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Abstract. This paper proposes the design of a neural network controller based on a sample 

controller for controlling the trajectory-tracking motion of a differential drive mobile robot 

(DDMR). Firstly, the trajectory tracking model for DDMR is established based on position error. 

Next, a perceptron neural network is designed with three hidden layers to control the trajectory 

tracking of DDMR. The backpropagation algorithm is used to train the neural network with 

training data obtained from the PID controller with time-varying parameters. The authors have 

developed this approach and experimentally verified it with minor tracking errors. The neural 

network's weight matrix (W) and bias vector (b) are updated in real-time, providing an 

advantage over other methods. The effectiveness of the proposed controller is demonstrated by 

the DDMR's NURBS trajectory tracking error, which does not exceed 2.17 cm, and the DDMR's 

motion error, with linear and angular velocities not exceeding 0.004 m/s and 0.0007 rad/s, 

respectively. The proposed controller can supplement traditional controllers in controlling the 

trajectory of autonomous mobile robots, thereby improving the ability to generate local 

trajectories to avoid dynamic obstacles by the neural network. 

Keywords: differential drive mobile robot, trajectory tracking control, neural network, train the neural 

network, NURBS trajectory. 

Classification numbers: 5.2.1, 5.3.3, 5.3.5. 

1. INTRODUCTION  

In recent years, wheeled mobile robots have found a wide range of applications in various 

fields, such as borehole drilling robots in tunnelling construction [1], supermarkets [2], hospital 

transportation [3], autonomous guided vehicles in smart factories [4 - 6], and more. Among 

wheeled mobile robots, differential drive mobile robots (DDMR) are popular due to their simple 

structure and easy control. The continual improvement of automation and information 

processing technology has led to the development of new control systems to increase the 
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autonomy and operability of autonomous mobile robots. The primary focus is on resolving 

trajectory-tracking issues and enhancing tracking accuracy. 

Hitherto, two main challenges for researchers have been the optimal path planning and 

improvement of controllers to ensure high accuracy in the movement of autonomous mobile 

robots. Numerous methods for motion planning and robot control have been suggested, such as 

improved PID controllers [7 - 9], improved linear state feedback controllers [10], a fuzzy 

controller, and a neural network (NN) controller [11, 12]. Xuehao Sun et al. [13] proposed a 

motion plan with a smooth curve, enabling the robot to move at optimal speed and avoid 

unforeseen dynamic obstacles. Hsiu-Ming Wu et al. [14] developed a nonlinear trajectory 

tracking controller that asymptotically reduces the position error of the robot to zero, with the 

stability of the system verification by the Lyapunov stability method. Dino Zivojevic et al. [15] 

applied a random tree algorithm to plan the path of mobile robots with differential constraints 

using the Dubin method. The method addresses the challenge of finding a feasible path between 

a starting and a destination point in environments with static obstacles. Talebi Abatari et al. [16] 

employed a PID-Fuzzy controller to replace the standard PID controller in tracking the robot's 

trajectory. The results indicated that the proposed controller outperforms the standard controller 

with a faster convergence rate for arbitrary initial states. Shang et al. [17] proposed to design a 

state feedback controller with a time-varying parameter for the mobile robots to follow the 

desired trajectory. HaoWang et al. [18] employed a Fuzzy-NN for the path planning of a mobile 

robot, resulting in an optimal path from the starting point to the destination point. The evaluation 

analysis above shows that modern controllers have been proven to be superior to both classic 

and improved traditional controllers or Na et al. [19] utilized a combination of neural networks, 

fuzzy logic, and reinforcement learning to achieve path planning and optimize path length. 

Nevertheless, modern controllers also have a disadvantage because a large number of 

calculations leads to high requirements for the hardware structure of the robot, which increases 

the cost of the system. 

In this work, a NN-PID controller is proposed to control the trajectory tracking of DDMR. 

The proposed controller combines the strengths of both a NN and a PID controller to advance 

accurate and stable trajectory tracking. The input/output sample data set used to train the neural 

network is determined from the signals of the sample controller or manual control signals during 

the system setup. The structure of the paper includes the following contents: first, the trajectory 

tracking model of the DDMR is established. Second, the Perceptron Neural Network structure is 

designed using a trial and error method. Then, the network is trained using the back-propagation 

algorithm and a sample data set consisting of the input (e = qd – qf) and the output (the signal um  

of the sample controller). The sample controller used in this research is an improved PID 

controller with time-varying parameters developed in the literature [7, 8]. The paper concludes 

with the presentation of simulation results of DDMR tracking along a NURBS curve and an 

evaluation and discussion to demonstrate the effectiveness of the proposed controller. 

