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Abstract. Zero-truncated count data are of significant importance across various fields, 

including biological sciences, medical sciences, demography, and ecology. Recently, a new 

distribution has been introduced for this type of data, namely the zero-truncated Poisson-Garima 

(ZTPG) distribution. However, the confidence interval (CI) for its parameter has yet to be 

thoroughly analysed. This paper investigates CI estimation using the percentile bootstrap (PB), 

simple bootstrap (SB), bias-corrected, and accelerated (BCa) bootstrap methods, as well as the 

bootstrap-t CI, with a focus on coverage rate and average width assessed through Monte Carlo 

simulations. The simulation results show that the bootstrap methods could not achieve the 

nominal confidence level for very small sample sizes, irrespective of other settings. 

Additionally, the bootstrap methods did not exhibit a notable difference in performance when 

the sample size was large. It is clear that the BCa bootstrap approaches outperformed the 

alternatives, even with small sample sizes. Finally, bootstrap methods were applied to compute 

the CIs for the ZTPG parameter in two real-world applications, with the CI widths closely 

matching the average widths from the simulation study. 

Keywords: bootstrap interval, discrete distribution, interval estimation, parameter, Poisson-Garima 

distribution. 

Classification numbers: 4.6.2., 4.6.4. 

1. INTRODUCTION 

One of the discrete probabilities is the Poisson distribution, which characterizes the 

likelihood of a given number of events occurring within specified intervals of space or time [1 - 

2]. Examples of data fitting this distribution include the hourly count of patients visiting an 

emergency department, the number of goals scored by a soccer team during a match, the 

monthly frequency of minor earthquakes in a region, and the daily volume of spam emails 
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received by a particular email account [3]. Based on the Poisson distribution, the probability 

mass function (pmf) is defined as 

 
exp( )

( ; ) ,
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p y
y

 
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
  0,1,2,...,y  0,           (1) 

where exp( )  is the exponential function and   is both the mean and variance of the distribution. 

The parameter   represents the expected number of occurrences within a specified time or space 

interval. The Poisson distribution is particularly suitable for analyzing datasets that contain both 

zero and positive values, especially when these events occur infrequently over a fixed interval 

[4]. The equi-dispersion assumption, requiring the mean and variance of the random variable to 

be equivalent, limits the use of the Poisson distribution as a fundamental model for count data 

analysis. Quite the reverse, count data frequently convey over-dispersion, with a larger variance 

compared to the mean [5]. Flawed analyses and faulty conclusions can result from the use of the 

Poisson distribution to over-dispersion data [6]. Using a mixed Poisson distribution [7] with a 

Poisson parameter presumed to be a random variable with a single parameterized distribution [8] 

is a common substitute when the count data exhibit over-dispersion. 

The Poisson and Garima distributions were recently joined by Shanker [9] to create the 

Poisson-Garima (PG) distribution. Focusing on its mathematical and statistical attributes was 

assessed. The PG distribution was developed by assuming that the Poisson parameter   follows 

a Garima distribution [10]. The PG distribution demonstrates greater suitability compared to the 

Poisson and Poisson-Lindley [11] distributions when applied to two real datasets. The pmf of the 

PG distribution is expressed in Eq. (2), 
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The Garima distribution, a continuous lifetime distribution, was first introduced by Shanker 

[10] and has a probability density function (pdf) as defined in Eq. (3), 
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Comprising a scale parameter   and gamma distribution with a shape parameter of 2 as 

well as scale parameter   with proportions of ( 1) / ( 2)    and 1/ ( 2),   respectively, it is 

a combination of exponential distribution. Moreover, the Garima distribution is a more suitable 

model than the exponential, Lindley [12], Akash [13], Aradhana [14] and Sujatha [15] 

distributions for modeling behavioral science data, as shown by Shanker [10]. Comprising 

several statistical properties of the Garima distribution have been considered [10]. Figure 1 

illustrates plots of the Garima distribution with various stipulated parameter values. 

