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Abstract. Drones are increasingly being used in surveillance, agriculture, and delivery tasks. 

However, the real-life application of images collected from drones in urban management is still 

limited. Although drone images have many advantages thanks to the flexibility of the latest 

devices, there are still new challenges, such as top-down views, small objects, arbitrary 

directions, and class imbalance. This paper presents the results of research, survey, and 

evaluation of the performance of CNN-based network architectures for object detection in aerial 

images. Experiments were conducted on seven deep learning network architectures: VGG, 

ResNet, ResNext, Res2Net, ResNeSt, HRNet, and RegNet to bring objective judgments and 

conclusions based onpractice, contributing to the development of solutions to be applied in 

determining the status of urban traffic. The baseline object detection method used to train object 

detection is Faster R-CNN, which is the standard method widely used nowadays. Experiments 

on UIT-Drone21 and XDUAV datasets were conducted to provide insightful analyses for further 

studies in the future. 

Keywords: aerial images, object detection, vehicle detection, convolutional neural networks 
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1. INTRODUCTION 

Building Smart Cities is a trend in the 4.0 era, accompanied by a growing demand for 

traffic management in these urban areas. Currently, most roads in Viet Nam still use CCTV, and 

sensors as tools to monitor the traffic situation, but these devices are very passive in information 

collection since the shooting angles of a camera are always limited. In order to capture the entire 

traffic situation at a time, it is necessary to attach numerous cameras at different angles. But this 

puts pressure on the limited infrastructure in our country. On the other hand, the lack of 

information can lead to biased predictions that should not be made. 
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Drones are gaining more attention recently [1, 2] because the images collected from drones 

are comprehensive thanks to their ability to fly high over distances with a radius of up to several 

kilometers, flecxible expansion to all angles, decent quality of information collection, and high 

resolution (up to 4K) of the attached camera’s device”. With those advantages, unmanned aerial 

vehicles allow easy detection of traffic vehicles, including small objects such as cars and 

motorbikes. But this type of equipment has not been widely applied to urban management tasks 

in Viet Nam. 

  

Figure 1. Results of object detection in aerial images. 

The urban management problem does not stop at the information collection device because 

there is still a need for a solution where the information source is used more effectively and 

optimally. Advanced techniques can help analyze information sources, automatically make 

decisions, and reduce management pressure on the authorities. Currently, computer vision is one 

of the throne-problems in this field that are highly practical and easy to apply to real-life 

situations, typically the object detection problem. With input as image and output as location and 

identification of objects of interest, object detection is the ideal solution for traffic monitoring, 

vehicle estimation, convenient object tracking, and traffic analysis. Object detection in aerial 

images has been solved enthusiastically around  the world. Many datasets proposed for this 

problem can be mentioned such as VisDrone-DET [3], UAVDT-DET [4], XDUAV [5], and AU-

AIR [6]. In which, VisDrone-DET is considered the most standard benchmark for evaluating the 

detection performance of models. 

On the other hand, for each object detection method, there is usually a convolutional 

network as the backbone architecture to extract essential features from the raw input information 

so that the model can learn better to make more accurate predictions. Furthermore, in this study 

it is hypothesized that the selection of which convolutional network for information processing 

greatly affects the performance and accuracy of the output model. 

In this paper, the effectiveness of the recent architectures is surveyed, including VGG [7], 

ResNet [8], ResNeXt [9], Res2Net [10], ResNeSt [11], HRNet [12], and RegNet [13], which are 

very new backbone network architectures. The mentioned architectures are used to train the 

Faster R-CNN for detecting objects in aerial images. This study mainly focuses on the 

Vietnamese context, therefore, the datasets used to do the empirical study are UIT-Drone21 and 

XDUAV. UIT-Drone21 is the novel benchmark for capturing images from a DJI drone in urban 

Viet Nam, and XDUAV was collected using a DJI Phantom 2 at an average altitude of 100 m in 

Xi'an, China's rural and urban areas. 
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The rest of the paper is organized as follows: Chapter 2 delves into the work related to deep 

convolutional neural networks and experimental architectures, Chapter 3 presents and evaluates 

the results, and at the end, Chapter 4 will give conclusions and directions for further research. 

2. MATERIALS AND EXPERIMENTAL NETWORKS 

2.1. Components of the convolutional neural network 

Convolutional layers: The goal of the convolutional layers is to extract high-level features from 

the input image. Convolutional neural networks are not limited to just one convolutional layer. 