2. TRAJECTORY TRACKING MODEL FOR DDMR 

2.1. Kinematic model of DDMR 

Assuming that the moving surface is flat, the scenario considered is a non-slip rolling 

motion of DDMR following a path trajectory   in a global coordinate system  ffff yxO  

attached to the moving surface, as illustrated in Figure 1. With the above definitions, according 
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to [6], the relationship between the speed of the DDMR and the angular velocity of the two 

differential driving wheels is given by: 
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wherein r and L represent the wheel radius and the distance between the two driving wheels; GV  

and = Ω are the velocities and angular velocity of the DDMR; V1 = 1 r and V2 = 2r denote 

the angular velocity of the two driving wheels. 

 

Figure 1. Illustration of the trajectory tracking motion of DDMR. 

Thus, the kinematic model of DDMR in f  is expressed by: 
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here,  Trrr yx q  in the local coordinate system  rrr yGx , r  is attached to the 

geometric center G of the DDMR. 

2.2. Trajectory tracking model of DDMR 

Set e is the position error vector between the desired trajectory {} and the current trajectory 

of motion in the global coordinate system f . Thus, we have: 

 Tyxfd eee  qqe                                                (3) 

The desired trajectory {} of the DDMR in the global coordinate system f  is represented 

by  Tdddd ttytx )()()( q . 
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Thus, in the local coordinate r , the vector re  is expressed by: 

  eRe
TT

ryrxrr eee                                                                          (4) 
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By taking the derivative of equation (4) and combining it with equations (2, 3), the motion 

trajectory tracking model of the DDMR is obtained as follows: 
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Rewrite equation (5) as a matrix: 
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 3. DESIGN OF NN CONTROLLER FOR TRAJECTORY TRACKING OF 

DDMR 

The structure of a NN-PID controller designed to control trajectory tracking for DDMR is 

shown in Figure 2. 

 

Figure 2. The diagram of the proposed controller structure. 

The sample model is an improved PID controller with time-varying parameters, as proposed 

in [7], which generates control signals um to determine the linear velocity Vm and angular 

velocity m  for DDMR to follow the desired trajectory {}. These signals can also be 
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obtained through manual DDMR teaching. The structural parameters of the perceptron network 

are determined through a trial and error method, as described in Table 1. The inputs to the neural 

network are the reference state qd and the current state qf, while the output is the signal un. 

Table 1. The neural network parameters. 

Parameter Value 

Number of input neurons 3 

Number of output neurons 2 

Number of hidden layers 3 

Number of neurons in hidden layer 1 4 

Number of neurons in hidden layer 2 4 

Number of neurons in hidden layer 3 2 

wherein 
n

n

e

e
nf








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1

1
)(1 , 

ne
nf


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1

1
)(2 , and nnf )(3  are activation functions of the first, 

second, and third hidden layers. The trained neural network parameters are updated online so 

that: 

  0 nmu uue                                                      (7) 

with um is the control signal from the sample controller and un is the control signal from the 

neural network. 

3.1. Neural Network Controller 

The NN model is defined by: 
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On the other hand, in the local coordinate system r  of DDMR, the control signal un is 

represented as follows: 
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3.2. Neural network training 
The parameters of the neural network, including the weight matrix W and the bias vector b, 

are trained according to: 
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where 111 )()(   m
T
mnmmmm k sWbaWFs  with m = 1, 2, …N; N is the number of layers of the 

NN, α is the learning rate. 

 )(),...,(),()( ,2,1, smmmmmmm nfnfnfdiagn  F ; 
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The weight value W and the bias vector value b of the neural network are adjusted so that the 

cost function, as given by equation (10), is minimized: 

min)(
2

1 2
3

2
2

2
1  uuu eeeE                                                  (11) 

The online training sample data for the neural network includes the input e, which is determined 

by equation (3), and the corresponding output um, which is determined by: 

mrdrm qqu                                                                 (12) 

Here mrm qu , represent the output and control signals of the sample controller. The sample 

controller used in this research is an improved PID controller with time-varying parameters, as 

described in the literature [7]. 

4. SETTING SIMULATION PARAMETERS 

Dimensions of DDMR 

The distance between the two differential wheels is L = 0.3 m, and the radius differential 

wheels r = 0.0475 m. 

Desired motion trajectory 

Table 2. Interpolation points data for desired NUBRS motion trajectory {}. 

A1 A2 A3 A4 A5 A6 A7 










0.1

0
 









5.1

0
 









0.2

5.0
 









0.2

5.1
 









0

5.2
 









0

5.3
 









5.0

0.4
 

A8 A9 A10 A11 A12 A13 A14 










5.1

0.4
 









0.2

5.3
 









0.2

5.1
 









0

5.1
 









0

5.0
 









5.0

0
 









0.1

0
 

 

Figure 3. The desired trajectory of DDMR. 
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The red line in Figure 3 represents the desired motion trajectory, which is a 3
rd 

order 

NURBS curve [10]. The aim is to ensure a smooth motion path and eliminate sudden changes in 

velocity and points of zero velocity of the DDMR. Table 2 provides the interpolation point data 

for the desired motion trajectory. 