Probability distributions can be truncated when certain ranges of potential values are either 

ignored or unobservable. Zero-truncation (ZT) is often used in the analysis of count data that 

excludes zeros. The ZT Poisson (ZTP) distribution had been developed by David and Johnson 

[16] in 1952. This distribution has found practical applications in various datasets, such as the 

number of hospital admissions per patient, considering only patients admitted at least once; the 

number of purchases made by customers who have made at least one purchase; and the number 

of goals scored by players who scored at least once during a season [17]. The pmf of the ZT 

distribution can be derived as shown in Eq. (4), 
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where 
0 ( ; )p x   is the pmf of the untruncated distribution. Numerous ZT distributions have been 

proposed as alternatives to the ZTP distribution for focusing on over-dispersion in count data, 

including the ZT Poisson-Lindley (ZTPL) [18], ZT Poisson-Sujatha [19], and ZT Poisson-Akash 

[20] distributions. Shanker and Shukla [21] established the ZT Poisson-Garima (ZTPG) 

distribution, providing essential insights into its statistical properties. The method of moments 

and maximum likelihood estimation method are statistical techniques developed for point-

estimating its parameter. The application of the ZTPG distribution to real-world data 

demonstrated its superior suitability compared to the ZTP and ZTPL distributions. 

 
Figure 1. Plots of the Garima distribution’s pdf for   0.5, 1, 2, and 3. 

The confidence interval (CI), a vital result for many statistical investigations and an 

essential component in the interpretation of parameter estimations, is an array of values in 

statistics and probability that probably include the true value of the population parameter of 

interest [22]. Attempts expected to calculate bootstrap CIs for the ZTPG distribution parameter 

are not covered in the reviewed literature. A way of quantifying the vagueness in statistical 

inference based on a sample of data is offered by the bootstrap CIs for estimating the parameter. 

The idea is to estimate the prospective weight of sampling error by conducting a simulation 

study using the real data [23]. Comprising the percentile bootstrap (PB), the simple bootstrap 

(SB), the bias-corrected and accelerated (BCa) bootstrap and bootstrap-t (B-t) methods to assess 

the parameter of the ZTPG distribution, this study aims to examine the efficacies of four 

bootstrap CIs. Furthermore, bootstrap CIs will not be precise though they will be reliable. Thus, 

as the sample size increases, the confidence level approaches 1   [24]. This research undertook 

a Monte Carlo simulation study to contrast the performance levels. The simulation results and 

real-world applications were used to establish the best-performing approach according to the 

coverage rate and average width. 
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2. ZERO-TRUNCATED POISSON-GARIMA DISTRIBUTION AND THE 

PARAMETER ESTIMATION 

The technique of combining probability distributions represents a creative and efficient 

method for developing new distributions that can more accurately reflect the characteristics of 

datasets which are not well described by classical statistical distributions. By combining 

different distributions, this method enhances the ability of the resulting distribution, making it 

more capable of capturing complex data behaviors, such as heavy tails, skewness, or multimodal 

patterns. This flexibility is particularly valuable in fields where data exhibit unique or irregular 

features that standard distributions fail to address, thereby improving the overall fit and 

predictive performance of the distribution. Shanker and Shukla [21] proposed a novel compound 

distribution by integrating the Poisson and Garima distributions, aiming to fulfill the demand for 

a more adaptable distribution in statistical data analysis. The pmf of the PG distribution is 

provided in Eq. (2). 

Let X  be a random variable that follows the ZTPG distribution with parameter ,  denoted 

as X ~ ZTPG (θ). Using Eqs. (2) and (4), the pmf of ZTPG distribution is given by 
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Figure 2 presents plots of the pmf of the ZTPG distribution for some values of the parameter .
The expected value and variance of ZTPG random variable are given, respectively, as follows: 
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The estimation of parameter is achieved by finding the value that maximizes the log-

likelihood function, which is equivalent to the natural logarithm of the joint pmf function of 

1,..., .nX X  Therefore, the maximum likelihood (ML) estimator for   in the ZTPG distribution is 

derived using the derivative: 
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where x  denotes the sample mean. As the ML estimator for parameter   cannot be expressed in 

a closed-form solution, numerical iterative methods are employed to solve the non-linear 

equation. In this study, the maxLik package [25] in R [26] was used, specifically applying the 

Newton-Raphson method for ML estimation.
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Figure 2. Plots of the ZTPG distribution’s pmf for 0.5,  1,  1.5,   and 2. 

