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Abstract. Quadrotors have gained popularity in a wide range of applications. In this paper, a 

new approach for solving the tracking control problem of quadrotors with full-state constraints is 

presented. The proposed method involves a backstepping control scheme integrated with a fast 

finite-time filter. First, necessary state transformations are performed to support the design of the 

finite-time filter and controller. Next, the controller is formulated based on the backstepping 

technique. All the state constraints are taken into consideration in the controller. However, it is 

well-known that the backstepping control design can lead to the “explosion of complexity” when 

calculating time derivatives of certain nonlinear functions. Therefore, the proposed filter comes 

to provide a solution for estimating the time derivatives with the estimation errors converging to 

zero in finite time. The closed-loop system's finite-time stability is rigorously proved using the 

Lyapunov theory, despite the state constraints. Simulation results demonstrate the feasibility and 

efficacy of the proposed method.  
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Classification numbers: 5.10.2, 5.3.7. 

1. INTRODUCTION 

Quadrotor unmanned aerial vehicles (UAVs) have become a subject of great interest in the 

research community, primarily because of their unique capabilities, such as vertical taking off 

and landing, a wide range of flight capabilities, from hovering to cruising, the ability to fly at 

low altitudes, and their agility in tightly constrained environments [1, 2]. In practical 

applications, it is often necessary for these quadrotors to accurately track a given trajectory in a 

timely manner. However, due to their coupled nonlinear dynamics, parameterized uncertainties, 

and external disturbances [3], controlling quadrotors remains a challenging task.  

Linear control methods, including the proportional-integral-derivative (PID) technique [4], 

linear quadratic regulation (LQR) [5], and robust H-infinity control [6], have been widely used 
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in quadrotor control system design and have advantages in project realization. However, their 

performance degrades when quadrotors leave their designed trim points or perform aggressive 

maneuvers. To address these shortcomings, various nonlinear control approaches have been 

introduced, such as dynamic inverse [7], backstepping (BS) [8], model predictive control [9], 

singular perturbation theory [10], and sliding mode (SM) control [11]. Recursive BS, which is a 

powerful Lyapunov-based tool, is typically used as a baseline controller for quadrotors due to 

the cascaded structure of their dynamics. The BS framework provides two significant benefits: 

1) it accommodates nonlinearities and avoids wasteful cancelations [12], and 2) it allows several 

flight modes, such as position hold, loiter, and stabilized flight modes, to be integrated into the 

vehicle’s control system due to the hierarchical scheme of BS.  

The traditional BS method is known to have several issues. One such problem is the 

"explosion of complexity" caused by repeated differentiation of certain nonlinear functions, 

which is especially evident in high-order nonlinear systems. Moreover, traditional BS lacks a 

guarantee of robustness against perturbations. To address these limitations, researchers have 

proposed several adaptive control techniques for quadrotors. For instance, in [13], a radial basis 

function neural approximator was introduced to estimate and compensate for perturbations. 

Meanwhile, an immersion and invariance-based adaptive controller was developed in [14] for 

quadrotors that can handle uncertain inertial parameters, albeit in a relatively slow and indirect 

manner. More recently, the work in [15] proposed an active disturbance rejection control that 

employs a disturbance observer (DO) to estimate and compensate for lumped unknown 

disturbances in real-time. This approach has been further refined in [16], which combines 

command filtering with a DO to accurately track virtual control signals and attenuate the effect 

of disturbing forces and moments. To achieve highly precise and fast tracking, under the 

presence of uncertainties and disturbances, the use of dynamic surface control and an extended 

state observer within a DO-based control framework was presented in [17]. Overall, the 

application of these adaptive techniques can help achieve accurate tracking for quadrotors.  

Our work aims to enhance the performance of the BS control by introducing finite-time 

convergence properties. Finite-time controllers provide a faster transient response and higher 

precision compared to asymptotic stability controllers when states are close to the equilibrium 

point [18]. We apply fraction powers of the tracking errors to achieve finite-time convergence 

and employ finite-time filters to estimate the time derivatives of virtual control inputs, thereby 

avoiding the "explosion of complexity" phenomenon. Simulation results demonstrate the 

effectiveness of the finite-time controller, which, to the best of our knowledge, has not been 

tested for quadrotor tracking control before.  

Our work presents several contributions: 

 First, we propose a multivariable composite finite-time BS framework that introduces 

fractional powers of tracking errors to improve convergence near the trim point. We 

estimate derivatives of virtual control inputs (virtual commands) using finite-time 

filters to avoid the "explosion of complexity."  

