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Abstract. Arguably the human body has been one of the most sophisticated systems we 

encounter but until now we are still far from understanding its complexity. We have been trying 

to replicate human intelligence by way of artificial intelligence but with limited success. We 

have discovered the molecular structure in terms of genetics, performed gene editing to change 

an organism’s DNA and much more, but their translatability into the field of oncology has 

remained limited. Conventional machine learning methods achieved some degree of success in 

solving problems for which we do not have an explicit algorithm. However, they are basically 

shallow learning methods, not rich enough to discover and extract intricate features that 

represent patterns in the real environment. Deep learning has exceeded human performance in 

pattern recognition as well as strategic games and are powerful for dealing with many complex 

problems. High-throughput sequencing and microarray techniques have generated vast amounts 

of data and allowed the comprehensive study of gene expression in tumor cells. The application 

of deep learning with molecular data enables applications in oncology with information not 

available from clinical diagnosis. This paper provides an overview of the fundamental concepts 

of deep learning, some essential knowledge of cancer genetics, and a review of applications of 

deep learning to cancer oncology. Importantly, it provides an insightful knowledge of deep 

learning and an extensive discussion on its challenges. The ultimate purpose is to stimulate ideas 

and facilitate collaborations between cancer biologists and deep learning researchers to address 

challenging oncological problems using advanced deep learning technologies. 

Keywords: deep learning, cancer genetics, cancer oncology, drug response prediction, deep learning 

applications. 

Classification numbers: 4.7.4, 4.8.5 

1. INTRODUCTION 

Arguably the human body is an extremely complicated system which we are still far from 

completely understanding. We have been struggling to define and explain the working of the 

higher mental functions by way of artificial intelligence and have had limited success.  
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We have made breakthroughs in discovering the “imprint” DNA makes on the fundamental 

building blocks of the human body. We have performed genome editing to change an organism’s 

DNA for many applications in health and medicine, but their translatability into the field of 

oncology has remained limited. We are still tentatively probing many fundamental issues and 

still merely exploring the scientific basis of the root cause of many problems including cancer 

[1, 2]. It is clear that when a system or a scenario is extremely complex and involves a 

combination of nonlinear and time varying relationships, mathematical frameworks are unable to 

capture the inherent complexity. Their simplified models with limited sets of parameters and 

preconceived assumptions are unable to offer solutions to many real-world problems such as 

preventing cancer or cybersecurity attacks. Turning to a more realistic scenario of building data-

driven systems, conventional machine learning has achieved successes in solving some difficult 

problems. However, it relies on a limited set of crafted features to feed current machine leaning 

methods; therefore, the success of such an approach is expected only for cases where the data 

actually correlates with the crafted features. Furthermore, conventional machine learning 

methods are not able to handle problems with millions of parameters and vast amounts of data 

samples. Conventional machine learning methods are basically shallow learning methods that 

are not rich enough to formulate and extract a large number of complex features that represent 

objects or patterns in real environments.  

Deep learning makes impressive progress towards human intelligence as it utilizes the 

process of “learning by examples.” The AlphaGo computer program defeated the world 

boardgame Go champion, Lee Sedol, 4 to 1 in a five-game match in 2016 [3]. AlexNet image 

classification model based on a convolutional neural network (CNN), proposed by Krizhevsky 

[4], won the image classification competition of the image dataset ImageNet [5] in 2012. Many 

remarkable successes have also been achieved over the last decade. Yet, it is still puzzling how 

deep learning performed these feats. We continue testing the limits of deep learning by applying 

it to many unsolved problems and at the same time determining its reliability in critical 

situations. We define deep learning as follows, “Deep learning is a subset of machine learning 

that employs a rich architectural neural network model with a large set of parameters. These 

parameters are learned through training with an extremely large amount of data to extract the 

features and their interrelationships to describe as closely as possible the system or the object 

represented by the data.” 

The discovery of DNA and the genome as the building blocks of the human system has 

allowed us to decode many fundamental rules in the construction and development of a human 

body in terms of the DNA arrangement in each cell. With the completion of the Human Genome 

Project and the advances of technologies such as Next Generation Sequencing, a huge amount of 

genomic and molecular data has been generated and made available for cancer research and 

management. Cancer can be viewed as a “complex disease” or “numerous complex personalized 

diseases". Regardless of the availability of genomic data, cancer challenges us with a real-world 

problem for which we have yet to find widely applicable solutions. Nevertheless, deep learning 

has been applied to many cancer-related problems with excellent results which are being 

translated to clinical use. 

Existing reviews either emphasize deep learning technologies and leave cancer biologists 

out of the equation or focus on molecular and cell biology of cancer without regard for deep 

learning practitioners who could apply their expertise to cancer research and translation of 

results to clinical usage. This paper focuses on deep learning methods, cancer genetics, and 

application of deep learning to cancer oncology. It will focus on providing cancer biologists with 

an essential understanding of deep learning methods and provide deep learning 
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researchers/practitioners with a crafted set of knowledge of cancer genetics and molecular 

biology, not covered by other reviews. This set of knowledge is essential not only for developing 

better cancer treatments but also for searching the patterns that trigger cancer. The paper 

discusses opportunities and challenges of deep learning and problems associated with its 

application to cancer. The prime purpose is to germinate ideas and facilitate the collaboration 

between cancer biologists and deep learning researchers to address challenging cancer issues 

using advanced deep learning technologies. 

The remainder of the paper is organized as follows. Section 2 provides the fundamentals of 

deep learning and deep learning methods. Section 3 provides the essentials of human genomics 

that are relevant to cancer as well as a summarized background of molecular biology of cancer. 

Section 4 discusses “why deep learning”, providing a detailed review of a drug response 

prediction application to demonstrate the research and development methodology, and identifies 

resources and datasets for deep learning applications. Section 5 reviews some recent applications 

of deep learning models to cancer oncology. Section 6 discusses issues and opportunities 

encountered in deep learning as well as its applications to cancer oncology. The conclusion 

summarizes the paper and discusses future directions for research. 

2. DEEP LEARNING - ESSENTIALS AND INSIGHTS 

Deep learning is a subset of machine learning but rather than building a mathematical 

model as in the case of conventional machine learning, it uses an artificial neural network as the 

model to extract features and make predictions from large raw datasets. This section aims to 

review the essentials of deep learning, its underlying features as well as the insights that enable 

superior performances in image processing, object recognition, board game competition against 

human champions, and other applications across diverse domains. 

2.1. From Machine Learning to Deep Learning 

For a computer to solve a problem, it requires an algorithm - a sequence of instructions 

mapping the input to the output. For example, when given a set of numbers, the computer only 

has to execute the instructions of the sorting algorithm to output the ordered list of numbers. 

However, we do not have an algorithm for many real-world problems. Differentiating spam 

emails from legitimate ones is such a problem. Given an email (a message) as input, the 

expected output should be either yes or no. Yet, we do not know how to devise an explicit set of 

instructions to directly decide whether the input email is spam. The difficulty is that what is 

considered spam is time varying and dependent on the specific context among individuals. 

However, if we have a lot of data, say, thousands of example messages, some are known to be 

spam and some are not, we can learn from the data what constitutes spam. Learning from 

examples is what we expect from a machine. In other words, machine learning is a process to 

extract automatically an implicit algorithm when we do not have an explicit algorithm but we do 

have lots of data [6]. When we are not able to identify or classify patterns buried deep in the 

data, machine learning helps detect and make prediction based on the data. To use machine 

learning to solve a problem for some set of data, an appropriate family of models is selected 

together with a set of selected parameters or features. The model is trained by solving an 

optimization problem that optimizes the selected parameters with respect to the selected loss 

function. In other words, a machine learning algorithm builds a mathematical model based on 

sample data (or training data) to make predictions or decisions without being explicitly 
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programmed to perform the task. Deep learning is a specialized form of machine learning with 

several differentiating features: 

● The models used by deep learning and conventional machine learning are different. 

Deep learning uses artificial neural networks with multiple hidden layers as the model for 

training and learning, while conventional machine learning builds a mathematical model, based 

on the data. 

● Deep learning methods allow a machine to be fed with a large volume of heterogeneous 

and high-dimensional raw data and to automatically discover the features needed for detection or 

classification. With conventional machine learning, machine learning experts in the problem 

domain have to extract manually a set of salient features from the raw data suitable for the 

learning system to detect or classify patterns in the input.  

● In deep learning, most model parameters are learned not directly from the features of the 

training examples, but from the outputs of intermediate stages (or of the preceding layers of the 

neural network architecture) [7]. On the other hand, most machine learning algorithms are 

shallow in that they learn the parameters of the model directly from the features of the training 

examples. See Box 1 for shallow learning vs deep learning. 

2.2. Deep learning: architectures and learning methods 

A deep learning method is characterized by the neural network architecture that it employs and 

the method it uses for training the parameters of the architecture to perform its intended 

function. The next section discusses various deep learning methods in terms of their 

architectures and learning methods. 

2.2.1 Architectures 

Deep learning is a form of machine learning where the model for learning is a multi-

hidden-layer artificial neural network (ANN). An artificial neural network is inspired by neural 

networks in the brain [8]. To understand the deep learning architecture, let us briefly describe the 

basic working of a neuron and the composition of neurons in neural networks. 

Neuron. Neurons are the specialized cells of the nervous system. Input to the nervous 

system is via sensory transducer neurons and output is through the triggering of muscle fiber 

contraction by motor neurons. Every neuron takes its inputs from, and sends its output to, groups 

of other neurons, transforming multiple inputs into a single output signal. A group of 

interconnected neurons is called a neural network [9].  

 

Figure 1. A neural cell in the nervous system. 

A typical brain neuron (shown in Figure 1) has a cell body and a number of dendrites 

(highly branched extensions that receive signal from other neurons) and a single axon, an 



 
 
Deep learning - cancer genetics and application of deep learning to cancer oncology 

 

889 

extension that transmits signals to other neurons. Each branched end of an axon transmits 

information to another neuron at a junction called a synapse. At most synapses, chemical 

messengers called neurotransmitters pass information from the transmitting neuron to the 

receiving neuron. An input signal received by a neuron triggers a change in its membrane 

voltage called an action potential, which is a nerve pulse that carries information along the axon. 

A neuron can produce hundreds of nerve pulses per second and the frequency, with which a 

neuron generates pulses, can vary in response to input. The neuron’s firing rate will therefore 

convey information about input signal strength [10]. 

Artificial Neuron. An artificial neuron (or a node) simplifies a neuron as follows. Inputs 

from impinging nodes are represented by {xi}, the node is represented as a processing unit that 

sums or integrates all its weighted inputs. The node processing unit (or the cell body) can be 

thought of as an integrator (summation) of the net input. The output of the node is often a 

nonlinear squashed value between 0 or 1 depending on the input sum. This transformation is 

called the activation function which may take several forms as dictated by practical training 

methods such as sigmoid and ReLU (Rectifier Linear Unit) - the two commonly used functions. 

 

Figure 2. Operations of an artificial neuron. 

The input into a typical node is a vector of elements {xk}. These elements are scaled by a 

vector of weights {wk} to give a raw weighted sum strength of the node: 

  ∑            (1) 

The weighted sum is passed through an activation function f(σ) to yield the output y: 

   ( )  {
        

 

     
                       

         (   )
  (2) 

An activation function is selected for several reasons: (a) it provides a way to take into 

account a nonlinear relationship between the input and the output and (b) it is preferably a 

differentiable function so that the error between the desired output and its estimate can be 

optimized with a steepest gradient descent method (to be discussed later). The most common 

activation functions are the sigmoid function and the ReLU function as shown in (2). See Box 2 

for further explanation. 

Neural Networks. The cerebral cortex of the brain is comprised of the grey matter (so-called 

because of the color) and the white matter. The grey matter forms the upper surface of the brain 

and below is the white matter, through which flow both axons of grey matter neurons (travelling 

to either other parts of the grey matter, or other parts of the brain, or the remainder of the body) 

and axons of neurons located in other parts of the brain (travelling to the grey matter). The 

cerebral cortex is a patchwork of distinct cortical areas, which are the functional modules of the 

cortex such as sensory function and association function, each dedicated to particular 
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information processing tasks. A cortical area is defined anatomically by the dense networks of 

axons that travel through the grey matter connecting neurons located within the same area. In 

contrast, connections between neurons located in different cortical areas are less numerous, and 

travel through the white matter. Cortical areas can also be distinguished through differences in 

the distribution and morphology of their neurons, as well as through differences in their patterns 

of intra-areal and inter-areal connectivity [9], [10]. Cortical areas are organized in a six-layered 

neural structure, with layer 1 at the surface of the cortex and layer 6 adjacent to the white matter. 

Each layer in a cortical area is a slab of cortex containing a common combination of neuron 

types, with each neuron of a particular type having a common pattern of synaptic input sources 

and axonal output targets. Each layer interacts in specific ways with both the layers in its own 

area and layers in other cortical areas. 

Artificial neural networks. Inspired by human neural networks, an artificial neural network 

consists of groups of nodes structured in layers from left to right as shown in Figure 3. The input 

layer, the hidden layers, and the output layer. ANNs constructed in this way have been shown to 

be capable of performing tasks associated with learning and memory. Each artificial neural 

network (representing a cortical area) is dedicated to particular information processing tasks, for 

example learning to recognize an object from sensory neurons of the input layer. Figure 3 shows 

typical architectures of artificial neural networks: (A) no hidden layered network (only input and 

output layers), one hidden-layered network, and (B) multiple hidden-layered network. The 

inputs are presented as the input layer. Typically, once the inputs of a layer are weighted 

according to the signal strength and transformed through the activation function, the outputs of 

the layer become the inputs of the following layer. The last layer, the output layer of the neural 

network, provides the estimate or expected outcome, such as a classification or a regression or a 

feature extraction depending on the type of neural learning method. 