3. BOOTSTRAP CONFIDENCE INTERVEL METHODS 

A parametric estimator of standard errors is used to calculate CIs by adding or subtracting 

the standard error multiplied by a critical value, assuming normality of the estimator [27]. 

However, when the normality assumption violates or standard error estimation is problematic, 

bootstrap methods can be employed [28]. This paper focuses on bootstrap techniques for 

estimating the interval of the ZTPG distribution parameter [29]. 

3.1. Percentile bootstrap (PB) method 

The PB CI is derived from the 1   percentiles of the bootstrap distribution of the 

parameter estimates, denoted by ˆ,  where   denotes the parameter of the ZTPG distribution 

and 1   is the nominal confidence level [30]. The PB CI for   is obtained through the 

following steps: 

1) Generate Bootstrap Samples: Draw B  random bootstrap samples from the fundamental 

distribution with substitution, where B  represents the amount of bootstrap replications. 

2) Estimate the Parameter: Calculate the parameter estimate *̂  for each of the B  bootstrap 

samples. 

3) Order the Estimates: Arrange the B  bootstrap parameter estimates in ascending order.  

4) Construct the PB CI: Identify the / 2  and 1 ( / 2)  quantiles of the ordered bootstrap 

estimates to form the PB CI. The (1 )100% PB CI is given by 

  * *

( ) ( )
ˆ ˆ, ,PB r sCI                          (5) 
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where *

( )
ˆ

r  represents the thr  quantile of the set of ordered quantiles from the lowest to highest, 

*

( )
ˆ

s  is the ths  quantile of the same set, ( / 2) ,r B     (1 ( / 2)) ,s B     where    is 

the ceiling function, and   is the significance level.  This paper identified B = 1,000 and   = 

0.05; the quantile consistent with the lower threshold of the CI was  * *

( ) (25)
ˆ ˆ

r   and that 

conforming to the upper threshold was * *

( ) (975)
ˆ ˆ .s   

3.2. Simple bootstrap (SB) method 

The SB method, also known as the basic bootstrap method, is straightforward to apply, 

similar to the PB method. Let   be the quantity of interest, and let ̂  represent its estimator. 

The SB method operates under the assumption that the distributions of ̂   and  *ˆ ˆ   are 

approximately equivalent [29]. The (1 )100%  SB CI for   is expressed in Eq. (6), 

  * *

( ) ( )
ˆ ˆ ˆ ˆ2 , 2 ,SB s rCI                 (6) 

where 
*

( )
ˆ

r  and  
*

( )
ˆ

s  represent the same percentiles of the sample-based distribution of bootstrap 

estimates *̂  as those used in Eq. (5) for the PB method. The SB method adjusts the interval by 

centering it around the observed estimate, thus aiming to improve the accuracy of the CI. 

3.3. Bias-corrected and accelerated (BCa) bootstrap method 

The BCa bootstrap CI incorporates two key adjustments: a bias-correction factor and an 

acceleration factor. These elements are designed to correct for bias and adjust for skewness in 

the distribution of bootstrap estimates. This method addresses the tendency of the PB CI to 

overestimate the true coverage rate, as noted in previous studies [31 - 32]. The estimator of the 

bias-correction factor, denoted as 
0
ˆ ,z  is calculated by determining the proportion of bootstrap 

samples where the estimated parameter is less than the original observed estimate: 
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where 1  is the inverse cumulative distribution function of the standard normal distribution. 