 Second, we solve the tracking control problem of quadrotors that are subject to state 

constraints using our proposed finite-time BS. Our method guarantees finite-time 

convergence of tracking errors.  

 Third, we prove the finite-time stability of the closed-loop system based on the finite-

time Lyapunov theory. We demonstrate the effectiveness of our proposed control law 

through numerical simulations. 
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The organization of this paper is as follows. In Section 2, the dynamic model of the 

quadrotor is presented, and the control problem is defined. Section 3 introduces the finite-time 

controller design and provides a stability analysis of the closed-loop system. Simulation results 

are presented and discussed in Section 4. Finally, Section 5 concludes the paper. 

2. PROBLEM STATEMENT AND PRELIMINARIES 

2.1 Quadrotor dynamics model 

In this section, we provide a brief summary of the quadrotor dynamics model, which was 

previously presented in many existing studies [1 - 4]. 
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Figure 1. Quadrotor configuration. Motors 1 and 3 rotate counterclockwise while the other two 

motors rotate clockwise.  

Let ,  , and  denote three Euler angles roll, pitch, and yaw, respectively, in an earth-

fixed frame {E} (Figure 1); ,x yJ J , and zJ  represent the moments of inertia about the ,x y , and z

axes, respectively, in the body-fixed frame {B}; and , ,p q  and r  denote the quadrotor’s angular 

velocity about the about the ,x y , and z axes, respectively, in {B}. The quadrotor’s attitude 

dynamics model can be described as follows.  

The time derivative of the attitude [ , , ]T    can be expressed in terms of the angular velocity 

[ , , ]Tp q r  as follows.  
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Linearizing (2) near the quadrotor’s hovering point, where 0hv    and 0,hv    yields:  

In other words, (3) can be expressed as [ , , ] [ , , ]T Tp q r    . Thus, (1) can be rewritten as 

follows.  

where,  , ,iu i     denotes the control inputs which are generated by the quadrotor’s motor 

thrust forces, 
2 , ( 1,2,3,4)j t jF c j  , as follows.  

 

2 4
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 (5) 

where, 
j  is the speed of motor j ; tc  and dc  the thrust and drag coefficients, respectively; l  the 

arm length of the quadrotor.  

It is seen in (4) that the dynamics of the roll, pitch, and yaw angles are in similar form to 

each other. Therefore, the following representative system (6) will be considered, and the control 

design and verification process of this representative system can be applied directly to that of the 

roll, pitch, and yaw angle dynamics.  

where, 1 , ,ix     and 2 , ,ix    ; 
1 2[ , ]T
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output. Here, it is worth noting that all the states suffer from state constraints, that is: 
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2.2 Control objective 

The overall control scheme consists of position and attitude controllers (Figure 2). The 

quadrotor tracking control problem involves position tracking and attitude tracking. However, 

attitude tracking control plays a key role in improving the whole system’s tracking performance 

due to two major reasons. First, as can be seen in Figure 2, the position controller generates the 

desired roll and pitch angles which can only be tracked if the attitude tracking controllers are 

designed properly. Second, every unexpected change in the system states can be quickly 

compensated by the attitude tracking controller as the attitude dynamics is much faster than the 

position dynamics. 

From the above observation, this paper aims to propose a novel fast finite-time 

backstepping attitude control algorithm to drive the quadrotor, under state constraints (7), to 

track the desired attitude , ,d d d   .   

 

Figure 2. Full quadrotor controller scheme. The proposed algorithm is applied to the attitude controllers, 

which play key roles in the system’s tracking control performance. 

The following assumption, lemmas, and proposition are used in our control design and 

stability analysis, which will be presented in Section 3.  

Assumption 1. The desired attitude idy and its time derivative idy  are continuous and bounded. 

Lemma 1 [19]. Let 1 2,  ,  . . . ,  q    , if p > 0, then the following holds. 

 1

1 2 1 2max ,  1     · · ·{   )     · · ·  }(p p p p

q qq              . 

Lemma 2 [20]. (Finite-Time Uniformly Ultimately Boundedness): Consider the following 

system.  

       ( ) ,  0   0,  nx t f x t f x     

Suppose there is a Lyapunov function  V x , positive constants  0,  1 ,  0p   and  0  , 

such that   ( )  pV x V x    . Then, the state ( )x t  is uniformly ultimately finite-time stable. It 

means that the state can converge to a region of the equilibrium point in a finite time.  

Lemma 3 [21]: Consider the system    x f x ,  0   0f  , nx , if there is a positive-definite 

continuous function    :  ,nV x   makes      1 2

1 2  ,V x V x V x      where
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1 2 1 2,    0,  0    1,    1       . Then, the system is stable in a finite-time, and the 

convergence time cT satisfies:    1 1 2 21/ 1    1/   1cT             .  