 

Figure 3. Artificial Neural Networks. (A) Shallow Networks. (B) Deep Networks. 

Deep artificial neural network (DNN) architectures have an input layer, an output layer, and 

multiple hidden layers in between. The nodes in these different layers may be fully or partially 

connected. The input layer nodes receive input in the form of features, and thus typically the 

number of input layer nodes is equal to the number of features in the training data. The depth of 

a neural network (we use the term neural network instead of artificial neural network from here 

on) corresponds to the number of hidden layers, and the width to the maximum number of nodes 

in one of its layers. As shown in Figure 4, data is received at the input layer which transforms 

the data in a nonlinear way through the first hidden layers (l1), which in turn transforms the 

output of the first hidden layer in a nonlinear way through the second hidden layer (l2), and so 

on, before final outputs are determined at the output layer. Each node computes a weighted sum 

of its inputs and applies a nonlinear activation function to calculate its output f(σ). 
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Figure 4. Deep Neural Network - Hidden Layer Processing. 

The input into a typical neural network is a vector of elements {xk}. These are combined by 

a series of linear filters with weights {wk} to give the inputs to the hidden unit j (eqn. 3) 

  
   ∑    

          (3) 

This weighted sum of all the inputs to node j in the hidden layer is passed through an 

activation function f(σ) to give the output of node j (eqn. 4) 

  
    (  )   (∑    

     )     (4) 

The activation function  (  ) can be sigmoid or ReLU as seen above. The outputs from 

these hidden units of layer 1 (  ) then go through another layer of filters, produce a weighted 

sum at node i of layer 2 (  ) 

  
   ∑    

    
   ∑    

   (∑    
     )      (5) 

and be fed through another layer of activation functions to produce the outputs of layer 2. This 

process continues until the final outputs are produced at the output layer. 

  
    (  

  )   [∑    
   (∑    

     ) ]    (6) 

This set of operations is performed at every layer in the forward direction until the final outputs 

are obtained at the network output layer.  

2.2.2. Learning 

Neural Plasticity. In the human nervous system, it is known that the connection between an 

input neuron and its target neuron is adaptive in that the strength of the connection varies in 

accordance with the strength (or frequency) of signal sensed by the input neuron. This 

characterizes neural learning [10]. Learning is by repeatedly presenting the input pattern to 

optimize the intended performance measure, for example, minimize the difference between the 

output of the network and the intended output (called the loss function, in general) by varying 

the weights of the connections between neurons. In machine learning or deep learning, three 

major learning strategies include supervised learning, unsupervised learning, and reinforcement 

learning (Figure 5). 
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Box 1. Shallow versus Deep learning. 

With no hidden layers, a neural network can classify only linearly separable problems. It has 

been shown that with one hidden layer a network can describe any continuous function with an 

“adequate” number of hidden nodes, often an extremely large number of nodes are needed in 

the hidden layer. With two hidden layers the network can describe any function at all [11], [12], 

[13]. It means that a deep learning network may include one or more hidden layers; however, 

for practical reasons, deep learning architectures imply two or more hidden layers. This 

differentiates deep learning from shallow learning where the architecture only has one or no 

hidden layer. 

Supervised learning. It is a form of learning by examples whereby the algorithm (or the model) 

is trained to predict the desired output (label) from known input values. The function that 

measures the difference between the model estimate and the true label is called the loss function 

L(w) (or the error function E(w)). Learning is through training the network by repeatedly 

presenting the training examples (input-label samples) and letting the weights (the network free 

parameters) adapt in such a way to minimize the loss function L(w). This minimization is 

challenging, especially when the loss function is non-convex and high-dimensional. 

Backpropagation is the algorithm adopted for such a minimization in most neural architectures. 

Backpropagation algorithm. As L(w) is a function of the weights between the input and the 

output, its rate of change is determined by its gradient relative to the input, provided the function 

is differentiable. Since neural networks are organised in a sequential chain of layers from the 

input layer through the hidden layers to the output layer, the gradient of the loss function can be 

computed via the chain rule for derivatives in a backward manner from the output to the input 

(layer n to layer 1) as follows. 

  ( )

  
 
  ( )

    
 

    
      

       
    
    

 
    
  
                           (7) 

During training, the predicted output (or the model estimate) is compared with the true label to 

compute a loss for the current set of model weights. The gradient of the loss function relative to 

the input is determined by computing the loss caused by the weights in the layer just before the 

output then the loss caused by the weights of the layer before that and the procedure is repeated 

in the backward direction until the input is reached. Hence the algorithm is called a 

backpropagation algorithm. The loss function L(w) and the weights are updated after each input-

label sample. L(w) is optimized by following the steepest gradient descent (downhill slope) dw 

by learning rate α, a model parameter selected for the best performance. 

Box 2. The Vanishing gradient problem. 

The vanishing gradient problem arises whenever a network is trying to learn a model such as a 

multi-hidden-layered neural network but the gradients of a loss function become smaller and 

smaller through propagating backward layer by layer from the output to the input layer. The 

gradients may decrease to such a small value that adjustments to the weights make no difference 

to the optimization process and the learning process has to terminate as it never reaches a local 

or global minimum. Activation function such as sigmoid is prone to this vanishing problem as its 

gradients become small when the function operates near zero or one where the function is very 

flat. Surprisingly, it was discovered after a decade of experiments that the ReLU activation 

function solves this problem and allows faster learning in most deep learning cases. One issue is 

that ReLU is unbounded but this has not caused problems so far. For further exposure on ReLU 

and its variations, see [14 - 16]. 
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The calculation using sigmoid is relatively complex and requires a long computation time, 

and the gradient may vanish during the process of back propagation. Although ReLU has its own 

issues, it requires little computational effort and has a faster convergence speed. 

 

Figure 5. Learning methods: (A) Supervised, (B) Unsupervised, (C) Reinforcement. 

Unsupervised learning. With this form of learning, only the input data but no label (or ground 

truth) is available to guide the learning process. A model is learnt by clustering groups of input 

samples based on their similarity so as to decide if they belong to the same class. Similarity is a 

measure of some property of the data such as the distance between a specific feature or a group 

of features of data samples. Similarity measures are often preconceived by the designer of the 

algorithm. For a true unsupervised learning, it is expected that an unsupervised learning method 

be able to discover features of the data itself and select the similarity measure by itself given the 

set of input data. This form of learning implies a degree of intelligence that humans possess as 

they do learn to perform tasks by themselves. 

Reinforcement learning. Reinforcement learning (RL) is learning to map situations to actions 

through trial and error so as to maximize a numerical reward signal. In reinforcement learning, 

an agent is an entity that has explicit goals, can sense aspects of their environments, and can 

choose actions to influence their environments. RL agents learn through observing their 

environment, taking actions based on their observations, and assessing the utility of their 

behaviour through the incoming reward signal. RL agents learn by making observations of the 

state of the environment at each time step t. They use this information to select actions A to 

obtain a reward Rt. In a reinforcement learning system, a reward signal defines the goal of a 

reinforcement learning problem; a policy defines the learning agent’s way of behaving at a given 

time; a value function specifies what is good in the long run. On each time step, the environment 

sends to the reinforcement learning agent a single number called the reward and the agent selects 

actions to influence the environment so as to accumulate and maximize the total amount of 

rewards [17]. 

2.3. Deep learning methods 

In a previous section we describe a general, fully connected feedforward DNN. However, 

many deep learning methods have been developed for specific applications. These deep learning 

methods differ in the way nodes are arranged in the architecture and their specific learning 

methods, not just their architectures. In this section we describe the most useful deep learning 

methods including convolutional neural networks (CNNs), recurrent neural networks (RNNs), 
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Autoencoder-Decoder neural networks (AEs), and generative adversarial neural networks 

(GANs). The diagrams for these networks are shown in Figure 6.  

Convolutional neural network [18] is one of the most popular types of deep neural networks 

because of their superior performance for spatial data. CNNs are inspired by the neural process 

of the human visual cortex and are designed to process multiple data types, such as language 

sequences or images. The CNN works by extracting features directly from the data without the 

need to define them. Convolutional neural networks (CNN) represent a specific type of 

feedforward DL model. CNNs learn hierarchical representations by detecting different features 

of the presented data using a large number of hidden layers. Every hidden layer increases the 

hierarchy and complexity of the learned features. For example, the first hidden layer could learn 

how to detect edges, the second may learn to detect other components and so on until the 

complete shape of objects can be presented to the classifier layer of the CNN which decides or 

recognizes the intended object. 

The architecture of a typical CNN is structured as a series of stages. The basic structure of 

CNNs consists of three main types of hidden layers: (i) convolution layer, (ii) pooling layer, and 

(iii) fully connected layer. To deal with multidimensional data, the convolution layer of CNN 

has neurons arranged in three dimensions. The three-dimensional layers consist of several 2D 

filters. Each 2D filter is a window of neural nodes and connects with only a local section of a 

layer before it. The filter interacts with all the nodes in the previous layer through the 

convolution process by sliding the filter window over all sections of the previous layer. By 

computing convolutions between local sections and weight vectors (or filter weights), feature 

maps (local weighted sums obtained by sliding the filter over across all sections) are obtained at 

each convolution layer. This type of convolution operation allows CNNs to extract features that 

are highly correlated within and across sub-sections of data (Figure 6 and Box 3). The pooling 

layer of CNN reduces size of the layer by calculating mean, maximum, or other statistics of non-

overlapping subsections in the feature maps. This type of non-overlapping subsampling not only 

reduces the size of the feature maps but also enables CNNs to merge local features to identify 

more complex features. The final layer of CNN consists of fully connected layers similar to 

traditional DNN to perform supervised classification or regression. The architecture of a typical 

CNN is structured as a series of stages. The earlier stages are composed of a series of 

convolutional-pooling combined layers. The final stage is usually composed of fully connected 

layers for classification or regression. Supervised learning is used for CNNs. Backpropagating 

gradients through a CNN is as simple as through a regular deep network, allowing all the 

weights in all the filter banks to be trained.  

Box 3. Meaning of the Convolutional Operation 

If one creates an event (an impulse) at a single point in time t1 and applies it to any real system, 

its effect on the system will last or persist (with reduced effect) for a period afterward, counting 

from time t1. At time t2 (after t1), if one then applies another impulse, the effect on the system will 

be the additive effects of both impulses at time t2 onwards. In general, if an impulse is applied to 

the system at time tn, the overall effect on the system at time tn is the sum of the remaining effects 

of all other impulses that have been applied to the system (at t1, t2, …, tn). Explicitly, the effects 

on the system at time tn have n components: the remaining effect of the impulse input that was 

applied at time t1 plus the remaining effect of the impulse input that was applied at time t2 plus 

the remaining effect of the impulse input that was applied at time t3 plus … plus the remaining 

effect of the impulse input that was applied at time tn-1 plus the effect of the impulse at time tn. 

The time convolution effect is computed by shifting the time and adding the contributions from 
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all previous and current inputs at that timepoint. Time convolution is thus a computational 

method that takes into account the contribution of all inputs that affect the output at a specific 

timepoint. 

Convolution in CNN mirrors the same concept but in the spatial domain (spatial convolution), 

rather than in the time domain. For a 2-D image, this is done by shifting a window from left to 

right and from top to bottom of an image to take into account the effect of all surrounding pixels 

over a particular spatial point in the image. Similar process applies for 3-D or higher dimension 

objects. This explains why CNNs perform well for spatial data. 

In summary, the architecture and the learning/training of CNNs are designed to achieve the 

following properties. CNNs learn hierarchical representations from data in which higher-level 

features are obtained by composing lower-level ones. The CNN architecture reduces the number 

of model parameters compared to a fully connected network by applying convolutional 

operations to only small regions of the input space and by sharing parameters between regions. 

This allows more efficient training. Through convolution and pooling operations, CNNs achieve 

a high degree of invariance to location and translation, allowing superior object recognition. 

 

Figure 6. Diagrams of specific Multilayer Deep Learning Networks: (A) Convolution, (B) Recurrent, (C) 

Auto Encoder-Decoder, (D) Generative Adversarial Networks. 

Recurrent neural networks [19] are designed to model data that are sequential in nature, such 

as natural language or time series, and sequentially dependent data. RNNs have a basic structure 

with a cyclic connection. A node can receive as input not only the current data point but also the 

values of hidden units from previous time steps. RNNs, once unfolded in time, can be seen as 

deep feedforward networks with the same weights being shared among layers. The basic 

structure of RNNs is shown in Figure 6 with an input unit x, a hidden unit h and an output unit y. 

While processing data xt at sequential step t, hidden layer weight parameters W and hidden layer 

activations ht−1 of previous step are used. The computed results propagate on to yt and ht+1. U are 

weight parameters for connection between the input node and hidden layer, whereas V are 
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weight parameters for connection between hidden layer node and output node yt. The outputs of 

the hidden nodes at different discrete time steps can be considered as the outputs of different 

nodes in a deep multilayer network. For RNN networks, the process of convolution applies 

naturally as an unrolled RNN is just a sequence of time events. RNNs, once unfolded in time, can 

be seen as deep feedforward networks. RNNs are thus appropriate for sequential data. 

Supervised learning with a backpropagation algorithm is also used to train RNNs and it is called 

backpropagation through time (BPTT). Although the main purpose is to learn long-term 

dependencies, the BPTT method is more prone to the problem of vanishing gradients when the 

time sequence is long (i.e., large number of layers). Long short-term memory (LSTM) networks 

are specifically designed to handle this problem. LSTMs use special hidden units, called the 

memory cell, to maintain inputs for a long period. The cell has a connection to itself. At the next 

time step, it copies its own real-valued state and accumulates the external signal. This self-

connection is gated by another unit that learns to decide when to clear the content of the 

memory. LSTM networks have subsequently proved to be effective for machine translation.  