The estimator of the acceleration factor, denoted as ˆ,a  is computed through jackknife 

resampling, or “leave-one-out” resampling, which generates n  replicates of the initial sample, 

where n  is the sample size. The first jackknife replicate omits the first observation 
1,X  the 

second omits the second observation 
2,X  and so forth, resulting in n  samples, each of size 

1.n  An estimate ( )
ˆ

i   is obtained for each jackknife resample, with their average denoted by 

( ) ( )

1
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  The estimator of the acceleration factor, ˆ,a  is then calculated as follow: 
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Using 
0ẑ  and ˆ,a  the values 

1  and 
2  are computed: 
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where 
/2z  is the / 2  quantile of the standard normal distribution. The (1 )100%  BCa 

bootstrap CI for   is then constructed as follows: 

  
1 2

* *ˆ ˆ, ,BCa B B
CI

 
 
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           (7) 

where 
1

*ˆ
B


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 and 
2

*ˆ
B


  

 are the corresponding quantiles from the sorted bootstrap estimates, and  

   denotes the ceiling function. When 
0
ˆ 0z   and ˆ 0,a   the BCa bootstrap CI is equal to the 

PB CI. 

3.4. Bootstrap-t (B-t) method 

Let   be the parameter of interest. We compute an estimate ̂  and an estimate of its 

standard error, ˆ
ˆ


  from the given data. Then, for each bootstrap sample, we calculate the 

bootstrap estimates *̂  and estimated standard errors of the bootstrap estimator, *ˆ
ˆ .


  The 

bootstrap-t statistics are computed as: 

*

*
*

ˆ

ˆ ˆ
.

ˆ
t



 




  

The (1 )100%  B-t CI for   is then given by 

  * *

ˆ ˆ1 /2 /2
ˆ ˆˆ ˆ, ,B tCI t t  
                 (8) 

where *

/2t  and 
*

1 ( /2)t   are the / 2  and  1 ( / 2)  quantiles of the distribution of 
*.t   

  4. SIMULATION STUDY 

This study focused on evaluating CIs for the ZTPG distribution parameter, using four 

distinct bootstrap methods. A Monte Carlo simulation was conducted using R version 4.2.2 [26] 

to cover cases with different sample sizes (n  = 10, 30, 50, 100, and 500) owing to the 

inaccessibility of a direct theoretical comparison. To examine the performance of the bootstrap 

methods under various conditions of data, the ZTPG parameter   was set at different levels—

0.1, 0.2, 0.5, 0.7, and 1.0 assessing a comprehensive assessment of the bootstrap methods across 

situations involving both small and large variances. For each situation, 1,000 bootstrap samples 

of size n  were generated from an initial pseudo-random sample, with the entire simulation 

process repeated 1,000 times to ensure robust results. The nominal confidence level 1   was 

fixed at 0.95 for evaluating the accuracy and reliability of the bootstrap CIs. The performance of 

the bootstrap CIs was evaluated based on two key criteria: coverage rate and average width. The 

bootstrap CI with a coverage rate near or exceeding the nominal confidence level reliably 

includes the true parameter value and is suitable for precise CI estimation of the parameter. 

Thus, a shorter average width apparently suggests that the bootstrap CI is suitable for the 

particular situation where the coverage rate is identical. 
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Table 1. Coverage rate and average width of the 95 % CIs for   of the ZTPG distribution. 