Usually, the  first convolutional layer is responsible for capturing low-level features such as 

angles, colors, gradient directions, etc. With the layers added later, the architecture will be 

designed to accommodate the gradual collection of higher-level features. Thanks to that, the 

network can learn information, and semantic insights in the image as humans can understand. 

Pooling layer: The pooling layer is a downsampling operation (downsampling is the reduction 

of the sampling frequency), often used after the convolutional layer, which increases the spatial 

invariance, reduces the computation and training time, but retains important features. There are 

many types of pooling, such as Sum pooling,    pooling, Max pooing, and Average pooling. 

Among them, Max pooling and Average pooling are the most popular types of pooling. 

Activation function: Activation functions are non-linear functions that are applied to the output 

of neurons in the hidden layer of a network model, and the result of the function is used as the 

input for the next layer. The purpose of the activation function is to help the model learn the 

complex non-linear systems implicit in the data. The most common activation functions are 

Sigmoid, Relu, and Softmax. 

Batch normalization: Batch normalization is a widely applied technique for deep neural 

networks (DNNs). Thanks to smoothing the loss function surface (optimization of landscape), 

batch normalization will help the model to be trained faster and more stable [14]. 

Dropout: Dropout is a technique where randomly selected neurons are ignored during training. 

Their contributions to the activation of downstream neurons are temporarily removed during the 

forward propagation, and any weight updates are not applied to those neurons in the 

backpropagation process. It helps the final model avoid overfitting. 

2.2. Experimental Backbone Architectures 

VGG (2014): VGGNet [7] is a simple traditional deep learning network with stacked 

convolutional layers. The input image after passing through the network will reduce the 

resolution and increase the depth, which helps to learn the shallow features and depth of the 

image. VGGNet uses a     filter in the convolutional layers and achieved high results in the 

2014 ILSVRC competition. VGGNet is the foundation for future network studies. In this study, 

VGG-19 architecture is used as the test architecture which is visualized in Figure 2. 

ResNet (2015): ResNet, short for Residual Networks, is a CNN architecture proposed by  He et 

al. in  2015 [8] and won the top 1 in the 2015 ILSVRC image classification contest. Different 

from previous traditional CNN architectures, ResNet’s success is using Residual blocks to avoid 

(Figure 3). This block consists of convolutional layers (usually 2 layers      and 1 layer 

Vanishing Gradient. The idea of ResNet is the network architecture based on Residual blocks 

    in between). The block input is a feature x, after going through the convolutional layers in 

the block it obtains the feature     , then the feature x will be added with      and the final 
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output of the Residual block is         . Using Residual block will keep the features from 

shallow to deep layers, avoiding the gradual loss of image feature information leading to 

Vanishing Gradient. 

 

Figure 2. Architecture of VGG-19. 

 

Figure 3. Illustration of Residual block in ResNet. 

ResNeXt (2016): Proposed in the study [9], the ResNeXt architecture also uses the Residual 

block and skip connections; however, the authors split into multiple branches in the Residual 

block, then these branches are added together. The number of branches to be split is a 

hyperparameter called “cardinality”. The higher the “cardinality” will help reduce the error 

on the test set, which means that the overfitting will be solved. The dimension of each branch 

is denoted by d. Figure 4 illustrates the Residual block proposed by the authors. 

 

Figure 4. Illustration of Residual block in ResNeXt. 

Res2Net (2019): Introduced in 2019 [10] with the desire to improve image representation 

with multidimensional features, Res2Net replaces the traditional       filter in the Residual 

block commonly found in ResNet or ResNeXt with a set of smaller filter groups. 

Specifically, after the convolutional layer    , the authors divide the image feature into s 
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sub-features, denoted by   , where            . Each sub-feature xi will have the same 

size but the depth is only equal to 
 

 
 the input feature. 

 

Figure 5.  Res2Net Module [10]. 

In the Res2Net architecture, branches will be processed at a multi-scale with the desire 

to extract global and local features. To combine information at these rates, the authors use as 

low product class      . The authors also show that the parameter s controls the number of 

dimensions. The larger s, the larger the learned filters will be with negligible computational 

cost. 