Autoencoders (AEs) are typically used for dimensionality reduction and feature representation 

learning before feeding other ML or DL methods for prediction. An AE is a NN that learns to 

reconstruct its input data by first reducing the dimension of the input and then reconstructing the 

original input data from the dimension-reduced input. AE neural networks have two 

components: the encoder and the decoder. The encoder transforms information from the input 

layer through a series of hidden layers into a hidden layer with fewer nodes at the end of the 

encoder, this encoder output layer represents the latent features of the original input. The 

decoder then takes the output layer of the encoder as its input and learns to reconstruct the 

original input of the AE. In the process of the encoding and the reconstruction, the AE maps the 

original input space to a specific feature space. A reduced dimension of the feature space is 

achieved by restricting the number of nodes in the hidden layers of the encoder. An autoencoder 

discovers latent features of the input data without relying on the labels associated with training 

instances of the input. In this sense, AE is an unsupervised deep learning neural network. To 

achieve this, the input sample acts both as the input to the encoder and as the label at the output 

of the decoder to calculate the loss function when the autoencoder learns to reconstruct its 

original input. The learning is by backpropagation through minimization of the errors between 

the output of the decoder and the original input to the autoencoder. 

Generative Adversarial Networks (GANs) [20]. Architecturally, generative adversarial 

networks consist of two neural networks in adversarial roles: a generator that iteratively learns to 

generate more and more realistic samples and a discriminator that tries to identify whether the 

samples are model generated or real. This competition between the two subnetworks ultimately 

makes GANs capable of generating samples that are indistinguishable from the corresponding 

real-world samples. Explicitly, the generator is a deep neural network that takes as input, a 

random noise vector and transforms it into a model distribution and the discriminator is a deep 

neural network that acts like a classifier to distinguish between output data point (fake) and 

training data sample (real). With these settings the learnt weights of the generator are the 

parameters that represent the model distribution.  

2.4. Deep learning training process 

A dataset is a collection of examples or sample points. The training process consists of four 

steps: data preparation, training, testing, and validation 
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Data Preparation. Raw data has to be pre-processed or transformed into a dataset that is 

suitable for the intended deep learning method. This may involve ways to deal with missing data 

values, transforming categorical features to numerical features, or normalizing feature values, 

etc. The dataset obtained is often randomly divided into 3 distinct subsets: training set, 

validation set, and testing set. Nominally, 70 % of the dataset is used for training, 15 % for 

validation and 15 % for testing but these proportions can be changed depending on the size of 

the data [7]. The training set is used to train the learning model, the testing set is used to test the 

model on the data that is not in the training set, and the validation set is used to evaluate the 

hyperparameters or empirical parameters of the model. Hyperparameters are not the weights 

(i.e., free parameters) in training, they are chosen beforehand heuristically by the model 

designer, such as the learning rate, the number of hidden layers, the number of nodes in each 

layer, the size of the connection weights. 

Training. Training is performed by repeatedly presenting data samples from the training 

dataset, allowing the network to adapt its weights across all layers until the loss function is 

reduced to an acceptable level. Once the procedure is completed, it is expected that the model 

will correctly predict the outcome when it is presented with a data sample from unseen datasets. 

Testing. Testing is done by presenting samples from the testing set, which the model has 

not seen in the training set, to determine the accuracy of the model’s prediction. 

Validating. Validation is the process for selecting the best (deep) learning method by using 

the validation dataset to find best values for the hyperparameters for the (deep neural network) 

model. The validation set is distinct from the training dataset and the testing dataset and is used 

solely for performance validation. However, if the validation dataset is small and deemed 

inadequate to represent samples of each class, cross-validation may be used. Cross-validation 

[7] on the training dataset is used to simulate a validation set and its working can be described as 

follows. The training dataset is divided into n subsets of the same size. Each subset is called a 

fold. The hyperparameters are used as variables to evaluate a model. In an n-fold cross-

validation, train the model Fi (i = 1 … n) on old folds, except for the ith fold Fi. Once the best 

hyperparameter values are found, the whole training dataset is used to train the model using 

those best values and the final model is tested with the test dataset. 

Underfit and Overfit problems. Often, we do not know the complexity of the data and 

hence the selected model (neural network architecture of deep learning) may be too complex or 

too simple for the data. Underfitting is when the model is too simple or the input features are 

inadequate to describe the complexity of the presented data. Underfit model is unable to 

correctly predict the labels of the training data. To fix the problem, either more data-correlated 

input features or a more complex model is needed. Overfitting is when the model is too complex 

for the presented data or the training dataset is too small to describe all the features of the data. 

Overfit models predict well with the training data but perform poorly for unseen data. The 

overfitting problem can be overcome by trying (i) simpler models with less parameters such as 

shallow neural networks or deep networks with smaller number of hidden layers, (ii) 

regularizing the model through an optimization process that constrains the hyperparameters 

associated with the complex model [7], or (iii) obtaining more training data. 

2.5. Deep learning evaluation 

In order to compare these different methods, multiple metrics are used to determine the 

effectiveness of a classification algorithm. These include accuracy, precision, recall, F-Score, 

and specificity, which are derived from the confusion matrix, and the area under the receiver 
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operating curve (AUC). The confusion matrix is a table that summarizes how successful the 

classification model is at predicting examples belonging to various classes. In a binary 

classification problem, there are two classes. For example, the model predicts two classes: A and 

not A. The confusion matrix is shown in Table 1. 

Table 1. Confusion Matrix. 

 

Other performance measures derived from the confusion matrix include precision, recall, 

accuracy, and specificity. 

 

Figure 7. Formula for precision, recall, accuracy, specificity, and F-Score (or F1 Score). 

Precision determines how many of the predictions are correct. Recall shows how many of 

the correct results are found. Accuracy determines how correct the values are predicted. F-score 

uses a combination of precision and recall to calculate a score that can be interpreted as an 

averaging of both scores. Specificity measures a true negative rate or specifies probability that an 

actual negative will test negative (Figure 7). 

The area under the ROC (receiver operating characteristic) curve (AUC) is commonly 

used to assess the performance of classification models. The curve represents the true positive 

rate against the false positive rate of a classifier as shown in Figure 8. ROC curves can only be 

used to assess classifiers that return a probability of prediction. The higher the AUC, the better 

the classifier. 

 

Figure 8. The area under the ROC curve. 

 3. CANCER AND CANCER GENETICS 

Tumors are formed by the abnormal growth of cells. The abnormal behaviour of these cells 

is caused by an alteration in their genome. The vast majority of genetic alterations found in 

cancers develop during the life of a patient in somatic cells [21].  
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In this section, we provide some introductory information about cancer, a fundamental 

understanding of human genetics in terms of genome, gene expression, DNA sequencing and 

various forms of mutations that may lead to cancer. We also focus on molecular and cell biology 

of cancer and the tumorigenesis processes. Given that deep learning technology is excellent and 

powerful in extracting latent features and patterns within data, we propose cancer genetics as a 

challenging area to which deep learning could be applied. There is a potential to not only 

develop better oncology but also prevent cancer as well as find its root cause which is still 

unknown [1, 2]. 

3.1. Cancer in a nutshell 

Cancer is caused by unregulated cell growth which leads to the formation of a mass of cells 

known as a tumor. A benign tumor grows unregulated without tissue invasion. Malignant tumors 

invade adjacent tissues and metastasize or colonize other organs of the body. Specifically, cancer 

is caused by a progressive degradation of normal cell behaviour through gene mutations. 

Mutated genes may lose their normal function and promote out-of-control cell growth, resulting 

in tumors that can migrate to other parts of the body. Three classes of genes are found to 

interfere in the regulation and maintenance of the human genome and play a key role in the 

initiation and progression of cancer: oncogenes, tumor suppressor genes, and caretaker genes. 

Oncogenes, mutated from proto-oncogenes, interfere with the regulation and differentiation of 

cells, and cause out-of-control cell growth; mutated tumor suppressor genes are unable to 

perform their functions of inhibiting cell growth and/or promoting cell death, resulting in 

unregulated cell growth; and caretaker genes, when mutated, cannot repair DNA damage, 

allowing the damage to propagate and induce mutation of other genes, resulting in instability of 

the genome. 

Tumor cells grow in a series of steps: the first step is hyperplasia: too many cells are 

produced from uncontrolled cell division. These cells appear normal, but genes have already 

mutated, resulting in some loss of growth control. The second step is dysplasia: further growth 

and abnormal changes to the cells. The third step is anaplastic:  the cells become more abnormal, 

spread over a wider area of tissue and lose their original function. The tumor is still benign. The 

last step is metastasis: the cells in the tumor invade surrounding tissues, including spreading to 

other parts of the body through the bloodstream or the lymphoid system and often resulting in 

mortality. However, not all tumors progress to this point. 

Most cancers arise as a consequence of genetic alterations in a single cell, but over time 

multiple genetic and epigenetic mutations occur in different cells within malignant tumors. This 

heterogeneity of tumors allows subsets of cells to be resistant to therapy. These cells survive and 

proliferate even if the majority of cells are killed [9]. 

3.2. Human genetics 

To understand cancer and cancer mechanisms, we need to understand cells and their 

behavior in terms of genome, DNAs, chromosomes, and genes. 

Genome. A genome is all of an organism’s genetic material, coding or non-coding, 

contained in the nucleus and the mitochondria of every cell [22]. It is the complete set of 

instructions for building, running, and maintaining an organism, and passing on the organism’s 

characteristics to the next generation. The genome is made of a chemical module called DNA. It 

contains genes, which are packaged in chromosomes. In other words, for an organism, every cell 

contains its genome, the genome contains chromosomes, chromosomes contain genes, and genes 

are made of DNA (Figure 9). 
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Chromosome. A chromosome is a package containing a portion of a genome, that is, it 

contains some of an organism's genes. Chromosomes are structured for division and only visible 

in the cell replication stage. Each chromosome is a long DNA molecule packed by a protein 

called histone to make it and all other chromosomes fit inside a cell’s nucleus. Different 

chromosomes contain different genes. Each nucleus contains 46 chromosomes in the case of a 

human cell. Chromosomes come in pairs, one from the mother and one from the father. The 

members of a pair have the same size and shape (except the sex chromosomes), and they have 

the same banding patterns. In other words, each person possesses 23 such pairs with 22 

autosomes (chromosomes pairs which are the same for males and females) and a pair of sex 

chromosomes, which differ between males and females. In humans, a female has two identical 

sex chromosomes (XX). A male has one sex chromosome that is like those of females, and one 

that is smaller and differently shaped (XY). Mitochondrial chromosomes. Mitochondria are tiny 

structures inside cells that synthesize molecules used for energy. Unlike other structures inside 

cells, each mitochondrion contains its own chromosome. This chromosome contains DNA 

(mitochondrial DNA) that codes for some, but not all, of the proteins that make up that 

mitochondrion. 

Gene. A gene is the fundamental unit of heredity. Genes are found on chromosomes and 

each gene is made of a specific segment of the DNA molecule. Different genes with different 

genomic sequences and interaction with the environment determine the phenotypes (distinctive 

characteristics, or traits) of an organism. The genes on each chromosome are arranged in a 

particular sequence, and each gene has a particular location on the chromosome (called its 

locus). The gene locus also includes (non-coding) regions that often control the expression 

(transcription/interpretation of the code and production of the coded proteins) of the gene. Genes 

have chemical markers to indicate where transcription should begin and end. Humans have 

20,687 protein-encoding genes [23]. Identification of cancer genes has led to a deep 

understanding of the tumorigenesis process and has resulted in many changes in cancer biology. 

DNA. A DNA is a molecule made of two strands of sugar-phosphate (nucleotides), which 

runs in opposite directions, and linked by four special molecules called nucleobases or bases: 

adenine (A), thymine (T), guanine (G), and cytosine (C). The four bases will only pair off in the 

following combinations: A with T and G with C. The pairing is by hydrogen bond interactions 

that span the double-stranded helix. DNA can make a copy of itself through a replication 

process. The original double-helix DNA (the parent) is unwound (by breaking the hydrogen 

bonds) into two strands, each with their bases attached. Since each base only pairs with one of 

the other 3 bases, a complementary strand can be constructed on each of the parent stands. As a 

result, one DNA replicates into 2 identical DNAs. 

 

Figure 9. Chromosomes, Genes, DNA, and Nucleobases. 
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Cell. A cell is a base unit that contains its genome. The cell is the fundamental unit of 

living matter. The human body is made of over 200 types of cells. Cells are differentiated into 

different organ tissue types that perform specific functions for that organ. Cells not only perform 

a whole range of tasks required by the organ they belong to but they also contain all the DNA 

instructions for doing so. An organism is constructed from organ types. Structurally, all cells are 

bound by a plasma membrane. Contained inside the membrane is a fluid called cytoplasm, and 

within it, a nucleus and other components called organelles. Each component of a cell has a 

specific function. The nucleus contains the cell’s genome and has its nuclear membrane with 

pores in it to allow small molecules to move between the nucleus and the cytoplasm. The 

organelles include ribosomes (for building proteins), endoplasmic reticulum (for transporting 

and storing molecules), Golgi apparatus (for modifying, packaging, and sorting molecules), 

vesicles (sacs for specialised processes), vacuoles (regions for storage and digestion), 

mitochondria (for producing energy used by the cell), and cytoskeleton (a network of protein 

filaments for maintaining the shape of the cell, anchoring components in place, and providing a 

basis for cell movement). 

Cell cycle control and cell division process (Figure 10). Cells divide when body tissue is 

growing and when worn-out cells need to be replaced. The cell cycle is the highly regulated 

process by which a cell replicates itself, copies its genetic material (DNA) and divides into two 

identical daughter cells. Cell cycle control or the control of the cell division is singularly 

important, if functioning properly it prevents cell growth that leads to tumor. Cell cycle control 

is through G1/S, G2/M, and M checkpoints as explained in Figure 10. 

The cell cycle consists of three phases: Interphase (G1 + S + G2), Mitotic phase, and 

Cytokinesis. Disruption of the cell cycle causes unregulated cell division that may promote 

excessive cell growth or even cancer [22, 10].  