Proposition 1. For a function 1 22 2 2

1 2 3( )f x x x x
       , with 1 20 1, 1     and tunable 

parameters 1 2, 0   , there always exist positive numbers 1  and 2  such that 

1 22 2

1 2( )f x x x
     . 

3. METHODOLOGY 

The control system is designed in this section by integrating a fast finite-time filter into the 

backstepping control technique. The filter aims to circumvent the “explosion of complexity” 

problem. Before moving on to the design, some state transformations are conducted. For the 

sake of simplicity in control design and closed-loop system’s stability analysis, the following 

state transformations are performed. 

3.1. State transformations 

and 

where, 1 1 1 2( )( )ji i ij i ijk x k x    , 11 12( )( )id i id i idk y k y    . 

With the above state transformations, the tracking errors are defined as follows.  

and  

where, 0 11 12/ [( )( )]i id i id i idv y k y k y    and 1̂iv  is the filtered signal provided by the filter, which 

will be described in next subsection.  

3.2. Fast finite-time backstepping controller 

Step 1. From (6), (8), (9) and (10), the time derivative of 1ie  can be obtained as: 

A virtual control input, 1iv , for (12) is designed as: 

with 11 12, 0i i    and 1 20  1,  1.i i     

Then, the derivative of 2ie  is  

where, 1̂iv  denotes the estimated value of 1iv , which is obtained through the following finite-time 

filter to avoid the “explosion of complexity” in the calculation of 1iv .  
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with i  being the filter parameter, sig ( ) sgn( )x x x
  , and 3i  is defined as 

where, 1

1

2

ˆ i

fi i

i

v
e v


   is the estimate error. Thus, we have 

Then, from (12), (13), and (15), we have 

Step 2. From (6) and (14), we have 

The actual control input is designed as 

Substituting (20) into (19) yields 

Theorem 1. Consider the quadrotor system (6) with full states being constrained as in (7), for a 

given time-varying desired attitude idy , under the Assumption 1, the tracking errors 1ie  and 2ie  

are ultimately bounded and asymptotically approach the origin in finite-time if the control input 

iu  is designed as in (20) and the virtual control law is formed as in (13) with the use of the filter 

in (15).  

Proof of Theorem 1. Taking the tracking errors 1 2,i ie e , and the estimate error fie  into 

consideration, let us choose a Lyapunov function candidate as follows. 

where, 2 2

1 2( ) / 2e i iV e e   and 2 / 2f fiV e . The time derivative of V  is 

Following (18) and (21), one yields 

1 2 31 1 1

1 1 1 1

2 2 2

ˆ ˆ ˆ ˆsig sig sigi i ii i i

i i i i i

i i i

v v v
v v v v

  
  

     
          

     
 (15) 

1

3

2

min{ , }, 1

max{ , }, 1

i fi fi

i

i fi fi

e e

e e






 
 



 (16) 

1

2 2 1 2

2

ˆ i

i i i i fi

i

v
e v e e


      (17) 

1 2

1 1 2 2 11 1 12 1( ) sig sigi i

i i i i fi i i i ie e e e e
         (18) 

2 2 1̂( )i i i i i ie bu g     (19) 

 1 2

1 2 21 2 22 2 1 2 1

2

1
ˆ sig sigi i

i i i i i i i i i i i

i i

u g e e e
b

      


      (20) 

1 2

2 11 1 12 1 1 2 1sig sigi i

i i i i i i i ie e e e
         (21) 

2 2 2

1 2

1 1 1

2 2 2
i i fi e fV e e e V V      (22) 

1 1 2 2i i i i fi fi e fV e e e e e e V V      (23) 

1 2

1 2

1 2 1 2

1

1 1 2 2 11 1 12 1

2 11 1 12 1 1 2 1

1 1 1 1

2 2 2 22 2 2 2
11 1 12 1 21 2 22 2 1 1 2

2

11 1

( ) sig sig

( sig sig )

( ) ( ) ( ) ( )

( )

i i

i i

i i i i

e i i i i fi i i i i

i i i i i i i i

i i i i i i i i i i i fi

i i

V e e e e e

e e e e

e e e e e e

e

 

 

   



   

   

     



   

     

   

 
      

 

 
2 1 2

2 21 1 1 1 2 2
22 2 2 1 12 2 2 2

12 1 21 2 22 2( ) ( ) ( )
2 2

i i i i

i fii i

i i i i i i

ee
e e e

   
  

      
        

   

 (24) 



 
 

Mung Xuan Nguyen, et al. 
 