HRNet (2019): The study [12] proposes an HRNet architecture to preserve high-resolution 

representations of features as they traverse the network. First, the authors start from a high-

resolution convolutional stream, gradually add in lower-resolution streams, and then connect 

them. The authors’ architecture consists of   stages, each with   streams corresponding to n 

resolution. 

 

Figure 6. (a) Illustration of parallel multi-resolution streams; (b) Illustration of how to combine 

output at different resolutions; (c) Description of the combination as well as the fully connected layer 

on the convolutional layers [12]. 

Streams are denoted by    , where   is the order of the stage and   is the resolution 

position of that stream. The resolution position of the next stream will be calculated as 
 

     . 

To combine convolutional streams, the authors use a transformation function        which 

depends on the resolution position   and the degree position output resolution  .  If    , 

the input and output have the same size, so there is no need to change. For     the output 

is larger than the input, so     convolutional layers    whose with          . are 

needed. If    , the output is smaller than the input, so it is necessary to increase the output 
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size by a bilinear sampling layer followed by a convolutional layer      to control and 

adjust the number of feature dimensions. 

ResNeSt (2020): In the study [11], the authors propose a ResNest architecture that applies 

channel-wise on different branches to take advantage of this method’s success in interacting 

between features and learning diverse semantics. But instead of using Residual blocks like 

ResNeXt, the authors use Split-Attention blocks. This architecture also divides the feature 

into   groups (  is the hyperparameter of the model) and proposes to add a hyperparameter 

  corresponding to the number of subnet branches. Hence, the total number of feature groups 

will be       .  The sub-branches in each block are connected by a Split-Attention block 

(Figure 7). In the Split-Attention block, the authors apply the shortcuts commonly found in 

the Residual block, for features that are not of the same size, a transformation function   will 

be applied to perform this. 

 

Figure 7. Split-Attention Block [11]. 

RegNet (2021): RegNet was introduced in early 2021 in the study [13], in which the authors 

propose a mnemonic mechanism to extract additional features, then feed them into the ResNet 

network. Specifically, this mnemonic includes multiple convolutional RNNs (LSTMs or GRUs). 

The authors suggest two types of Residual blocks in ResNet: non-bottleneck blocks and 

bottleneck blocks. Based on this, by applying RNN networks, the authors obtain the RNN-

Regulated ResNet module (Figure 8a) and Bottleneck RNN-Regulated ResNet (Figure 8b). 

 
Figure 8. (a) RNN-Regulated ResNet; (b) Bottleneck RNN-Regulated ResNet [13]. 

2.3. Baseline Object Detection Model: Faster R-CNN 
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To train the object detection task, the Faster R-CNN method, a standard two-stage object 

detector proven to perform well on aerial images, is chosen. Faster R-CNN [15] is an enhanced 

version of Fast R-CNN [16] proposed by Ren et al. in 2015, and it is a two-stage detector. This 

model is a single, unified network for object detection consisting of 2 modules: the Region 

Proposal Network module (RPN module [15]) and the Fast R-CNN detector. The Region 

Proposal Network will serve as the “attention” of the system, telling the Fast R-CNN detector 

where to look. This module is also the main alteration of Faster R-CNN compared to its 

predecessor. The RPN module not only improves the system’s speed but also helps Faster R-

CNN achieve state-of-the-art detection accuracy on PASCAL VOC 2007 [17], 2012 [18], and 

MS COCO datasets. In addition, the Faster R-CNN model and RPN are the foundation of the 

first-place winning entries in ILSVRC [19] and COCO 2015 competitions. 

For better illustration, Faster R-CNN can be formulated as follows: 

                 
                              

                 
                           
                           

where             is the convolutional neural network that is used to extract features   for 

the input image  .                           is the Regional Proposal Network which is 

used to extract coordinates of regions of interest in the image based on feature  .    is the set of 

fixed-size feature vectors of regions of interest extracted from  .   is the set of predicted boxes 

which is inferenced from                       .   is the set of predicted categories of 

corresponding boxes in boxes inference from                       . 

3. RESULTS AND DISCUSSION 

3.1. Dataset 

UIT-Drone21. Experiments were conducted on the dataset UIT-Drone21
1
, consisting of 15,370 

images. UIT-Drone21 is the largest dataset that includes images captured in Vietnamese traffic 

contexts and served for tasks such as object detection and object tracking.  