In the interphase, most somatic cells have two gap phases: G1 precedes DNA replication (S 

phase) and G2 follows the S phase. In the gap phase G1, the cell synthetizes proteins and 

organelles (such as mitochondria and ribosomes), grows in size, and ensures that both daughter 

cells will inherit sufficient amounts (or number) of proteins/organelles. At the G1/S checkpoint, 

the cell checks if it satisfies conditions concerning daughter cells and if it is ready for DNA 

duplication before it can commit to divide by going to the S phase. If the cell does not pass all 

these conditions, it leaves the cell cycle, entering a resting G0 phase. In the S phase, the DNA is 

duplicated (the cell’s chromosomes are duplicated into two sister chromatids), along with the 

centrosome (the center supporting cell separation).  

In the gap phase G2, the cell continues to grow, organizes the microtubules to form a 

mitotic spindle structure that pulls the chromosomes apart and prepares for mitosis (Figure 10). 

The G2/M checkpoint ensures that the DNA was completely copied with no damage. If errors 

are detected, the cell will stay in G2 until repaired; otherwise, it undergoes a programmed cell 

death (apoptosis).  

In the mitotic phase (M phase) the cell stops growing and divides into two daughter cells. 

Mitosis is highly regulated and is conventionally broken down into five stages: prophase, 

prometaphase, metaphase, anaphase, and telophase and cytokinesis [10, 22]. During the 

prophase, the DNA condenses into recognizable chromosomes, the migration of centrosomes to 

both poles of the cell and the mitotic spindle (a series of specially synthesized protein filaments 

anchored to opposite sides of the cell) begins to form. During the prometaphase the nucleus 

membrane breaks down. Each of the two chromatids of each chromosome now has a kinetochore 

(a specialized protein structure) at its center. During metaphase, all the chromosomes align in 

the middle and for each chromosome, the sister chromatids are attached (at the kinetochore) to 
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the mitotic spindle coming from opposite poles. During the anaphase, the sister chromatids are 

separated from each other and are pulled towards the opposite ends of the cell. During the 

telophase and cytokinesis, the mitotic spindle is broken down, two nuclei forms, one for each set 

of chromosomes, the nucleus membranes reform and the cell’s contents are redistributed, and 

finally the cell membrane is physically separated to form two new cells (in cytokinesis). There is 

an M or Anaphase checkpoint to ensure the proper assembly of the mitotic spindle and its 

attachment to each chromosome. 

 

Figure 10. Cell cycle control and cell division process. 

3.3. DNA sequencing 

The fundamental unit of heredity, a gene, is a segment of the DNA molecule whose genetic 

instructions are coded in the order of A, T, G and C. Each gene has a unique ordered sequence of 

bases (see Figure 9).  

Sequencing DNA means determining the order of the four chemical building blocks that 

make up the DNA molecule. That is to determine the order of DNA bases - the order of As, Ts, 

Gs, and Cs, which make up an organism's DNA. Sequencing is important as it tells us the 

genetic information that is carried in a particular DNA segment (or gene). For example, we can 

use sequence information to determine which stretches of DNA contain genes and which 

stretches carry regulatory instructions (turning genes on or off). Importantly, sequence data can 

highlight changes in a gene that may cause disease. In the DNA double helix, the four chemical 

bases always bond with the same partner (A to T, and G to C). This pairing is the basis for the 

mechanism by which DNA molecules are copied when cells divide, and the pairing also 

underlies the methods by which most DNA sequencing experiments are done. The human 

genome contains about 3 billion base pairs (6 billion bases) that provide the instructions for 

making and maintaining a human being. Each of us has the same set of DNA molecules 

(chromosomes) but we are different because our genes have different on-off patterns. Whether a 

gene is turned on (or expressed) depends partly on heredity and partly on the environment. If a 
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gene expresses, its DNA sequence ordering encodes information for producing some useful 

products for our body. 

The Human Genome Project led to the completion of the DNA sequence for all human 

chromosomes in May 2006 [24]. The Next Generation Sequencing (NGS) and other sequencing 

technologies enable systematic mutational analysis of the cancer genome. Applications of 

sequencing technologies include mutational analysis, gene expression profiles for understanding 

cancer at the molecular level, and for providing prognosis information. 

3.4. Gene expression 

Gene expression is the process by which the instructions in our gene’s DNA segment are 

converted and encode an RNA transcript, which is often translated into a functional product, 

such as a protein (Figure 11). RNA is a chemical similar in structure and properties to DNA, but 

it only has a single strand of bases and instead of the base thymine (T), RNA has a base called 

uracil (U). Gene expression is a tightly regulated process that allows a cell to respond to its 

changing environment. It controls when proteins are made and the amount of protein made. Key 

steps involved in gene expression include transcription, mRNA processing, translation, and 

posttranslational modifications such as phosphorylation, methylation, and acetylation [23]. 

Transcription. Transcription is when the DNA in a gene is copied to produce an RNA 

transcript called messenger RNA (mRNA). An enzyme called RNA polymerase uses available 

bases from the nucleus of the cell to form the mRNA. Along the mRNA, the DNA bases are 

arranged into codons, a triplet of bases that specifies a particular amino acid to be attached to a 

sequence of amino acids in a protein. 

 

Figure 11. Gene expression process - Transcription, Splicing, and Translation to protein. 

Translation. Translation occurs after the messenger RNA (mRNA) has carried the 

transcribed ‘message’ from the DNA to the ribosomes in the cell for making protein. The mRNA 

reads each codon at a time. The message carried by the mRNA is read by a carrier molecule 

called transfer RNA (tRNA). Each amino acid is attached specifically to its own tRNA 

molecule. When the mRNA sequence is read, each tRNA molecule delivers its amino acid to the 

ribosome and binds temporarily to the corresponding codon on the mRNA molecule. Once the 

tRNA is bound, it releases its amino acid and the adjacent amino acids all join together into a 

long chain called a polypeptide. This process continues until a protein is formed. By differential 

inclusion or exclusion of regions of pre-mRNA, a single gene can generate multiple spliced 
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messenger RNAs (mRNAs) called isoforms that generate multiple functional proteins (Figure 

11). Exons refer to the portion of genes that are spliced together to form mRNA. Introns refer to 

the spacing regions between the exons that are spliced out of precursor RNAs during RNA 

processing. 

3.5. Regulation of Gene Expression 

The gene expression process is regulated by DNA-binding proteins (called transcription 

factors, TFs) that activate or repress transcription. A region near the transcription start site that 

contains binding sites for various transcription factors is called the promoter region. Changes in 

gene expression are also regulated by epigenetic mechanisms which modify gene expression 

without changes in the DNA sequence. Epigenetic mechanisms such as secondary modifications 

of DNA or histones (the proteins that packed and compressed DNA molecules) can result in the 

activation or silencing of gene expression or altering chromosomal loci [21], [23]. These 

mechanisms play a key role in genes involved in the formulation of tumors. Major epigenetic 

mechanisms include DNA methylation, Histone methylation, and Histone acetylation. DNA 

methylation involves the addition of a methyl group to cytosine of CpG dinucleotides in CpG 

islands in gene promoter regions. Histone methylation involves the addition of a methyl group to 

lysine residues in histone proteins. Methylations alter chromatin structure, making it either more 

open (allowing gene expression) or tightly packed (gene repression). Histone acetylation is 

another mechanism that results in an open chromatin configuration, which favors active 

transcription. Acetylation removes acetyl groups from histones.  

Sequencing of tumour-derived RNA enables the identification of differentially expressed 

genes, gene fusions (a hybrid gene formed from two previously independent genes), small RNAs 

(short noncoding RNAs that can inhibit gene expression), aberrantly spliced isoforms (multiple 

proteins encode from a single gene due to variations in the splicing process of joining or 

skipping coding and noncoding portion of the pre-mRNA). Modifications of DNA or histones, 

and changes in chromatin structure can also be identified. Gene expression profiling and 

genome-wide sequencing approaches have allowed the understanding of cancer at the molecular 

level. It has been suggested that individualized knowledge of pathways or genes deregulated in a 

given tumor (personalized genomics) may provide a guide for therapeutic options on the tumor, 

thus leading to personalized therapy (also called precision medicine). 

3.6. Mutations 

A mutation can be defined as any change in the base sequence of DNA. Some mutations 

may be harmful, others may constitute an evolutionary advantage. Mutations occur when a 

sequence of coding DNA for gene expression is altered, resulting in a defective protein or the 

intended protein may not be produced at all. Mutations can involve the entire genome or 

structural alterations in chromosomes or individual genes. Sequencing technologies can reveal 

sequence mutations, small insertions and deletions, copy number alterations, structural 

rearrangements, and loss of heterozygosity in tumour DNA samples.  

Mutations involving a single base-pair (or individual base substitutions) are referred to as 

point mutations. As each amino acid is specified by a codon consisting of three bases, if a single 

base is substituted the altered sequence may code for a different amino acid. If the DNA 

sequence change occurs in a coding region and alters an amino acid, it is a missense mutation,     

this may entail distinct phenotypes. However, many amino acids are encoded by more than one 

codon, if the point mutation does not alter the amino acid, it is a silent mutation. If the point 

mutation changes a protein’s structure, it is a nonsense mutation. This type of mutation changes 
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a normal codon to an early stop codon, resulting in a shortened protein (i.e., UAC/UAU/UGC to 

stop codons UAA/UAG/UGA).  

Polymorphisms are sequence variations that have a frequency of at least 1 %. Usually, they 

do not result in a perceptible phenotype. Single-nucleotide polymorphisms (SNPs) often consist 

of single base-pair substitutions that do not alter the protein coding sequence. Mutations may 

involve insertions and deletions of DNA sequences. The addition of a single base will lead to a 

frameshift and each subsequent codon is read wrongly or the left-over bases cannot form a 

codon with just one or two bases. Larger insertions or deletions may affect a portion of a gene or 

an entire gene as well as potentially causing a frameshift. Unequal crossing-over mutation is 

when mispairing of homologous sequences leads to unequal crossover, with gene duplication on 

one of the chromosomes and gene deletion on the other chromosome. Errors in DNA repair are 

mutations caused by defects in DNA repair when somatic cells divide. Splicing mutations: 

Mutations of sequences required for splicing may alter the protein product or the expression 

level of a gene. 

Copy number variations. Copy number variations (CNVs) are relatively large genomic 

regions that have been duplicated or deleted on certain chromosomes. It has been estimated that 

as many as 1500 CNVs [9], scattered throughout the genome, are present in an individual. When 

comparing the genomes of two individuals, approximately 0.4 - 0.8 % of their genomes differ in 

terms of CNVs. Some CNVs have been associated with susceptibility or resistance to disease, 

and CNVs can be elevated in cancer cells. 

Functional Consequences of Mutations. Functionally, mutations can be broadly classified 

as gain-of-function and loss-of-function mutations. Gain-of-function mutations typically confer 

an abnormal activity on a protein or produce a new trait (phenotypic alteration). An increase in 

gene expressions and hence gene products may also result in disease. Loss-of-function mutations 

prevent the normal gene product such as a protein from being produced or renders it inactive. A 

nonsense mutation is an example of a loss of function mutation that causes termination of the 

amino acid chain during gene translation. Mutations in introns (non-coding portions of an 

mRNA) or in exon (coding portion) junctions may produce splicing mutations. Mutations may 

also be found in the regulatory sequences of genes, resulting in reduced or enhanced gene 

transcription [9]. The advancement of techniques for genome-wide expression profiling and 

mutation analyses has provided a detailed picture of the molecular defects present in individual 

tumors. 

3.7. Molecular and cell biology of cancer 

In this section we study cancer from the molecular standpoint to understand the 

tumorigenesis process. In particular, we explore various strategies which tumor cells employ to 

sustain their growth and spread to other parts of the body. The aim is to appreciate various issues 

associated with the disease from its detection, diagnosis, to prognosis and treatment. Cancer is 

characterized by unregulated cell growth, avoidance of cell death, tissue invasion, tumor 

formation, and the ability to metastasize [25]. Although tumors have a clonal origin, they are not 

a homogeneous mass. Even identical cancer cells, sharing the same genome, express different 

profiles and exhibit multiple functional traits. 

3.7.1. Cancer and mutation. 

Cancer is caused by a stepwise degradation of normal cell behaviour by mutation and as a 

result, cancer cells grow out of control, leading to mortality if cancer spreads to other parts of the 

body. This implies that the mechanism that regulates the growth of cells fails due to mutation. 
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The two classes of genes responsible for the regulation/deregulation are oncogene and tumor 

suppressor genes. Proto-oncogenes promote growth when the body needs it, but when mutated 

they become oncogenes and allow unregulated cell growth. Tumor suppressor genes code for 

proteins to block cell growth, but when they are mutated, they become inactive and lose their 

designated function. Activating oncogenes or inactivating tumor suppressor genes are achieved 

by: (i) point mutations that may lead to hyperactive proteins versions or lead to truncated 

versions of tumor suppressor and rendering them inactive; (ii) gene amplifications that lead to 

protein overproduction; (iii) deletions that lead to a loss of function phenotype; (iv) chromosome 

rearrangements that generate fusion proteins that can hyper-activate the protein, or that relocate 

in the genome new regulatory units that lead to overexpression of the oncogene or that lead to a 

reduction of expression of tumor suppressor genes or its inactivation. Another class of genes that 

play a vital role in maintaining the stability of the genome and mitigating the accumulation of 

harmful mutations in other genes leading to the onset of cancer are caretaker genes. Their main 

role is to repair DNA damage. Damage can include chemical modification or loss of DNA bases, 

or single strand or double strand breaks. Each type of damage can lead to serious mutations 

during the critical phase of DNA replication and recombination. DNA damage can override 

cellular checkpoints and allow unchecked cell cycle progression [21]. Two of the best-studied 

caretaker genes are mlh1 and msh2, which repair mismatch DNA bases. The tumor suppressor 

gene p53 also has caretaker capability. Mutations in these genes greatly increase the rate of point 

mutations in genes. 