394 

From (15), the time derivative of 
fie  can be obtained as 

Thus, one yields: 

with 0   being the upper boundary (based on Assumption 1) satisfying 1

2

1
d( ) / d

2

i

i

v
t 


 .  

From (23), (24), and (26), according to Proposition 1, we have 

where, 1i  and 2i  are positive constants which can be chosen appropriately according to 

Proposition 1.  

Following Lemma 1, one can be obtained from (27) as 

The inequality (28) indicates all the errors, including 1 2, ,i ie e  and fie , are uniformly ultimately 

bounded (Lemma 2) and asymptotically approach the very small region close to the origin. This 

completes the proof.  

Remark 1. The filter in (15) contributes to avoiding the “explosion of complexity” phenomenon 

in calculating the time derivative, 1̂iv , of the virtual control input 1iv  in (13), which is required to 

compute the actual control input iu  in (20).  

Remark 2. From (28), according to Lemma 3, it can be concluded that all the system states 

converge to the desired values in finite time cT , which is bounded as follows.   

Remark 3. The scheme of the attitude controller is summarized in the following block diagram 

(Figure 3).  
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Figure 3. Block diagram of the quadrotor’s attitude controller. 

Remark 4. With the proposed controller, it is proved that the tracking errors, 1ie  and 2ie , 

converge to zeros in finite-time. From the definitions of the tracking errors in (10) and (11), we 

have 1 0i iv   and 2 1̂i i  , with 0 iv  being calculated from the desired attitude (bounded), and 

1̂iv  being the bounded output of the filter (15). Therefore, the denominators in (8), i.e., 

11 1 12 1( )( )i i i ik x k x   and 21 2 22 2( )( )i i i ik x k x  , do not reach zeros. In other words, 1ix  does not 

reach its limits, i.e., 11ik  and 12ik ; and 2ix  does not reach its limits, i.e., 21ik  and 22ik . Hence, 

that is the capability of our proposed method of dealing with the constraints.   

Table 1. Quadrotor’s dynamical parameters. 

Parameter Value Unit 

[ , , ]x y zJ J J  [0.012, 0.013, 0.022]  kg.m
2
 

l  0.225  m 

tc  610  N.s
2
 

dc  0.05  - 

11 12[ , ]k k   [ / 3, / 3]   rad 

11 12[ , ]k k   [ / 3, / 3]   rad 

11 12[ , ]k k   [ / 3, / 3]   rad 

21 22[ , ]k k   [ / 2, / 2]   rad/s 

21 22[ , ]k k   [ / 2, / 2]   rad/s 

21 22[ , ]k k   [ / 2, / 2]   rad/s 

Table 2. Desired and initial attitude and parameters of the filters and controllers. 

Parameter Value Unit 

d  0.3; sin( ) 0.1sin( )
6 3 4

t t
  

    rad 

d  0.3; sin( ) 0.1sin( )
12 4 3

t t
  

   rad 

d  0.1; sin( )
4 12

t
   rad 

0 0 0[ , , ]    [ 0.1, 0.1, 0.1]  rad 

i  0.01  s 

1 2[ , ]i i   [0.7, 1.5]  - 

11 12 21 22[ , , , ]i i i i     [1, 2, 10, 30]  - 
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Remark 5. The controllers and the filter in (13), (20), and (15) are designed based on model (4), 

which is obtained from (1) through a linearization near the hovering point, i.e., 0   and 0  . 

Therefore, the quadrotor should be operated in an attitude range near this point to ensure the 

proposed controller functions properly. The further the quadrotor attitude is away from the 

hovering point, the more the control performance is degraded.   

4. SIMULATION RESULTS AND DISCUSSIONS 

This section demonstrates how our proposed method is effective in the tracking control of a 

quadrotor subject to full-state constraints. It is worth noting that, while the controller was 

designed based on (4), we utilized the dynamic model in (1) and the kinematic model in (2) to 

assess the closed-loop system's stability and confirm that our controller delivers satisfactory 

tracking control performance.  

4.1. Simulation assumptions 

The simulation was conducted assuming that the quadrotor's attitude is determined by an 

inertial navigation system (INS). The controllers were implemented in Matlab/Simulink with a 

sampling time of 0.0025 s, which corresponds to an operating frequency of 400 Hz. The 

quadrotor parameters and its state constraints used in the simulation (Table 1) were collected 

based on the parameters of a real F450 quadrotor platform [22], which is equipped with four 

2312E motors and four 9450 propellers [23]. Table 2 lists the controller gains, initial conditions, 

and desired state values. By selecting fast, time-varying desired state values (Table 2), we 

illustrate the accuracy and rapidness of our new controller to track complex and fast-varying 

desired trajectories. 

