shape functions outlined in [39]. 

Specifically, H  is a linear interpolation function:
0 1 2H a a x a y    , where the coefficients ai 

are determined from the element node coordinates. Hu is a quadratic interpolation function: 
2 2

0 1 2 3 4 5uH b b x b y b x b xy b y      ; where the coefficients ai and bi are determined from the 

element node coordinates. Hs is the same linear interpolation as H . H
 is a zero-order 

interpolation function, in which, H
=1 for points within the element and H

=0 for points 

outside the element. 

       13 132 2 2 2

23 23

1
2 2 2 , 2

2
κ χ = = B θ 

T

l l l l
x y



 
    

 

      
       

     
   (16a)      

     
,11

22 , 13 23

12 , ,

,0
1

0, ,
2

2 ,

α  B u β  B u 

x x

x

y y u

y

y x y x

u
u

u
uy x

u u





  



  
      

            
       

   

     (16b) 

11 11 22 22 12 120 ; 0 ;  B u    B u    B u 
x x x

y y y

u u u

u u ux y y x
  

            
                           

(16c) 

     

 

22s ss H H s u B D B u s H H s θ B B θ

   u H f β H y u H t

      β H q λH H θ B u 

t

q

T T T T T T T T

s u u s

T T T T T T

u u

T T T

d l d

d d d

d d

 



   

  

  

 

 

  



 

   

    

 

  

 

   (17) 

 
   

   

0

0

2

1
2

2

2 0

s s

s s

s H
H s s H H s

s H u B DB u H s s H θ B B θH s

T T

s T T

c c s

T T T T T T T T

s u u s

K d K l d
l

d l d 

 

  

 

 


   

   

 

 

     (18) 

Equation (18) does not differentiate between fracture responses in tension and pressure when 

describing fractures. Nonetheless, there will be instances of fracture patterns that are unrealistic 

when the material is subjected to compression. A revised regularized concept that uses an 

additive decomposition of the elastic energy density Em into volumetric and deviatoric 

contributions is used in preventing situations like these and, in addition, to interfere with the 

interpenetration of the crack faces when the material is subjected to compression. Therefore, 

m m mE E E   , in which: 

          

         

   

2 22 132 2

11 22 11 22 12 13 23

23

2 2 2 2

11 22 11 22 12

22

11 22

1 1 1 1
2

2 2 2 2

1 1 1
2

2 2 2

1 1

2 2

= α + α α = + +  

    = B u B u + B u B u B u + B θ B θ

= α

m L a L a

T

L a a

m L L

E K tr L : K L l

K L L l

E K tr K

 


        





 



 





 

    
      

     

 
   

 

 

(19) 
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with KL and aL  are Lame factors, 

        11 22 11 22 11 22 11 22

1

2
tr        


       . 

The energy functional Eq. (18) has now been substituted with 

 
   

 

0

0

1
2

2

0

s s

s

s H
H s s H H s

s H H s

T T

s T T

c c s

T T

s m m

K d K l d
l

E d E d

 



 

 

 


   

   

 

 

              (20) 

In order to solve Eqs. (17, 20), the following algorithm will be used at each step of the 

applied load (see Algorithm 1): 

Algorithm 1: Algorithm with irregular iterations 

Input: initialize variable i to 0 and load the solution (un, sn) from step n together with the 

boundary constraints from the most recent step n+1. 

set (u
0
, s

0
) := (un, sn) 

While crack length < plate length do 

i   i + 1 

+ Solving Eq. (16) will provide u1 and u2, from which the parts   and   may be 

determined. 

+ Calculating the energy as Eq. (19).  

+ Solving Eq. (19) yields the parameter sn+1, which is then compared to the original 

variable s
0
, if  

2
0

0ns s d 


      

end 

(un+1, sn+1)    (u
i
, s

i
) 

output: (un+1, sn+1). 

4. NUMERICAL RESULTS 

4.1. Verification example 

First, this work evaluates the reliability of the computational theory, the plate model, as 

shown in Figure 1. The geometry parameters of the model are prescribed as 

1 2a b mm,d a /   , and 0R l . Material properties are given as 

210 0 3 2700cE GPa, . ,K N / m   , and 
6

0 10l m . The results of calculating the crack 

growth at two different times with the results in the document [40] are shown in Figure 2 (2.a. 

[40]: u1= 0.012 mm;  2.b. This work: u1= 0.012 mm; 2.c. [40]: u1 = 0.015 mm; 2.d. This work: u1 

= 0.015 mm), from which it is easy to see the reliability of the calculation theory. It should be 

noted in the model that: mix-mode is a crack pattern that develops as the upper surface moves 

along the Ox  axis. On the other hand, if the underside is fixed, the crack will not develop in a 

path parallel to the Ox  axis. It is worth noticing that this work uses a mesh with 20,000 

elements, which is utilized to calculate the results below. 
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X

a
d

x

y

b

R

2

b

 

Figure 1. A computational model for crack propagation. 

 
               2.a.                               2.b.                                     2.c.                                     2.d.   

Figure 2. Crack propagation at two different time points. 