n    
Coverage rate Average width 

PB SB BCa B-t PB SB BCa B-t 

10 0.1 0.876 0.886 0.896 0.902 0.1399 0.1402 0.1208 0.1080 

 0.2 0.866 0.873 0.881 0.880 0.3078 0.3083 0.2607 0.2247 

 0.5 0.866 0.853 0.890 0.865 1.0258 1.0311 0.8239 0.8014 

 0.7 0.900 0.830 0.899 0.858 1.5715 1.5515 1.3544 1.2417 

 1.0 0.899 0.822 0.882 0.866 2.5515 2.6133 2.3927 2.2552 

30 0.1 0.891 0.927 0.908 0.911 0.0698 0.0698 0.0661 0.0649 

 0.2 0.914 0.905 0.922 0.922 0.1422 0.1422 0.1345 0.1313 

 0.5 0.926 0.917 0.933 0.929 0.4125 0.4136 0.3835 0.3699 

 0.7 0.904 0.902 0.913 0.914 0.6369 0.6382 0.5881 0.5586 

 1.0 0.918 0.894 0.926 0.920 1.0256 1.0219 0.9331 0.8623 

50 0.1 0.919 0.919 0.921 0.925 0.0519 0.0518 0.0501 0.0499 

 0.2 0.942 0.908 0.935 0.932 0.1068 0.1067 0.1031 0.1021 

 0.5 0.926 0.922 0.932 0.930 0.3061 0.3063 0.2937 0.2878 

 0.7 0.943 0.917 0.944 0.938 0.4614 0.4630 0.4399 0.4287 

 1.0 0.926 0.915 0.928 0.918 0.7369 0.7338 0.6945 0.6714 

100 0.1 0.932 0.941 0.939 0.939 0.0358 0.0359 0.0354 0.0352 

 0.2 0.944 0.930 0.944 0.939 0.0756 0.0757 0.0743 0.0741 

 0.5 0.949 0.935 0.944 0.946 0.2094 0.2093 0.2049 0.2033 

 0.7 0.949 0.943 0.948 0.947 0.3128 0.3126 0.3051 0.3023 

 1.0 0.951 0.932 0.947 0.946 0.4911 0.4907 0.4775 0.4707 

500 0.1 0.954 0.953 0.951 0.955 0.0159 0.0159 0.0159 0.0159 

 0.2 0.937 0.943 0.940 0.945 0.0329 0.0329 0.0329 0.0328 

 0.5 0.943 0.952 0.940 0.949 0.0918 0.0918 0.0915 0.0914 

 0.7 0.943 0.952 0.940 0.949 0.0918 0.0918 0.0915 0.0914 

 1.0 0.951 0.935 0.942 0.943 0.2116 0.2110 0.2101 0.2095 

The simulation results, presented in Table 1, indicate that for 10,n   the coverage rates of 

all four bootstrap methods were generally below 0.90, failing to meet the nominal confidence 

level of 0.95. Despite this, the BCa bootstrap method exhibited superior performance compared 

to the others in these scenarios. For sample sizes of 30n   and 50, while all methods still fell 

short of the nominal confidence level, the coverage rates of the BCa bootstrap and B-t methods 

showed no significant differences. When the sample size increased to 100,n   all methods 

achieved coverage rates near the nominal level, performing comparably well in terms of both 

coverage rate and average width. Conversely, a coverage rate that was similar to the nominal 

confidence level of 0.95 was found using the BCa bootstrap approach. As the sample size 

increased, the coverage rates for all bootstrap methods showed an upward trend, gradually 

converging towards the nominal confidence level of 0.95. Additionally, the average widths of 
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the CIs expanded as the parameter value increased. This pattern is attributed to the direct 

relationship between the parameter value and the variance, where larger parameter values 

typically lead to greater variability, thereby resulting in wider CIs. 

As expected, increasing the sample size led to a decrease in the average widths of the CIs 

for all four bootstrap methods. The B-t method produced the shortest average width when the 

sample size was small. However, this method provided a poor coverage rate markedly lower 

than the nominal confidence level of 0.95, indicating its inadequacy for reliable interval 

estimation in smaller samples. For all sample sizes, it was shown that the average widths gained 

using the PB and SB approaches did not differ significantly. In summary, the BCa bootstrap 

method performed best in terms of coverage rate even with small sample sizes. 

5. NUMERICAL EXAMPLES 

For appraising the CI for the parameter of the ZTPG distribution with two real-life samples, 

this study established the suitability of bootstrap methods. In addition to these two data sets, the 

projected bootstrap methods can be used on other count data fitted to the ZTPG distribution. 