3.7.2. Mechanisms for increasing cell number. 

The most important fact about cancer is that “to form a tumor mass a cancer has to 

increase the number of cells.” The cancer cell achieves this goal through a number of 

mechanisms: Increasing cell division, stopping cell death, blocking cell differentiation, and 

becoming immortal.  

To increase cell division, cells must receive proliferative signals to overcome a number of 

safeguards at the checkpoints in the cell cycle before the division can proceed. These safeguards 

include the CDK (cyclin-dependent kinase or enzyme) inhibitors or necessary cyclin proteins 

essential for cell division. Cancer cells possess mutations that break this cell cycle control, 

allowing cells to divide regardless of any safety checks [22]. 

Another way to increase cell numbers is to stop cell death. This occurs when a tumor 

suppressor gene is mutated or the cancer cell overexpresses anti-cell death proteins. For 

example, the p53 tumor suppressor, once mutated, can no longer trigger apoptosis (cell death) or 

some cancer cells overexpress Bcl2, an anti-apoptotic protein, which allows cells to avoid 

apoptosis.  

Blocking differentiation is another strategy to block or change the differentiation program 

in order to increase the cell number. During embryonic development, the egg has to differentiate 

into all the different cells and tissues that form our organs in an organized manner. This 

regulated program is tightly controlled but if it is blocked cells proliferate.  

Becoming “immortal” is another way cell numbers increase because “immortal” cells live 

indefinitely. Normal embryonic human cells canonly divide a finite number of times in culture         

(~ 60 times) and then stop when the length of the telomere (the end-parts of the chromosome) 

has reduced to zero. Each time a cell divides, the telomere loses a small amount of DNA and 

becomes shorter. This limit was named replicative senescence (RS). However, embryonic germ 

cells and most cell lines derived from tumors can divide indefinitely. Most tumor cells avoid this 
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shortening process and become immortal by overexpressing an enzyme called Telomerase 

Reverse Transcriptase for telomere synthesis. 

Beyond the four mechanisms for increasing cell numbers, cancer cells employ additional 

mechanisms to feed, sustain, and spread themselves. These include developing their own 

metabolism mechanism and hijacking the host’s mechanisms. 

Cancer Metabolism. To sustain and increase the number of cells, energy and nutrients must be 

obtained to support growth. Cancer employs a special metabolism mechanism to sustain and 

promote tumor progression. Tumors metabolize glucose to lactate in aerobic conditions to 

produce new protein-biomass rather than more energy. The by-products of this metabolic 

mechanism lead to immune suppression and angiogenesis, promoting tumor progression. 

Hijacking the Host. Tumor cells even hijack the host and deploy the host’s various mechanisms 

to feed themselves, to evade the host’s immune system, and to migrate and spread their tumors 

and hence promote cancer progression.  

Immune Evasion. Tumor cells develop mechanisms to avoid detection by the host’s immune 

system. They also hijack and corrupt the immune system to provide growth factors, inducing 

angiogenesis or helping tumor cells to metastasize. 

Angiogenesis. To grow more than 1 mm in diameter [22], tumor cells have to recruit blood 

vessels to bring nutrients and oxygen to feed themselves. They establish mechanisms to induce 

this angiogenesis process. 

Metastasis. Tumor cells exploit the embryonic strategies to migrate and invade other organs. The 

process is called metastasis and involves several steps: (i) invasion of surrounding tissues; (ii) 

intravasation into blood vessels; (iii) survival in the circulation; (iv) extravasation from the blood 

vessels; and (v) survival and proliferation at a secondary site. 

Genomic Instability. Besides acquiring oncogenes and mutated tumor suppressor genes, tumor 

cells may also acquire mutations in caretaker genes and together the tumor cells accumulate 

more mutations. Consequently, the genome becomes unstable and generates sub-clonal diversity 

of the tumor environment. 

Remark on cancer genetics. All cells are expected to obey a “cell cycle control” that regulates 

the process of cell division (Figure 10). The disruption of the cell cycle control process is the 

prime reason for unbounded cell growth leading to cancer. According to Schulz [21], “A cancer 

pathway is a cellular regulatory system whose activation or inactivation by a genetic or 

epigenetic mutation is essential for the development of at least one human cancer. Typically, 

cancer pathways become evident by alterations in different components of the same regulatory 

system in individual cases of one cancer type or in distinct cancers”. With this knowledge of 

molecular and cell biology, it may be possible to identify pathways and their internal and 

external associated components, related to a particular cancer. If this is achieved cancer 

prevention or the stopping of cancer progression should be feasible. Extending the powerful 

mechanism of deep learning may be the right tool for tackling this problem. 

4. DEEP LEARNING AS A VALUABLE TECHNOLOGY FOR CANCER 

The section discusses the defining characteristics of deep learning that make it a valuable 

technology for addressing many issues related to cancer. An example is provided to illustrate the 

general method of how deep learning can be applied to oncology. This section also provides 

pointers to DL and data resources for readers who wish to engage in application implementation. 
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4.1. Deep learning as a problem solver for cancer oncology 

Deep learning methods, such as those used by DeepMind’s AlphaGo [26], [3] and object 

recognition [4] exceed human performance in visual tasks and are flexible and powerful 

analytical techniques for dealing with complex problems.  

With today’s high-throughput Next Generation Sequencing, diagnostic and imaging 

technologies we are overwhelmed with terabytes of multi-omics data of patient samples (i.e., 

genomics (whole genome data, single nucleotide polymorphism), gene expressions (mRNA, 

miRNA), proteomics and epigenetic (methylation and other chromosomal modifications)), 

millions of disease images (histopathology whole slide images, digitized film mammograms, 

expression data embedded into a 2-D images) and large number of clinical parameters. In these 

situations, human perception, statistical methods, and conventional machine learning approaches 

do not generally work. Deep learning leverages this explosion of data, since it is proven as an 

excellent method for processing vast numbers of images for identification and classification. It 

has demonstrated a powerful capability of extracting hierarchical presentation features of 

complex scenarios through processing of high dimensional and large amounts of data such as 

genomic data, gene expression data, mutation data, and cancer drug sensitivity data. Existing 

methods, however, fail on these complex problems in one or more aspects: i) they are not able to 

handle extremely large quantities of data, ii) they are not well-equipped to handle multi-label 

classification of data because information of classes may not be mutually exclusive, iii) they are 

not able to extract hierarchical features and building blocks required for recognition of complex 

and high dimensional objects, and iv) they rely on domain experts to extract features for 

classification and decision making. 

For medical data, patients could have symptoms of multiple different diseases at the same 

time and it is important to develop tools that help to identify these multi-label classification 

problems early. Deep learning has excellent capability to integrate multi-omics data, clinical 

information and cancer images into its architectures for diagnosis and drug response prediction. 

Deep learning methods effectively handle different types of data formats that often coexist in 

healthcare applications. 

Convolutional neural networks can extract hierarchical features through hidden layers 

constructively, especially for complex object recognition. It is clear that deep learning for pattern 

recognition can be applied to cancer detection and gene identification [27] with excellent 

performance as data for these applications can be mapped to image features. For example, a gene 

expression profile represents the state of a cell in the same way that patterns of pixels represent 

the content of an image. 

Deep learning with recurrent neural networks is excellent for predicting sequential events 

such as natural language processing. This method clearly applies to cancer prognosis prediction 

[28] assignaling pathways in cancer biology present sequential events where a downstream event 

is related to upstream events. 

Deep learning eliminates feature engineering that requires domain expertise to extract 

features for classification that is laborious and time-consuming. Deep learning can learn 

representative features automatically and directly from the raw input examples such as images of 

tumour tissue obtained from cancer patients, genomic data from DNA-sequencing and gene 

expression data from RNA-sequencing for cancer detection, classification, diagnostic, prognosis, 

and treatment purposes. Deep learning with autoencoders can extract features and reduce the 

dimension of data automatically without domain expert’s input. 
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With deep learning, transfer learning can be used to avoid laborious and expensive training 

from scratch as a deep neural network trained on a large-scale dataset from a different domain 

can be used for pattern recognition in a new deep network application with fine tuning training 

on data pertaining to the new application. Furthermore, one advantage of using deep learning to 

train a model is its capability to continue training when more data is available.  

As mentioned earlier, we are still far from finding out the root cause of many problems 

including cancer. Gene mutations may lead to tumors but may not be the cause of cancer [1] as 

the process from mutations to malignant tumors is not completely understood. Deep learning, 

with its excellent pattern recognition capability, presents itself as a powerful technology not only 

for oncology but also for detecting the causes or the triggering point to cancer. 

4.2. An example of the application methodology 

In this section, an application is described in detail to familiarize the readers with the 

methodology used by most applications of deep learning to issues related to cancer oncology. 

The selected application [29] is entitled “Cancer Drug Response Profile scan (CDRscan): A 

Deep Learning Model That Predicts Drug Effectiveness from Cancer Genomic Signature”. We aim 

to preserve the spirit of the original paper by keeping close to the reported statements by the authors. 

Motivation for this work. This work takes genomics into consideration in developing their 

deep learning models becausethe majority of the deep learning-based drug development focuses 

on the prediction of drug-target interaction, based on molecular structures. 

Aim. This study developed CDRscan, a deep learning model that predicts anticancer drug 

responsiveness based on large-scale drug screening assay data. Specifically, it predicts somatic 

mutation profile-based drug responsiveness by linking the tumour genomic fingerprint and its 

sensitivity to drugs.  

Deep learning methods and model architecture. The application employs five CNN 

architectures to estimate the essential features of the genomic mutations of cancer cell lines and 

molecular drug features and combine them in a predictive model for predicting the half-maximal 

inhibitory concentration (IC50) values of anticancer compounds from the genomic signature of 

tumour samples. All models generated predicted IC50 values across the 244 anticancer drugs for 

each cell line as a final output layer of the models. The average of the five values predicted by 

each model was then reported as the final outcome of CDRscan. 

The datasets and data pre-processing. The datasets used to train CDRscan were extracted 

from COSMIC cell line project (CCLP) and GDSC databases. The CCLP contains various types 

of molecular profile data, including the whole exome sequencing data of 1,001 human cancer 

cell lines. The GDSC provides IC50 values from drug sensitivity assays for over 200,000 drug-

cancer cell line pairs. In GDSC, the identical set of 1,001 cell lines characterised by CCLP was 

used and the IC50 values of 265 anticancer drugs were measured from the treatment of these cell 

lines.The datasets from the databases contain 686,312 mutation positions from 1,001 cell lines 

and 265 drugs, covering 30 cancer types as defined by The Cancer Genome Atlas (TCGA) 

studies. A subset of the data is selected that includes only gene mutations contained in Cancer 

Gene Census, which is a catalogue of 567 genes strongly associated with cancer pathology. The 

datasets also exclude the cancer types that have fewer than 10 different cell lines, drugs without 

PubChem Compound Identifier, and drugs with molecular weight greater than 1000 g/mol. The 

final datasets yielded a total of 152,594 instances which contained 787 cell lines across 25 

TCGA cancer types, mutation information at 28,328 base positions in 567 genes, and IC50 

measurements of cell line-drug treatment in 244 drugs. The input features of the entire instance 

were represented by 31,400 binary digits. Of these, 28,328 bits represented mutational status of 
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28,328 genomic positions in each of the 787 cell lines, while 3,072 bits encoded molecular profiles 

of the individual drugs [30]. 

Model training. 144,953 instances were randomly selected to train the models (95 % of the 

total 152,594 instances). To ensure that all 25 cancer types are represented equally in the training 

set, 95 % of the instances are randomly chosen from each cancer type. As a result, 25 subsets 

were created and subsequently compiled as a single training set. The remaining 5 % of the 

instances of individual cancer types were set aside to be used as test sets, both as 25 separate 

lists and as one consolidated list. To prevent overfitting, i) Three to four dropout layers were 

applied. In these layers, a subset of parameters (10 - 20 % of the total parameters) were 

randomly selected and ignored during training, making it less likely to overfit the training data, 

ii) Maxpooling layers were used to reduce dimensionality of the input, and iii) The performance 

score of CDRscan was measured by five-fold cross validation. 

 

Figure 12. CDRscan architecture. 

Performance evaluation. The experimentally obtained (observed) IC50 values and their 

counterparts predicted by CDRscan were plotted on a natural log scale. A coefficient of 

determination (R
2
) [29] is used as the measure of prediction accuracy. In the drug-centric 

evaluation of CDRscan performance, AUC was computed for the compiled training set. 

The observed and the predicted IC50 values showed a strong agreement with the mean 

coefficient of determination (R
2
) value of 0.843, ranging from 0.838 to 0.853 across five models, 

confirming that the prediction was accurate in most instances. To further confirm the prediction 

accuracy of CDRscan, the area under the receiver operating characteristic curve (AUC) score of 

0.98 was obtained for the test. The R
2
 values of individual cell lines (785 in total) and drugs (244 

in total) were assessed. Consistent with the high R
2
 values, the predicted and observed IC50 

values showed strong correlation across all cell lines. In the drug-centric correlation analysis, 

dasatinib (tyrosine kinase inhibitor drug) had the highest mean R
2
 of 0.902 (n=288), and 

bicalutamide (androgen receptor inhibitor) had the lowest. 

The authors compared the performance of CDRscan and a previously developed prediction 

model using the same databases [31]. It was confirmed that CDRscan exhibited significantly 

higher performance than the previous model (R
2 
= 0.843 versus R

2 
= 0.72). 

Feasibility of drug repurposing using CDRscan. Thirty seven of the 102 approved 

anticancer drugs had the potential for new cancer type indications. In addition, 176 of 1,385 

approved non-oncology drugs had the potential anticancer activities in addition to their original 
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drug indications. The number of approved oncology drugs with repurposing potential was 23. 