4.2. The example for the case based on MCST and the case of ignoring the effect of 

the parameter l 

To demonstrate the efficiency of the proposed formulations on crack propagation, a 

computational model, as shown in Fig. 1 is investigated. Material properties are given as E = 118 

GPa, Kc = 2,000 N/m,  = 0.26, and l0 = 10
-6 

m. The model is subjected to the traction force X  

in the direction x. 

Computational results are presented based on the parameter l whose values range from l = 

0.002 m to l = 400  m. At such a small value as l = 0.002 m, the size effect can be 

neglected to avoid the degradation of matrices. The size effect should be considered when the 

parameter l rises (i.e., l = 400  m), thus, the results are obtained based on the MCST.    

Figure 3 demonstrates the relation between the traction force ( X ) and traction surface 

displacement (X) in the direction x, which corresponds to three values of parameter l. In all three 

cases, the traction forces are linearly dependent on the traction surface displacements until 

reaching the maximums, at which cracks initiate. After that, the cracks propagate rapidly, 

leading to a quick degradation of the traction forces. In the crack propagation stage, the results 

obtained from the conventional couple stress theory (i.e., l = 0.002 m and l = 50 m) indicate 

softening behaviors, while the results obtained from the modified couple stress theory show 

brittle fracture characteristics.  

Besides, Figure 3 shows that the higher the value of parameter l, the higher the peak 

traction force required for the initiation of cracks, in other words, a higher fracture energy is 



 
 
Mix-mode fracture of microplates   

 

1025 

required. This phenomenon can be explained as the energy in this couple stress theory consists 

of the elastic deformation energy evaluated based on the classic theory (CST) (i.e., size effects 

are neglected) and the deformation energy caused by the rotation mechanisms. Thus, stresses at 

crack tips evaluated based on the conventional theory are lower than those in the modified 

hypothesis. 

 

Figure 3. Relation between traction force ( X ) and traction surface displacement (X).   

     

Figure 4. Phase-field variable s at locations X = 3.04 m, 5.80  m, and 6.94 m, l = 0.002 m.  
 

 
Figure 5. Phase-field variable s at locations X = 3.04 m, 5.80  m, and 6.94 m,  l = 400 m.  

Figures 4 and 5 show the change of the phase-field variable s at different stages of crack 

propagation, which correspond to the conventional couple stress theory (i.e., l = 0.002 m) and 

the modified couple stress theory (i.e., l =400 m), respectively. As can be seen, the crack 
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propagation in Figure 5 less intense than the crack in Fig. 4, while the crack in Figure 4 appears 

earlier compared to the crack in Figure 5. This can be explained as follows: There is a difference 

in the values of parameter l and mE 
 in Eq. (19), leading to the discrepancy result in Eq. (20). As 

a result, the value of the parameter s and the shape of the crack path change accordingly. 

 
Figure 6. Relation between energy terms and traction surface displacement X with l = 400 m. 

           

        
 

Figure 7. Change of rotation angle   right before the initiation of cracks (left) and during the crack 

propagation (right), arrows indicate the couple stress vectors m, colors indicate the rotation angle field  . 

Figure 6 shows the variation of energy terms including U1 and U2, U1+U2, and the crack 

energy (i.e., Ucrack) as defined in Eq. (11)) during the propagation of cracks considering the 

parameter l  = 400 m. The energy of the externally applied force is transmitted into two energy 

terms, U1 and U2 whose values increase since the application of external load. Before the 

initiation of cracks, the macro strain energy U1 is predominant. After the initiation of cracks, 

there is a sharp increase of the crack energy Ucrack, the macrostrain energy U1 progressively 
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decreases to zero, whereas U2 grows faster until X reaches the value of 1.24x10
-3

 m, at which 

point its value vanishes to zero. This location is specified as the point of a complete fracture, 

wherein the externally applied energy is completely transmitted into the crack energy.   

Figure 7 depicts the shift in rotation angle   just before the formation of fractures. On the 

top surface of the crack, the pair of stress vectors align in the x direction, indicating that the 

upper surface of the crack is bowed along the x-axis in the direction of the crack mouth opening. 

Similarly, the pair stress vectors on the surface crack are aligned along the x-axis, indicating that 

the under-crack surface is bowed along the x-axis in the direction of the crack mouth opening. 

Thus, it can be inferred that the pair stress vectors on fracture surfaces play a crucial role in the 

initiation of cracks along crack surfaces. 

5. CONCLUSIONS 

This article analyzes the crack propagation in microplates using the finite element method 

based on the phase-field theory and the modified couple stress theory. The obtained 

computational results show that the propagation characteristics of cracks in microplates are 

significantly different from the propagation characteristics of cracks in normal plates, where the 

size effects are neglected. The difference between microplates and normal plates in terms of 

crack initiation time, as well as crack propagation velocity, is explicitly explained due to the 

distribution of the energy of externally applied loads into the microstrain energy, the macrostrain 

energy, and crack energy. The results obtained can depict the concentration of stress at crack 

tips, the variation of displacement components, and phase-field variables during the propagation 

of cracks. 
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