 
Figure 9. Statistics of the number of objects per vehicle category in the UIT-Drone21 dataset 

The dataset is built on four classes: Pedestrian, Motor, Car, and Bus. However, due to the 

specificity of Viet Nam’s traffic,  the motor class will account for most of the samples in the 

                                                           
1
 https://github.com/nguyenvd-uit/uit-together-dataset/blob/main/UIT-Drone21.md 
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dataset. The dataset is divided into three subsets, in which 8,580 images are for training, 1,061 

images are for testing, and 5,729 for model evaluation. Notably, for challenging the object 

detection models, scenarios in the test set do not appear in the train set. These can evaluate the 

generalization of models. The statistics of the number of objects per vehicle category are 

illustrated in Figure 9. Some examples of UIT-Drone21 dataset are shown in Figure 10. 

 

Figure 10. Scenes appearing in the UIT-Drone21 dataset. 

 

 
Figure 11. Statistics of the number of objects per vehicle category in the XDUAV dataset. 

 

 

Figure 12. Scenes appearing in the XDUAV dataset. 
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XDUAV [26]. Extensive experiments were conducted with the XDUAV dataset. XDUAV was 

collected using a DJI Phantom 2 at an average altitude of 100 m in Xi'an, China's rural and urban 

areas. The dataset consists of 11 videos which are recorded in resolution 1920 1080, 30 fps. 

There are 4,344 images, including 3,475 training images and 869 testing images. The categories 

include car, truck, bus, motor, bicycle, and tanker. The statistics of the number of objects per 

vehicle category are illustrated in Figure 11. Some examples of the XDUAV dataset are shown 

in Figure 12. 

3.2. Metrics 

The test was evaluated on the mean Average Precision (mAP) measure according to the 

standard of the MS COCO dataset [20]. The mAP is a metric that aggregates AP results across 

multiple thresholds. Specifically, the mean of 10 IOUs from 50 % to 95 % (the difference is 5 

%) is calculated. On the other hand, the accuracy of a specified IoU value (AP at IoU 50 % and 

AP at IoU 75 %) is also evaluated. 

To illustrate better, the mAP metric can be formulated as follows: 

    
                   

                 
     

   
   

       

     

    
 

  
∑   [     ]

     

     

    
 

  
∑   

   

     

where     is the ratio that indicates the overlap of predicted boxes and ground-truth boxes. 

AreaOverlap and AreaUnion calculate the overlap area and union area, respectively.    is the 

average precision of category  , calculated by the ratio of true positive predictions and the sum 

of true positive predictions     and false positive predictions    . A predicted box that is 

detected as a    prediction must satisfy two conditions: 1) its     with ground-truth boxes must 

be higher than a defined threshold; 2) the predicted category must be accurate with the ground-

truth box.     is the average of the list of    scores calculated by 10 IoU thresholeds from 50 % 

to 95 %. An     is the mean average precision of a list of    scores per class. 

3.3. Experimental Details 

To investigate the performance of the architectures outlined Section 2.2 on the UIT-

Drone21 dataset, Faster R-CNN [21] provided in MMDetection toolbox [22] was used as the 

standard method. For each architecture, 24 loops (epochs) with batch size = 1 on 4 Nvidia RTX  

2080ti GPUs are trained. The images before training will be resized to 1333 × 800, using  

random horizontal data augmentation with        . Other configurations are kept as default. 

The results are reported in Table 1. 
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Table 1. Results on vehicle categories on the UIT-Drone21 dataset (%). 

Architecture Pedestrian Motor Car Bus 

VGG-19 1.1 28.4 41.6 11.8 

ResNet-101 2.8 34.0 57.7 37.1 

ResNeXt-101 2.2 32.1 53.9 36.4 

ResNest-50 6.6 35.1 58.0 29.6 

Res2Net-101 3.3 32.9 55.9 40.6 

HRNetV2_W32 4.2 33.0 56.4 32.4 

RegNetx_1.6gf 2.7 32.8 56.1 31.2 

Table 2. Results on different types of AP metrics on the UIT-Drone21 dataset (%). 