Nine of these 23 drugs had CDRscan-predicted anticancer activity against more than 90 % 

(23/25) of the total types, suggesting a universal antiproliferative/cytotoxic activity of the 

compounds. 

From this review, it is clear that there are many important considerations for a successful 

application. The deep learning method chosen needs to be carefully selected to match the 

expected features of the problem. Not only the datasets but also the data pre-processing must be 

meticulously prepared to achieve a quality solution. The training, testing, and validating regimes 

have to be designed and executed methodologically to ensure reliable results regardless of the 

selected neural network architectures and the distribution of the chosen datasets. Furthermore, 

the performance analysis and evaluation must be extensive to demonstrate the quality of the 

results. 

4.3. Resources for Deep Learning and Datasets 

Deep learning resources. We recommend the following resources for deep learning. Zou [32] 

provides a simple explanation and lists many useful and practical resources for implementing 

deep learning applications. Zou also provides an interactive tutorial to build a convolutional 

neural network to discover DNA-binding genomic sequences that specifically bind to 

transcription factors. Goodfellow [33] provides an excellent resource for deep learning 

researchers. Sutton’s book [17] is a comprehensive text in reinforcement learning. Burkov [34] 

provides a good resource for deep learning engineering. To get hands-on experience with 

practical deep learning, the book by Géron is recommended [35]. 

 Zou, J., Huss, M., Abid, A. et al. (2019). A primer on deep learning in genomics. Nat Genet 51, 12–

18. https://doi.org/10.1038/s41588-018-0295-5 

 Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. The MIT Press, Cambridge, 

MA, USA. ISBN: 978-0262035613 

 Sutton, R. S. and Barto, A. G.  (2018). Reinforcement Learning: An Introduction. Second edition, The 

MIT Press, Cambridge, Massachusetts, London, England. 

 Burkov, A.  (2020). Machine Learning Engineering. True Positive Inc. ISBN 978-1-7770054-5-0 

 Geron, A. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow. 2
nd

 

edition, O’Reilly Media. 

Clinical and molecular data resources. Most of the applications of deep learning to oncology 

use information from the following publicly available databases. 

 TCGA, The Cancer Genome Atlas (https://www.genome.gov/Funded-Programs-Projects/Cancer-

Genome-Atlas ), is a database that stores clinical and molecular data of over 11,000 tumor patients 

across 33 different tumor types, including genomic whole genome and/or exome sequencing, 

WGS/WES), transcriptomic (RNAseq, small RNAseq), epigenomic (methylation) and proteomic 

profiling (reverse-phase protein arrays, RPPAs) data [36], [37]. 

 CCLE, The Cancer Cell Line Encyclopedia project (https://sites.broadinstitute.org/ccle/ ) compiled 

genomic profiles of 947 human cancer cell lines, and pharmacologic profiles of 24 anticancer drugs 

across 479 cancer cell lines to benefit personalized medicine [38]. 

 GEO, Gene Expression Omnibus ( http://www.ncbi.nlm.nih.gov/geo/), is a public searchable online 

data repository storing microarray and next-generation sequencing (NGS) data, as well as other high-

throughput functional genomic datasets, such as genome methylation, chromatin structure, genomic 

mutation/copy number variation, protein profiling, and genome–protein interactions [39], [40]. 

https://sites.broadinstitute.org/ccle/
http://www.ncbi.nlm.nih.gov/geo/
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 GTEx, Genotype-Tissue Expression (https://gtexportal.org/home/ ), contains whole-genome 

sequencing and RNA-sequencing profiles from ~960 post-mortem adult donors of many tissue 

samples that have tissue images stored in an image library for public access [41]. 

 GDSC, Genomics in Drug Sensitivity in Cancer (https://www.cancerrxgene.org ), is a publicly 

available database providing experimentally measured drug sensitivities of 1,001 human cancer cells 

against 265 anticancer compounds.  

 COSMIC, the Catalogue Of Somatic Mutations In Cancer (http://cancer.sanger.ac.uk/ ), is the world's 

largest and most comprehensive database of somatic mutations in human cancer from the Welcome 

Trust Sanger Institute. 

5. REVIEW OF DEEP LEARNING APPLICATIONS TO DRUG RESPONSE 

PREDICTION, CANCER DIAGNOSIS, PROGNOSIS, TREATMENT, CANCER RISK 

PREDICTION 

The formation process of a tumor (tumorigenesis process) is driven by mutations in tumor 

suppressors, oncogenes, caretaker genes and alterations in epigenetic regulation. The process 

brings about changes in gene expression. The knowledge allows the identification of 

differentially expressed genes and the understanding of the complex molecular mechanisms 

regulating normal and cancerous behaviors. Studies on molecular profiling of tumors have 

suggested methods for distinguishing tumors of various biological behaviors (molecular 

classification), elucidating pathways relevant to the development of tumors, and identifying 

molecular targets for the detection and therapy of cancer. High-throughput sequencing such as 

microarray techniques have enabled high-throughput DNA sequencing and RNA sequencing, 

and whole genome sequencing of cancer cells, leading to gene expression profiling and 

molecular profiling of tumors. Consequently, various omics datasets on mutation, gene 

expression, proteomic, and drug sensitivity are available. Combined with advances in cancer 

screening methods such as MRI, PET, etc., vast amounts of cancer images and traditional 

clinical diagnostic data are equally important and available for tackling cancer issues. Together 

with the advances of deep learning, these technologies have practical applications in oncology 

with information not available from traditional clinical tests alone. In this section, we provide a 

review of deep learning applications organized according to their purpose: i) drug response 

prediction, ii) classification, iii) diagnosis prediction, iv) prognosis prediction, v) treatment, and 

vi) cancer risk prediction. For each selected application, we highlight the problem leading to the 

development of the application, the relevant datasets, the deployed deep learning method, and its 

performance. Due to the limited space, we will only present substantial reviews of recent 

representative applications from 2016. However, for each category we will cover each 

application in some depth in order to gain an understanding of the issues underlying the 

application. We highlight the unique issue addressed by the application, the deep learning 

method employed for extracting features, and the significance of the specific data type of the 

selected datasets. We emphasize the importance of the preparation/pre-processing of data for 

training as well as the training, testing, and validating regimes. We leave out many applications 

that mainly use histology and image-based data modalities. Readers should refer to [42] for a 

survey on deep learning for image-based cancer detection and diagnosis and [43] for early 

cancer detection. 

5.1. Deep learning for drug response prediction 

https://gtexportal.org/home/
https://www.cancerrxgene.org/
http://cancer.sanger.ac.uk/
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Since most tumors are heterogeneous and molecular classification of cancer can reveal 

similarities in tumors of diverse tissue types, the precision medicine approach may be more 

effective than conventional therapeutic approaches when tumor resistance is an issue. This is 

particularly the case if tissue-specific mutations or pathways can be identified and targeted with 

a specific drug. Gene expression also offers the potential to predict drug sensitivities as well as 

provide prognostic information.  

Due to essential differences between cell lines and tumors, to date the translation into 

predicting drug response in tumors remains challenging. Chiu et al. [44] tackled this problem by 

proposing DeepRD, a deep learning model to predict drug response based on mutation and 

expression profiles of a cancer cell or a tumor. The complete deep learning model is composed 

of 3 networks: i) a 4-layer mutation encoder, ii) a 4-layer expression encoder, and iii) a 5-layer 

prediction feedforward network (P). The two autoencoders are for feature extraction and 

dimension reduction of the mutation data and the expression data, the prediction network is for 

drug sensitivity prediction. The gene-level expression data of 935 cell lines of the Cancer Cell 

Line Encyclopedia (CCLE) from the CTD Data Portal [45] and 11,078 TCGA pan-cancer 

tumors from the UCSC TumorMap [46]. The drug response data of 990 CCLE cell lines to 265 

anti-cancer drugs measured by the half maximal inhibitory concentration (IC50) is from the 

GDSC Project [47].  In this study, the authors analyzed 622 cell lines with available expression, 

mutation, and drug sensitivity data (IC50) and 9,059 tumors with expression and mutation 

profiles. Given a pair of mutation and expression profiles, the model predicts IC50 values of 265 

drugs. They trained and tested the model on a dataset of 622 cancer cell lines and achieved an 

overall prediction performance of mean squared error at 1.96 (log-scale IC50 values). The 

performance of the model was evaluated using the testing samples for cell lines and then the 

final model was applied to predict drug response of TCGA tumors using tumor mutation data 

and gene expression data to determine the drug response (IC50) of tumors. The performance was 

superior in prediction error or stability than two classical methods (linear regression and support 

vector machine) and four analog DNN models of DeepDRand built on individual types of input 

data. The model is then applied to predict the drug response of 9,059 tumors of 33 cancer types. 

Using per-cancer and pan-cancer settings, the model predicted both known and novel drug 

targets. The Chiu et al. analysis was comprehensive and novel resistance mechanisms and drug 

targets were identified. 

In [48], the authors proposed DeepDSC, a deep learning model, to predict drug sensitivity 

of cancer cell lines. An autoencoder is used to extract cell lines feature from gene expression 

data in an unsupervised way. It also serves as a dimension reduction of the data from 20,000 to 

500. This model is then integrated with the chemical features of compounds into a fully 

connected feedforward neural network to produce drug sensitivity output to given cell line-drug 

pairs. The expression profiles of cell lines and drug sensitivity data were collected from two 

public datasets, CCLE and GDSC. The compound chemical structure files were obtained from 

PubChem [49]. The gene expression data (CCLE) of cell lines contain the transcript level of 

about 20,000 genes, corresponding to a vector of the same length. The drug response data was 

extracted from CCLE dataset (504 cell lines) against 24 drugs. The final data matrix contains 

491 cell lines and 23 drugs and 10,870 data points. For the GDSC dataset, the final data matrix 

contains 655 cell lines and 139 drugs and 73,075 data points. Using the GDSC dataset, 

DeepDSC was compared with three previous studies, using the same performance metrics, Root 

Mean Square Error (RMSE) and coefficient of determination R
2
. Overall, DeepDSC 

outperformed state-of-the-art methods with the lowest prediction errors and high coefficient 

determination. DeepDSC had the best interpolation ability to fill in missing drug sensitivity 

values. 
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5.2. Deep learning for cancer classification 

Different subclasses of cancer exist and may require different treatments. Molecular 

analyses have revealed that a cancer which appears uniform by morphological criteria can be 

further differentiated [21]. The authors of the study [50] address two challenges: reducing the 

dimensionality of the feature space in a way that ensures that sufficient information is retained to 

perform accurate classification while dealing with the problem of model overfitting due to 

limited number of training examples. The application proposed a general method for extracting 

relevant features from gene expression data, including for breast cancer, leukemia, colon cancer, 

prostate cancer, and ovarian cancer. The application provides cancer detection and cancer type 

analysis using the unsupervised learning autoencoder deep learning method. It uses a PCA-based 

method to reduce the dimension of the feature space and deploys an AE to learn an essential 

feature representation from unlabeled data. Reducing the dimension of the feature space is 

essential as the dimensionality of gene expression data is extremely high - in the order of 20,000 

to 50,000. The AE is essential to capture the non-linearity of the relations between expressions 

of different genes using unlabeled data that may consist of data from different tumor cells but 

containing the same gene expression information. The output of the feature learning phases is 

fed into a softmax regression classifier for classification. The proposed algorithm is compared 

against two baselines: SVM with Gaussian kernel, and softmax regression algorithms. It was 

concluded that the proposed method outperforms the baseline algorithms which do not use 

unsupervised sparse features in terms of cancer classification accuracy. Importantly, the authors 

addressed the problem of limited data by allowing data from different cancers and other tissue 

samples to be used during feature learning independently of their applicability to the final 

classification task. They also demonstrated that deep learning has the ability to deal with gene 

expression data across different cancer types. 

Among skin cancers, melanoma is one of most deadly, yet its identification is challenging 

due to high similarity between different skin lesions in terms of the color images of skin. The 

research work [51] addressed this challenging problem and proposed an automated skin lesion 

classification method to resolve this issue. A modified AlexNet was used for this purpose. 

AlexNet is a CNN with 5 convolutional layers and 3 fully connected layers that were used in the 

visual recognition of ImageNet. The last layer of AlexNet was replaced with a softmax classifier 

to classify three different skin lesions: melanoma, common nevus, and atypical nevus, instead of 

attempting to classify 1,000 classes as in the original ImageNet. The dataset for this application 

includes medical annotation of all the images namely medical segmentation of the lesion, 

clinical diagnosis and dermoscopic criteria (asymmetry, colors, and the presence of typical and 

atypical differential structures). The dataset consists of 200 RGB color images. It was divided 

into three classes: melanoma (40), common nevus (80), and atypical nevus (80). The 

augmentation process was performed to overcome the lack of data. To overcome the need for a 

huge number of labeled images to build a successful deep neural network, transfer learning and 

image augmentation are applied to a pre-trained AlexNet. The weights were updated using a 

stochastic gradient descent algorithm. The performance of the proposed method is compared 

with the existing methods (cited in the paper) that used the same dataset of skin lesions. Four 

performance measures, accuracy, sensitivity, specificity, and precision have been computed for 

the comparison; the achieved rates are 98.61 %, 98.33 %, 98.93 %, and 97.73 %, respectively. 

These results demonstrate that the proposed method outperforms the compared methods. 