5.1. Demographic application 

Table 2 presents data on the count of mothers with children who have experienced at least 

one child loss [33], based on a total sample of 135 individuals. The Chi-squared goodness-of-fit 

test [34] yielded a Chi-squared statistic of 3.1924 and a p-value of 0.2027, suggesting that the 

ZTPG distribution with parameter estimator 2.0011̂   is appropriate for modeling this dataset. 

Table 3 reports the 95 % CIs for the parameter of the ZTPG distribution. These results are 

consistent with the Monte Carlo simulation results where the average widths of the BCa 

bootstrap and B-t CIs were shorter than those obtained using the PB and SB methods. 

Table 2. The count of mothers with children who have experienced at least one child loss. 

Number of child deaths 1 2 3  4 

Observed frequency 89 25 11 10 

Expected frequency 83.5907 32.1380 12.1364 7.1349 

Table 3. The 95 % CIs for the parameter and their corresponding widths in the demographic application. 

Methods Confidence intervals Widths 

PB (1.5778, 2.7108) 1.1330 

SB (1.2878, 2.4245) 1.1367 

BCa (1.5384, 2.6671) 1.1287 

B-t (1.5431, 2.6090) 1.0659 

5.2. European red mites application 

Garman [35] provided data on the European red mite number on apple leaves, presented in 

the second dataset of Table 4, with a total sample size of 80. The Chi-squared goodness-of-fit 

test [34] yielded a Chi-squared statistic of 2.3791 and a p-value of 0.4975, indicating that the 

ZTPG distribution, with an estimated parameter value of 1.1087,̂  is a suitable model for this 
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dataset. The 95 % CIs for the ZTPG distribution parameter are presented in Table 5. The results 

correspond with the Monte Carlo simulation findings since the widths of the BCa bootstrap and 

B-t methods were shorter than those of the PB and SB methods. 

Table 4. The European red mite number on apple leaves. 

European red mite number 1 2 3 4  5 

Observed frequency 38 17 10 9 6 

Expected frequency 36.5747 20.2298 10.9617 5.8471 6.3867 

Table 5. The 95 % CIs for the parameter and their corresponding widths in the European red mites 

application. 

Methods Confidence intervals Widths 

PB (0.8806, 1.4666) 0.5859 

SB (0.7491, 1.3368) 0.5877 

BCa (0.8669, 1.4454) 0.5785 

B-t (0.8595, 1.4129) 0.5534 

6. CONCLUSIONS AND DISCUSSION 

In this study, we introduce the bootstrap methods-namely, the PB, SB, BCa bootstrap, and 

B-t methods-for constructing CIs for the parameter of the ZTPG distribution. The Monte Carlo 

simulation results indicate that sample size plays a critical role in the performance of these 

bootstrap CIs. Specifically, when the sample sizes were 10, 30, and 50, the coverage rates for all 

four methods were noticeably lower than the confidence level of 0.95, highlighting their 

limitations in smaller sample situations. When the sample size was sufficiently large ( 100),n   

the coverage rates and average widths showed minimal differences. Based on our findings, the 

BCa bootstrap method demonstrated superior performance, maintaining reliable coverage rates 

and reasonable interval lengths even with smaller sample sizes and across various parameter 

settings. This robustness was evident both in the simulation study and when applied to two real-

world datasets. The findings in this study offer simulation results that agreed with the study of 

Flowers-Cano et al. [27], which used a Monte Carlo Simulation to contrast the handling of four 

bootstrap CIs. The coverage rates of the BCa bootstrap CI were nearly constantly higher than 

those gained with the other CIs, as suggested by their results. 

The other CIs for comparison with the anticipated bootstrap CIs should be the emphasis of 

future research. Of particular significance are the methods used to build the CIs for the 

population mean, the coefficient of variation and others. Further, no research exists concerning 

hypothesis testing for the ZTPG distribution parameter. For other distributions, the bootstrap CIs 

reviewed in this work could be used. Future studies could address these concerns.  
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