Architecture 
AP 

AP 

@50 

AP 

@75 
            

VGG-19 20.7 36.5 20.2 2.3 15.2 27.8 

ResNet-101 32.9 46.5 38.7 2.2 20.4 44.3 

ResNeXt-101 31.2 47.4 35.8 2.8 19.6 41.8 

ResNest-50 32.3 51.7 34.4 2.6 23.3 41.5 

Res2Net-101 33.2 48.9 38.8 2.9 21.0 43.5 

HRNetV2_W32 31.5 46.7 37.2 3.5 20.4 43.3 

RegNetx_1.6gf 30.7 47.5 36.7 3.0 20.3 40.3 

Table 3. Results on vehicle categories on the XDUAV dataset (%). 

Architecture Car Truck Bus Motor Bicycle Tanker 

VGG-19 78.9 76.7 71.3 50.4 44.3 55.3 

ResNet-101 77.3 77.3 77.6 51.0 43.4 66.4 

ResNeXt-101 79.2 79.4 77.6 52.9 47.6 73.8 

ResNest-50 80.9 79.9 79.4 55.1 49.5 68.2 

Res2Net-101 79.4 80.2 79.8 52.2 46.7 71.1 

HRNetV2_W32 81.2 81.5 81.8 54.3 47.5 69.2 

RegNetx_1.6gf 77.1 78.0 75.2 52.7 40.7 65.7 

Table 4. Results on different types of AP metrics on the XDUAVdataset (%). 

Architecture 
AP 

AP 

@50 

AP 

@75 
            

VGG-19 62.8 89.7 76.1 34.1 58.7 74.0 

ResNet-101 65.5 92.1 77.5 33.0 61.6 75.7 

ResNeXt-101 68.4 94.3 80.1 35.5 64.4 78.0 

ResNest-50 68.8 93.4 80.9 36.7 64.4 78.1 

Res2Net-101 68.2 94.0 79.7 35.6 64.3 79.0 

HRNetV2_W32 69.3 93.0 81.5 36.8 64.6 79.8 

RegNetx_1.6gf 64.9 92.8 77.6 33.3 61.3 75.6 
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Table 5. Number of parameters of experimental backbones and their corresponding AP scores. 

Backbone 
Params 

(Millions) 
AP on XDUAV (%) 

AP on UIT-Drone21 

(%) 

VGG-19 37.27 62.8 20.7 

ResNet-101 60.14 65.5 32.9 

ResNeXt-101 98.87 68.4 31.2 

ResNest-50 44.35 68.8 32.3 

Res2Net-101 61.04 68.2 33.2 

HRNetV2_W32 27.10 69.3 31.5 

RegNetx_1.6gf 31.49 64.9 30.7 

3.4. Discussion 

To thoroughly evaluate the performance of 07 different backbones, AP scores of detection 

performances of categories are reported and the average AP among them is taken. With the test 

set of UIT-Drone21, the results are reported in Tables 1 and 2. Detection performances on the 

test set of XDUAV are reported in Tables 3 and 4. The number of learned parameters of Faster 

R-CNN is also reported using different backbones in Table 5. 

UIT-Drone21. Through the experimental results reported in Table 1 and Table 2, the VGG-19 

architecture gives the worst performance on all metrics, which is predictable because large 

number of parameters in VGG network can increase the risk of overfitting for large training 

data, so the features extracted from VGG-19 does not include useful information for drone 

images. The Res2Net-101 architecture gives the best harmonic accuracy when the average AP 

recorded is       , this architecture also records the best results on small objects with APs of 

       However, for specific classes, ResNet-101 records better results, when AP on three data 

categories Pedestrian        , Motor          and Car        gets the best results, in 

contrast, for the Bus class, AP only reaches 29.6 %, much lower than ResNest-50 

       .Moreover, in the Pedestrian class, ResNest-50 gives the best results with AP of 6.6 %, 

far ahead of the second highest architecture in this measure, HRNetV2_W32         . 

Thereby it can be seen that, to a certain extent, ResNest-50 is quite good at detecting small to 

medium objects but uite bad for large objects (Bus). On the other hand, in the RegNet 

architecture, the results are quite low compared to our expectations, when the average AP of this 

architecture is lower than the original ResNet-101version         . In general, the remaining 

architectures (except VGG-19 and Res2Net-101) give AP results in the range from        to 

      . But in general, the architectures give poor results on too small feature classes (box area 

<     pixels). Specifically, when comparing the APs of the pedestrian class, the results are in 

the range from       to      , while the APs of the classes also give results from 2.2 % to                

3.5 % only. 