In [52] DeepGene was proposed for somatic point mutation based cancer type 

classification. The aim is to improve the classification performance and address the three 

obstacles in existing somatic point mutation based cancer classification (SMCC) studies: i) high 
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data sparsity where only a small discriminatory subset of genes is related to the cancer 

classification task but normal sequencing results include tens of thousands of genes, ii) a small 

sample size where even within the discriminatory subset, the majority of genes are not 

guaranteed to contain informative point mutations and often remain normal (i.e. zero values in 

the data), and iii) the application of simple linear classifiers where conventional machine 

learning is not effective since different genes related to specific types of cancer are generally 

correlated and have complex interactions. DeepGene is a deep neural network (DNN) based 

classifier, that consists of three stages: i) a clustered gene filtering is used to cluster the gene data 

using mutation occurrence frequency and filter out the majority of irrelevant genes, ii) an 

indexed sparsity reduction converts the gene data into indexes of its non-zero elements to 

suppress data sparsity, and iii) a DNN classifier that uses the filtered and indexed data for gene 

classification. The DeepGene dataset is a reformulated subset of The Cancer Genome Atlas 

(TCGA) dataset containing 12 selected types of cancer. The data is collected from the TCGA 

database with filter criteria IlluminaGA_DNASeq_Curated. Following this pre-processing a 

TCGA-DeepGene subset was obtained, where each sample (column) is assigned one of the 

labels {1, 2, …, 12} for each of the 12 types of cancer. A convolutional neural network with 4 

hidden layers and 8,192 parameters per layer was used using the MATLAB MatConvNet 

toolbox. For comparison purposes, Support Vector Machine (SVM), k-Nearest Neighbors 

(KNN) and Naïve Bayes (NB) machine learning algorithms were selected. All methods use raw 

gene data as inputs. DeepGene outperforms these classifiers and achieves at least a 24 % 

performance improvement in terms of testing accuracy.  

The conventional method used in standard practices of RNA-Seq analysis is to match the 

tumor samples to the normal samples, both being from the same tumor type. Using such methods 

fails to differentiate tumor types due to the lack of knowledge of other tumor types. The authors 

of [53] addressed this problem by proposing a new method to discover potential biomarkers for 

each tumor type. The authors used a convolutional neural network to classify tumor types based 

on the genomics data. The method embedded the high dimensional RNA-Seq data into 2-D 

images and used a convolutional neural network to do the classification of the 33 tumor types. 

By identifying significant genes and using the KEGG pathway analysis, the related genes in 

these pathways can then be viewed as tumor specific biomarkers for each tumor type. A 

convolutional neural network, consisting of three convolutional layers, and three fully connected 

layers, was used. The RNA-Seq gene expression data of 33 tumor types in Pan-Cancer Atlas was 

used. The data contains 10,267 tumor samples with respect to 20,531 genes. The high-dimension 

expression data (10381x1) was embedded into a 2-D image (102x102) to be suitable for the 

convolutional layers. With the trained neural network, heat-maps for all the classes were 

generated to identify high intensity genes that dominate the final classification. By functional 

analysis, it was validated that the top genes selected in this way are biologically meaningful for 

corresponding tumors. The proposed method achieved a tumor type classification accuracy of 

95.59 %, higher than other works using the GA/KNN method on the same dataset.  

5.3. Deep learning for cancer diagnosis 

Although imaging and histopathology have become more sophisticated, they are limited by 

the size of a tumor. Developments in physics and information technology are revolutionizing 

imaging techniques, advances in computing enable localization of very small tumors by 

virtualizing tomography data [21]. Early detection of breast cancer on screening mammography 

is a challenging classification task because the tumors themselves occupy only a small portion of 

the image of the entire breast. A cancerous region of interest can be as small as 100 × 100 pixels 
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out of a full-field digital mammography (FFDM) image of 4000 × 3000 pixels. A deep learning 

algorithm was developed [54] for detecting breast cancer on screening mammograms using a 

training approach in which a model to classify local image patches is pre-trained using a fully 

annotated dataset with region of interest information. The patch classifier’s weight parameters 

are then used to initialize the weight parameters of the whole image classifier, which can be 

further fine-tuned using datasets without region of interest annotations. The approach leverages 

training datasets with either complete clinical annotation or only the cancer status of the whole 

image. The 16-layer VGG (VGG16) and the 50-layer ResNet (ResNet50) CNN networks (VGG 

and ResNet are variants of the CNN architecture [55]) were used as patch classifiers. The total 

numbers of images in the training, validation and testing sets were: 1903, 199 and 376, 

respectively. The test set of digitized film mammograms from Digital Database for Screening 

Mammography (DDSM) showed the best result with AUC of 0.91 (sensitivity: 86.1 %, 

specificity: 80.1 %). The validation set of FFDM images from the INbreast database showed the 

best result with a per-image AUC of 0.98 (sensitivity: 86.7 %, specificity: 96.1 %). It was 

reported that convolutional network methods for classifying screening mammograms attained 

excellent performance in comparison with previous methods (cited in their paper). The authors 

demonstrated that a whole image classifier trained using their end-to-end approach on the 

DDSM mammograms can be transferred to INbreast FFDM images using only a subset of the 

INbreast data for fine-tuning and without further reliance on the availability of lesion 

annotations. 

Much of the work on the identification of differentially expressed genes has focused on the 

most significant changes, and may not allow recognition of more subtle patterns in the data. As 

reported from [27], this issue was addressed through a deep learning approach for cancer 

detection and relevant gene identification. In particular, they aimed to i) use a deep learning 

architecture, an autoencoder to extract meaningful features from gene expression data, ii) 

evaluate the performance of the extracted representation through supervised classification 

models, and iii) discover highly relevant genes that could play critical roles and serve as clinical 

biomarkers for cancer diagnosis. The performance of the extracted features is evaluated through 

supervised classification models such as a shallow artificial neural network (ANN) and an SVM 

model, to verify the usefulness of these features in cancer detection. The weights of the model 

were used to extract genes for cancer prediction. An AE was selected with four layers of 

dimensions of 15,000, 10,000, 2,000, and 500. The encoded features of the AE were used as 

input features to the classification algorithms. RNA-seq expression data from The Cancer 

Genome Atlas (TCGA) database was analyzed for both tumor and healthy breast samples. These 

data consist of 1,097 breast cancer samples, and 113 healthy samples. The results and analysis 

illustrate that these extracted genes could be useful cancer biomarkers for the detection of breast 

cancer. However, for deep learning, the need for large data sets may not be available for cancer 

tissues. The authors stated that further analysis on the identified genes is needed since it can 

potentially improve methods for cancer diagnosis and treatment. 

Gastric cancer (GC) is characterized as an aggressive malignancy which is difficult to 

detect at an early stage with no clear symptoms at onset. Malignancy development is a multistep 

process involving multiple genetic and epigenetic alterations leading to aberrant expression of 

key regulating factors. Manual pathological inspection of gastric slices is time-consuming and 

usually suffers from inter-observer variations. GastricNet, a deep learning-based framework, was 

proposed in [56] for automatic gastric cancer identification. The proposed network adopts 

different architectures for shallow and deep layers for better feature extraction. GastricNet 

adopts different architectures for its two modules: a CNN Multi-scale module (MSM) and a 

CNN Network in Network (NIN) module. The features extracted by the MSMs are concatenated 
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to form a composite feature for the NIN. A softmax classifier was used to determine the 

probability that the whole slice contains a tumor. The gastric dataset contains 560 gastric cancer 

slices and 140 normal slices. The cropping of original images of 2048x2048 to 224x224 patches 

generates 8,992 patches for gastric cancer and 14,000 patches for normal slices. The 

experimental results show that the proposed DL framework performs better than state-of-the-art 

networks and achieved an accuracy of 100 % for slice-based classification. 

5.4. Deep learning for cancer prognosis 

A challenging question is whether novel deep learning methods could be used to directly 

learn the prognostically relevant features in microscopy images of the tumour, without prior 

identification of the known tissue entities, such as mitoses, infiltrating immune cells, or tumour 

budding. In [28], the authors aim to predict five-year disease specific survival of patients 

diagnosed with colorectal cancer (CRC) directly from digitized images of haematoxylin and 

eosin (H&E) stained diagnostic tissue samples. The authors trained a deep network to directly 

predict patient outcome, without any intermediate tissue classification. They combined 

convolutional and recurrent neural network methods into a model that is scalable to process 

images of different sizes in assessment of CRC tumor samples. Particularly, the authors applied 

transfer learning by utilizing a visual recognition model (VGG-16) to avoid training a 

convolutional neural network from scratch and showed that a deep convolutional neural network 

trained on a large-scale dataset from a different domain is also useful for pattern recognition in 

digitized images of CRC. A recurrent neural network (Long Short-Term Memory; LSTM) is 

then trained to read a sequence of VGG-16-produced features to predict five-year disease 

specific survival. The authors obtained images of H&E-stained TMA spots from 420 patients 

diagnosed with CRC together with follow-up time and outcome information for each of the 

patients as well as clinicopathological characteristics of the tissue samples. The performance of 

the model is compared with the prognostic accuracy achieved by the visual assessment (tumour 

grading) performed by a skilled pathologist. The results show that deep learning-based outcome 

prediction with only small tissue areas as input outperforms visual histological assessment 

performed by human experts on both TMA spot and whole-slide level in the stratification into 

low- and high-risk patients. The results suggest that state-of-the-art deep learning techniques can 

extract more prognostic information from the tissue morphology of colorectal cancer than an 

experienced human observer. 

Estimating the future course of patients with cancer lesions is invaluable to physicians; 

however, current clinical methods fail to effectively use the vast amount of multimodal data that 

is available. To tackle this problem, The authors of [57] constructed a multimodal neural 

network-based model to predict the survival of patients (prognosis) for 20 different cancer types 

using clinical data, mRNA expression data, microRNA expression data and histopathology 

whole slide images (WSIs). The authors developed an unsupervised method to encode 

multimodal patient data into a common feature representation that is independent of data type or 

modality, compressing these four data modalities into a single feature vector for each patient. A 

dedicated deep learning CNN architecture is used for each data type. For the clinical data, fully 

connected layers with sigmoid activations are used to extract features. Highway networks [55] 

(variants of CNNs) are used for the gene and microRNA data. The CNN architecture (called 

SqueezeNet [58]) is used to extract features from whole slide image data. The authors used 

pancancer data to train these feature encodings and predict single cancer and pancancer overall 

survival, achieving an AUC of 0.78 overall. Their methods achieved comparable or better results 
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from previous research by resiliently handling incomplete data and predicting across 20 different 

cancer types. 

5.5. Deep learning for cancer treatment 

Medical imaging provides non-invasive means for tracking patients' tumor response and 

progression after treatment. However, quantitative assessment through manual measurements is 

tedious, time-consuming, and prone to interoperator variability, as visual evaluation can be non-

objective and biased. In [59], the authors demonstrated the ability of deep learning networks to 

predict prognostic endpoints of patients treated with radiation therapy using serial CT images of 

patients with locally advanced non–small cell lung cancer (NSCLC). Models were developed 

using transfer learning of convolutional neural networks. The output of the pretrained network 

model was then input into a recurrent neural network for predictions of survival. The authors 

used two independent cohorts, dataset A and dataset B, consisting in a total of 268 patients with 

stage III NSCLC for this analysis. Dataset A contained 179 patients and was randomly split 2:1 

into training (n = 107) and testing (n = 72). Dataset A included patients treated with 

chemotherapy and definitive radiation therapy and was used to train the combined CNN-RNN 

for predictions of survival. The test set from this cohort was used to assess performance and 

compared with the performance of radiographic and clinical features. Dataset B contains 89 

patients treated with chemotherapy and surgery. This dataset was used as an additional test set to 

predict pathologic response, and the model predictions were compared with the change in 

volume. Overall survival was assessed along with three other clinical endpoints for the 

definitive radiation therapy cohort: distant metastases, locoregional recurrence, and 

progression. The results showed increases in performance of survival and prognosis prediction 

with incorporation of additional timepoints using CNN and RNN networks. It was demonstrated 

that deep learning can integrate imaging scans at multiple timepoints to improve clinical 

outcome predictions. Model performance was enhanced with each additional follow-up scan into 

the CNN model (e.g., 2-year overall survival: AUC = 0.74). The models stratified patients into 

low and high mortality risk groups, which were significantly associated with overall survival 

(HR = 6.16; 95 % confidence interval (CI), 2.17 - 17.44). The model also significantly predicted 

pathologic response in dataset B.  

Cross-sectional X-ray imaging has become the standard for staging most solid organ 

malignancies. However, for some malignancies such as urinary bladder cancer, the ability to 

accurately assess the local extent of the disease and understand the response to systemic 

chemotherapy is limited with current imaging approaches. In [60], the authors explored the 

feasibility that radiomics-based predictive models, using pre- and post-treatment computed 

tomography images, might be able to distinguish between bladder cancers that have fully 

responded to chemotherapy and those that have not. The authors assessed three unique 

radiomics-based predictive models: a deep-learning convolution neural network, a deterministic 

radiomics feature-based approach and a bridging method between the two, for extracting 

radiomics features from the image patterns. They also compared the performance of the models, 

in predicting a complete response of bladder cancer to neoadjuvant chemotherapy, with that of 

expert physicians. The training data, based on a set of 82 patients with 87 bladder cancers who 

were evaluated with CT before and after the administration of neoadjuvant chemotherapy, was 

collected retrospectively. Data for an additional 41 patients with 43 cancers were collected as a 

test set. One set of chemotherapy regimens was used for the majority of these patients, while 

another set of regimens was used for other patients. Pathology obtained from the bladder at the 

time of surgery was used to determine the final cancer stage after chemotherapy and was used as 
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the reference standard to determine whether the patient had responded completely to treatment. 

The performances of all three methods are comparable to those of the radiologists. The study 

indicated that the computerized assessment using radiomics information from the pre- and post-

treatment CT of bladder cancer patients has the potential to assist in assessment of treatment 

response. 