4.2. Simulation Results and Discussions 

To evaluate the effectiveness of the proposed method, two test scenarios were conducted, 

namely the tracking of (i) step and (ii) complex and time-varying attitude references. The system 

performance corresponding to each scenario is examined and discussed in the                           

following subsections. 

4.2.1. Tracking of step attitude references 

In this scenario, the desired attitude is set as [ 0.3, 0.3, 0.1]   rad (Table 2). To generalize 

this test case, the quadrotor's initial states are set to non-zero, that is, the tracking flight is 

triggered at a non-hovering status. At 0t   s, the quadrotor’s attitude tracking errors rapidly start 

converging to zero (Figure 4a). Simultaneously, the angular rate errors also see a quick 

convergence (Figure 4b). It is seen that the settling time (2 %) of all attitude angle tracking is 

about 2.5 seconds. Even though having a rapid convergence speed, the proposed controller does 

not require much control effort.  

As per Figure 4c, all the control inputs do not exceed 1.0 N.m, which is already a pretty 

small value of control torque for a quadrotor like F450. Besides, to have such a fast response, a 

backstepping controller usually results in the chattering phenomenon in the control input. 

However, our controller input can be seen as chattering-free. Examining the filter’s performance, 

as expected, the proposed filter provides a highly accurate and fast-converged estimate which is 

proved through the performance of the filter estimate errors (Figure 4d). Another aspect of being 
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validated is the state constraints (the dashed black lines in Figures 5a-b). It is clear that all states 

lie in the range of the constraints while exhibiting fast responses.   

4.2.2. Tracking of complex and time-varying attitude references 

 

Figure 4. Flight performance of the quadrotor tracking step attitude references. a) The attitude tracking 

errors rapidly converge to zero without any overshoot; b) The angular rate tracking errors also exhibit fast 

convergence; c) The controller requires small control effort; d) the filter delivers fast and                            

accurate estimations. 

 

Figure 5. States of the quadrotor tracking step attitude references. The quadrotor’s attitude angles (a) and 

angular rates (b) all lie in the range of the constraints despite having a rapid response. 
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Figure 6. Flight performance of the quadrotor tracking complex and time-varying attitude references.                 

a) The attitude tracking errors rapidly converge to zero; b) The angular rate tracking errors also exhibit 

fast convergence; c) The controller requires more control effort, but the control inputs are still chattering-

free; d) the filter delivers fast and accurate estimations. 

 

Figure 7. States of the quadrotor tracking complex and time-varying attitude references.                                   

The quadrotor’s attitude angles (a) and angular rates (b) all lie in the range of the constraints despite 

having a rapid response. 
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The second scenario is conducted to ensure the capability of the proposed controller in 

tracking time-varying references, which are usually fast and complex in most real-world 

quadrotor missions. As per Table 2, each desired attitude angle is composed of sine waves at 

different frequencies and amplitudes, which makes it complex and time-varying.  

Even though the references vary in a relatively large range of amplitudes, the controller 

steers the quadrotor to track them rapidly (Figures 6a-b). Depending on the references, the 

attitude and angular rate tracking errors can converge to zero slightly faster or slower than each 

other. However, it is seen (Figure 6) that the settling time (2%) does not exceed 2.5 seconds. 

Compared to the previous scenario, the control inputs see marked increases (Figure 6c). These 

changes are due to the system requiring larger torques to be able to track the fast-varying 

references. Nevertheless, the control inputs remain chattering-free. Meanwhile, the filter still 

works effectively, as its estimation errors take a very short time to reach zero (Figure 6d). This 

timely estimation allows the backstepping controller properly delivers a fast system response 

and maintains the system’s states not to reach the constraints (Figure 7). 

5. CONCLUSIONS 

This paper addresses the tracking control problem of a quadrotor subject to full-state 

constraints. By integrating a backstepping control scheme with a fast finite-time filter, the 

advantages of the backstepping control technique, including rapid response, simple design, and 

straightforward implementation, are taken while its most significant shortcoming, the “explosion 

of complexity,” is overcome. The simulation results demonstrate the feasibility and effectiveness 

of the proposed method in tracking step attitude references and complex time-varying attitude 

references. The rapid convergence speed and low control effort demand of the controller indicate 

its applicability in many real-world quadrotor missions. Future work is dedicated to 

implementing this method into an actual quadrotor and the demonstration in actual flight 

conditions, in which uncertainties and external disturbances will be considered.   
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