XDUAV. In the test set of the XDUAV dataset, VGG19 continues to perform as the worst (62.8 

% AP). However, different from the results on the UIT-Drone21 dataset, HRNet performs the 

best in the XDUAV dataset (69.3 %). In UIT-Drone21, HRNet achieves the fourth-highest 

results. Its success lies in the multi-branch features learning; it will explore the low-to-high 

features, in parallel which capture the information high-to-low resolution of images. This is 

necessary with aerial images because the size of vehicle objects captured from the DJI varies. 

Therefore, the backbone should explore the pattern from low-to-high features adaptively, and 

HRNet does this well in the XDUAV dataset. The runner-up is ResNest architecture (68.8 %). 
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The learning scheme that explores the channel-wise information in deep features helps ResNest 

explore more patterns in images by depth. Another aspect that can be observed is XDUAV has 

fewer samples than UIT-Drone21, which is the reason for the poor performance of ResNet-101. 

Note that the biggest difference between ResNet and VGG is the skip connection and design of 

the residual block, and they are all deep convolutional neural networks that explore the patterns 

from low-to-high-level features. Therefore, it also needs a large number of samples to learn. 

HRNet and ResNest are the networks that explore more aspects of deep features, and it helps 

them in learning with a small number of samples. 

Complexity-Accuracy trade off. This study reports on the number of parameters of models 

trained with different backbones and their accuracies on the XDUAV dataset and UIT-Drone21 

calculated by AP in Table 5. Because HRNet explores low-to-high deep features in parallel, the 

number of parameters reduces significantly. As can be seen in Table 5, HRNet only includes 

27.1 million parameters, while the detection performance is the highest in XDUAV and fourth 

highest in UIT-Drone21. RegNet is the runner-up in terms of the number of parameters, but the 

results are lower than ResNet, which is a classical low-to-high convolutional network on both 

XDUAV and UIT-Drone21. All of these observations are important; they will help the next 

researchers choose a suitable backbone network to perform object detection tasks in aerial 

images according to their need. 

3.5. Detections Visualization 

 

Figure 14. Visualization of detection results on a sample image from UIT-Drone21 dataset of Faster R-

CNN models trained using six backbone networks (    zoom in for better illustration). 

This study also provides the visualization of detection results of Faster R-CNN models  

trained using different backbones in Figure 14. Based on the visualizations, ResNeXt, and 

Res2Net seem to do the bounding boxes regression task better. Indeed, the predicted coordinates 

from models trained using ResNeXt and Res2Net cover the objects more accurately than the 
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others. However, ResNet appears to have two false positive predictions, which misrecognize the 

two motor objects as "pedestrians". Besides, HRNet and VGG seem to recognize the pattern 

better, while the objects under shadow are predicted correctly; however, large objects such  as 

"bus" are misrecognized. Overall, ResNeSt detects quite well; while it does not misclassify the 

objects, it only misses the objects under the shadow or with no person on them. 

 

Figure 15. Visualization of detection results on a sample image from XDUAV dataset of Faster R-CNN 

models trained using six backbone networks (    zoom in for better illustration). 

4. CONCLUSIONS 

In conclusion, our study investigated seven different deep learning network architectures 

for object detection using the Faster R-CNN method on the UIT-Drone21 and XDUAV datasets. 

Our findings revealed that while simple network architectures like VGG-19 were prone to 

overfitting on large datasets like UIT-Drone21, more complex architectures resulted in improved 

performance, with a 10 % to 12 % increase in results. Notably, ResNest-50 demonstrated good 

performance in detecting small and medium objects, but showed lower performance on larger 

objects compared to other architectures. Furthermore, while Res2Net-101 did not achieve high 

results for individual classes, the overall results were the most consistent, with an average AP of 

33.2 %, the highest among all the architectures evaluated. On the XDUAV dataset, which had 

fewer samples compared to UIT-Drone21, HRNet and ResNest architectures performed well, 

despite having lower numbers of learned parameters. HRNet emerged as the best-performing 

architecture with the highest AP of 69.3 % on the XDUAV dataset. These findings provide 

insights into the strengths and weaknesses of different deep learning network architectures for 

object detection in the context of UIT-Drone21 and XDUAV datasets. Further research could 

explore optimization strategies and fine-tuning techniques to improve the performance of these 

architectures for specific application scenarios. 
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