Motion parameters 

With the desired trajectory  defined above, the time-varying velocity Vd (t) is determined by: 
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where Vd(t)  Vdmax, and the desired angular velocity Ωd of the DDMR is expressed by: 
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Here ρi  [ρmin , ρmax] is the radius of curvature of the motion trajectory   with i = 1,2, …, n and 

is defined by: 
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Set 1.0t s and Vdmax = 0.3 m/s. 

5. SIMULATION RESULTS AND DISCUSSION 

The setup parameters encompass: (1) The robot's dimensions; (2) The structure of the 

neural network and the weight matrix update rule of training, and (3) The DDMR's desired 

trajectory and motion parameters. Below are the results controlling the trajectory-tracking 

motion of DDMR after 892 times of online update training.  

5.1. Neural network training 

Figure 4 shows the online training results based on 892 interpolation points of the NURBS 

trajectory. 

 

Figure 4. The cost function value. 

Figure 4 shows that the cost function's E value consistently approaches zero once trained. 

Figures 5 to 7 below are graphs updating weights matrix W and bias vector b during NN 

training. Figure 4, combined with Figure 8, reveals that points 1 to 8 are where the DDMR 

changes direction from clockwise to counterclockwise or vice versa. Furthermore, Figures 5 to 7 

indicate that the weight W and bias vector b are updated between the first 15 to 18 s. 
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Figure 5. Update bias vector b in real-time of NN with: (a) hidden layer 1, (b) hidden layer 2 and                         

(c) hidden layer 3. 

 

Figure 6. Update weight W in real-time of hidden layer 3. 

 

Figure 7a. Update weights W in real-time with: hidden layer 1. 
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Figure 7b. Update weights W in real-time with: hidden layer 2. 

5.2 The results of the trajectory tracking for DDMR 

 

Figure 8. The moving trajectory tracking of the DDMR. 

Once trained, the blue line is the motion trajectory of DDMR, while the desired trajectory is 

the orange line, as described in Figure 8. Figure 9 shows the position and posture errors of 

DDMR controlled by the proposed controller. 
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Figure 3, combined with Figures 8 and 9, shows that at the points where the DDMR 

changes direction (from clockwise to counterclockwise or vice versa), there will be a more 

significant error with verification data, as described in Table 3. 

Table 3. The position error value at the point DDMR changes direction. 

point ex (mm) ey (mm)   (mm) 

1 0.000 0.000 0.000 

2 12.737 1.657 12.844 

3 8.318 20.048 21.705 

4 1.330 4.247 13.963 

5 1.855 16.706 16.809 

6 11.184 4.347 11.999 

7 6.616 17.117 18.351 

8 11.337 7.216 13.439 

9 0.203 19.624 19.626 

Where the position error 22
yx ee   does not exceed 21.7 mm, and the posture error does 

not exceed 0.021 rad. 

 

Figure 9. Position and posture error of DDMR. 

Figure 10 displays the linear and angular velocities of the DDMR while following the 

NURBS motion trajectory. Figure 11 shows the linear and angular velocities error between the 

desired and controlled values. 
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Figure 10. The linear and angular velocities of 

the DDMR. 
Figure 11. The errors in linear and angular 

velocity. 

Figure 11 depicts the motion error of DDMR between the current value and the desired 

value. At points where the DDMR changes direction, the linear velocity error does not exceed 

0.004 m/s, while the maximum angular velocity error is 0.0007 rad/s. This verifies the 

effectiveness of the proposed controller in ensuring that DDMR follows the NURBS trajectory. 

Figure 12 describes the controlled angular velocity values of the two drive wheels, which 

are used to control DDMR to follow the desired trajectory. The red line represents the desired 

angular velocity of the driving wheels, and the blue line depicts their actual control state when 

DDMR changes direction, the error  between the actual angular velocity of the driving wheels 

and the desired value of 0.07 rad/s. 

 

Figure 12. The angular velocities of differential wheels. 

6. CONCLUSIONS  

From the simulation results, discussion and evaluation above, this research achieved the 

following results: (1) The proposed NN-PID controller for DDMR tracked the trajectory with 

minor errors; (2) The simulation results verified the effectiveness of the proposed controller, 
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which reduces computational complexity, achieves fast convergence, and updates weights online 

to ensure DDMR follows the desired trajectory. The proposed controller exhibited a tracking 

error not exceeding 2.17 cm and a maximum posture error of 0.021 rad. While the motion error 

includes the linear velocity error V  was limited to 0.004 m/s, and the angular velocity error   

was limited to 0.0007 rad/s. These results show the application potential of the proposed 

controller in trajectory tracking control for mobile robots with low hardware structure costs. 

Additionally, future research goals will include addressing the challenges of developing static 

and unexpected obstacle avoidance algorithms based on neural networks and integrating them 

with the controller. 
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