5.6. Deep learning for cancer risk prediction 

Mammographic density improves the accuracy of breast cancer risk models. However, the 

use of breast density is limited by subjective assessment, variation across radiologists, and 

restricted data. In [61], the study aims to develop a mammography-based DL breast cancer risk 

model that is more accurate than established clinical models. This retrospective study included 

88,994 consecutive screening mammograms for 39,571 women. For each patient, all 

examinations were assigned to either training, validation, or test sets, resulting in 71,689, 8,554, 

and 8,751 examinations, respectively. Cancer outcomes were obtained through linkage to a 

regional tumor registry. By using risk factor information from patient questionnaires and 

electronic medical records review, three models were developed to assess breast cancer risk 

within 5 years: a risk-factor-based logistic regression model (RF-LR) that used traditional risk 

factors, a DL model (image-only DL) that used mammograms alone, and a hybrid DL model that 

used both traditional risk factors and mammograms. For the image-only DL model, the authors 

implemented a deep convolutional neural network (ResNet18 [62]). Given a 1664 x 2048 pixel 

view of a breast, the DL model was trained to predict whether breast cancer would develop 

within 5 years. Comparisons were made to an established breast cancer risk model, the Tyrer-

Curzick (TC) tool that included breast density (TC is a tool used to calculate a woman’s 

likelihood of developing breast cancer in 10 years). Model performance was compared by using 

AUCs with DeLong test (test to compare the difference between two AUCs). In summary, deep 

learning models that use full-field mammograms yield substantially improved risk 

discrimination compared with the Tyrer-Cuzick model. When the hybrid DL model was 

compared with breast density, it was found that patients with nondense breasts and model-

assessed high risk had 3.9 times the cancer incidence of patients with dense breasts and model-

assessed low risk. Overall, it was concluded that DL models can deduce informative indicators 

of risk contained in the mammograms not captured by traditional risk factors, hence DL models 

have the potential to replace conventional risk prediction models. 

For medical data, patients could have symptoms of multiple different diseases at the same 

time and it is important to develop tools that help to identify problems early. This problem is 

challenging as it is difficult to infer information about classes that are not mutually exclusive. In 

the study described in [63], deep learning methods are used to tackle this challenging multi-label 

classification of data problem and predict chronic diseases for intelligent health risk prediction. 

In this study, hypertension, diabetes, and fatty liver are three chronic diseases that are analyzed 

to predict types of chronic diseases for a given patient. Overall, there are eight different 

diagnoses that can be given: one of the three diseases, two of the three diseases, all three 

diseases or no disease. The DNNs are used in this study. The number of hidden layers is 

experimented from 1 to 10. Physical examination records of 110,300 anonymous patients were 

used to predict diabetes, hypertension, fatty liver, a combination of these three chronic diseases, 

and the absence of disease. The dataset was split into training (90 %) and testing (10 %) sub-

datasets. Deep Learning (DL) architectures were compared with standard and state-of-the-art 

multi-label classification methods: the decision tree C4.5, the Support Vector Machines (SVM), 

the Random Forest (RF), the KNN, and the Multilayer Perceptron (MLP). The results showed 

that DNNs give the highest accuracy among all six popular classifiers. The F-score of DNNs is 
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slightly lower (but compatible) than Random Forest and MLP classifiers but much higher than 

those of SVM andKNN. The authors concluded that deep learning architectures have the 

potential of inferring more information from physical examination data than common 

classification methods.  

Remarks on reviewed applications. Most applications demonstrated that deep learning 

outperformed conventional machine learning, for this reason, we only provide observations that 

are common and that may help improve next generation applications. Most applications used 

simple mutation and expression data as input, few used proteomic data probably because i) 

proteomic data and its analysis are not readily available and ii) a gene’s products are multiple 

and they come in varied shapes and sizes due to post translation as well as mutation. 

Autoencoders are often used in the first stage of the solution as the dimension of the feature 

space is extremely high in the order of 20,000 to 50,000. It is thus important to ensure that the 

integrity of the data is preserved in terms of the feature space. Omic-data is often very sparce as 

many features in the datasets have little to do with the latent features of the problem and do not 

correlate with the outcome, they need to be properly encoded and filtered out to save 

computational costs and produce more accurate results. For image-based applications, the use of 

“transfer learning” was prevalent for good reasons, since not only spatial and representational 

features enable excellent object recognition in deep learning but also the cost of training the DL 

architecture from scratch is substantially reduced. In general, omic-data seems abundant but in 

many cases the data is still deficient and/or imbalanced for classification as some portions of the 

data are too well represented and other portions underrepresented. Artificial but credible data 

may need to be generated to fill the gap. Multimodal input works well with deep learning as 

different types of input can be integrated easily and produce more accurate classification. It is 

still a challenge to infer information about classes that are not mutually exclusive. For example, 

patients could have symptoms of multiple different diseases at the same time and it is important 

to develop tools that help to identify problems early. Deep learning architectures can tackle this 

multi-label classification problem as they have the potential of inferring more information about 

the patterns of physical examination data than common classification methods. 

6. CHALLENGES FOR DEEP LEARNING AND ITS APPLICATION TO CANCER 

ONCOLOGY 

6.1. Challenges for Deep learning 

The breakthrough in deep learning is the invention of the convolutional neural network 

which is inspired by the architecture of the human visual cortex. In the CNN method, 

undifferentiated features of the input data are extracted layer by layer to reveal the hierarchical 

knowledge of the patterns within and used in the final layer to produce the classification output. 

The method emulates the architecture and the learning scheme of the human visual cortex [18]. 

Humans learn to solve problems by decomposing them into a simpler and smaller set of 

problems and then finding solutions to these subproblems. Then the relevant parts of the 

solutions of the subproblems are selected and combined to provide the solution to the original 

problem. Polya [64] expressed this decomposition of the original problem and composition of 

the sub-solutions in a different way in his work on problem solving. Utilising just one specific 

learning scheme of the human visual cortex, deep learning has already achieved remarkable 

performances. The challenge is now to design more sophisticated/intelligent deep learning 

methods, inspired by other problem-solving strategies of the human brain. Or better still, to build 
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a true deep learning brain that has a repertoire of problem-solving skills and the intelligence to 

take appropriate decisions when facing a situation and adapting appropriate strategies for any 

specific environment. 

Autoencoder deep learning methods have been used extensively to reduce the dimension 

and extract latent features of the input successfully; however, the principle behind the learning is 

very much supervised learning where the difference between the input and the network 

constructed input is used to minimize the loss function. The challenge is to discover other 

innovative unsupervised learning methods. 

Reinforcement learning methods have had enormous successes in AlphaGo and other 

projects that pit deep learning machines against humans. This type of learning has an exciting 

potential for innovations and breakthroughs but it has not been thoroughly investigated. The 

challenge is to formulate deep learning and integrate it within a formal reinforcement learning 

framework to produce a higher level of intelligence. 

In the meantime, due to the generality of problem decomposition and sub-solutions 

composition nature of deep learning, the potential of the current deep learning methods seems 

unlimited with many problems awaiting solutions. It will be sometime before application of the 

current deep learning methods is exhausted. The challenge is to formulate deep learning 

theoretically and quantify its capability. 

On a more specific note, deep learning methods can be refined and improved in several 

ways. The model or the neural network architecture of deep learning is still ad hoc. The 

architecture is selected to solve a problem based purely on perception and experience such as 

CNNs for spatial data and RNN for sequential data. There is little consideration of the 

organization and complexity of the model - the depth of hidden layers, the size of a hidden layer, 

and the connectivity among nodes between layers to adequately solve the problem at hand. The 

challenge is to come up with a sound formulation and arrive at optimized deep learning models. 

Overfitting is a manifestation of the mismatch problem between the order or the complexity 

of the architecture and the unknown dimension of the data. Research in matching the complexity 

of the problem and employable deep learning methods is necessary to obtain efficient and 

quality solutions [63]. Initial searches for new and efficient neural architectures are explored in 

[65]. The success hinges on some appropriately designed neural network architectures that 

encompasses a task-independent criterion of the quality of the representation that the network is 

required to learn [66]. 

Deep learning methods are still back boxes that learn by simple association. Other types of 

learning need to co-exist in future deep learning methods to deal with comprehensive sets of 

problems and data. An integrated AMI model was proposed in [66] that consists of a 

discriminative module, an associative module, and a feedback mechanism between them as seen 

in the human neural cortex. The discriminative compartment takes into account the need for 

analysing, discriminating, and clustering patterns (bottom up); the associative compartment 

provides the ability to associate, correlate, and make generalized decisions (top down); and the 

feedback between the compartments ensures the stability of the overall learning module and 

provides the dynamic balance between bottom-up and top-down learnings. 

The backpropagation learning algorithm is the generally accepted algorithm used in current 

deep learning methods as it is efficient and yields desirable results. However, to achieve human-

level learning, biologically plausible learning rules should be the subject of experimentation 

[67]. Bienenstock, Cooper, and Munro [68] introduced a learning rule that reflects the way 

neuron synaptic weights are changed and is stable without imposing external constraints on the 



 
 

Doan B. Hoang, Simon Hoang 
 

922 

synapses as required in Hebbian or Von de Malsburg [69] learning rules. Deep learning methods 

are complex machines containing hundreds of millions of parameters, making training and 

regularization difficult. High capacity neural networks face serious challenges not only in 

designing appropriate architectures and learning strategies but also in validating reliable and 

superior performance in terms of generalizability to events not included in the training data for 

critical applications [70], [71]. 

6.2. Challenges for deep learning applications to cancer 

Alterations of the genome that lead to uncontrolled cell growth manifest itself at various 

levels: DNA, gene expression, and protein. At the DNA level, a segment of DNA may be 

damaged or mutated; at the gene expression level, genes may be repressed, over-expressed, or 

expressed in the form of isoforms. At the gene product (i.e., protein) level, intended proteins 

may be overproduced or not produced at all. Unintended proteins may be produced because of 

mutations of the DNAs or post translation regulation damage. Current applications mostly 

utilized either simple mutation data or gene expression data and rarely proteomics data. Clearly, 

with multi-omics data deep learning methods will improve the accuracy of cancer diagnosis, 

prognosis, and treatment. 

Deep learning accommodates multi-modal inputs that include clinical information to take 

into account of human expertise, images to take into account phenotype traits of a particular 

cancer, and proteomics data to take into account actionable elements that affect the 

tumorigenesis process. This allows deep learning to take human expertise into account. 

Specific cancer instances are a particular manifestation of the general cancer pathway. 

However, “the designation ‘cancer pathways’ is in so far imprecise, as the same pathways also 

control the proliferation, differentiation, survival, and function of normal tissues. So, differences 

between normal and cancer cells are expected to be quantitative rather than qualitative” [21]. 

The challenge is to establish, quantify, and characterize clear pathways leading to a specific 

cancer and incorporate them in deep learning for more accurate solutions.  

One issue is that current deep learning methods lack transparency and interpretability [72]. 

This presents not just a barrier for translating excellent results to clinical applications but also 

limits the ability to uncover causal and structural relationships common in biology. For lack of 

interpretability, several methods have been explored to determine the working of DNN 

architectures, including Taylor decomposition, layer-wise decomposition, and heat-maps for 

attributing the contribution of connection weights to the significance of the outcome [53]. 

It has been claimed that deep learning is unsuitable for some critical medical applications 

because it can experience catastrophic forgetting when its learned memories (weight parameters 

of the neural networks) suddenly collapse. An alternative model, the Adaptive Resonance 

Theory for both biological and artificial intelligence has been proposed in [73]. 

Despite the enormous amount of cancer genomic data, as well as drug sensitivity data and 

the availability of numerous learning methods, going from simplest mutation profiles to 

selecting the most effective cancer drugs remains a challenge. This is partly due to the lack of 

labelling data and partly due to the complexity of tumor resistance, and possibly due to our less 

than complete knowledge of cancer pathways. 

Providing reliable labels for training is challenging. For example, most of the established 

tissue entity labels include errors due to the subjective nature of visual interpretation by the 

human observer [28]. More effort has to be dedicated to improving both the quantity and quality 

of labelling/annotation of medical data. 
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Overfitting and underfitting present real problems in all deep learning applications as the 

designer does not have a complete knowledge of the complexity of the data and the selected 

model may be too complex or too simple for the data. Lack of data is also a common overfit 

problem. 

It has been demonstrated that “the millions of adjustable parameters make deep neural 

networks capable of performing perfectly in training sets even when the target outputs 

are randomly generated and, therefore, utterly meaningless” [74]. This occurs when the data is 

inadequate to represent the complete distribution of the input or it may be skewed towards a 

particular set of training samples. Strategies and methods are needed to ensure relevant critical 

information is represented in the training as well as the validation datasets if the deep learning 

method is suitable for the intended medical/cancer applications [75]. A remedy is to fully 

integrate medical images, clinical data as well as phenotypically rich data, and omics data in 

multimodal learning to realize meaningful results. 

7. CONCLUSION 

The ultimate objective of this paper is to stimulate ideas and facilitate collaboration 

between cancer and deep learning researchers to address challenging oncological problems using 

advanced deep learning technologies. To this end, we have introduced the fundamentals of deep 

learning in terms of their architectural models and insights into various learning methods to 

cancer biologists. We have presented the essentials of cancer molecular biology to deep learning 

practitioners. We have reviewed a number of recent applications of deep learning to cancer 

diagnosis, prognosis, treatment, drug response, and cancer risk prediction to demonstrate how 

deep learning methods were selected and applied. We have discussed extensively the challenges 

of deep learning and its application to cancer as well as indicating possible directions for deep 

learning and cancer research. Clearly, to design better diagnosis, prognosis, and treatment of 

cancer, collaboration between cancer biologists and deep learning practitioners is essential. 

New technologies such as single-cell sequencing, spatial transcriptomics and multiplexed 

imaging will enrich available datasets with new dimensions that improve the performance of 

deep learning methods in cancer research and clinical application. Recent technological 

advances have initiated a new era of personalized or precision medicine through data-driven 

assessment of diseases by combining deep learning and biomedical science. Deep learning with 

molecular diagnostic data will be helpful for the determination of tumor stage, such as early 

detection of tumor cells in the blood or identifying populations at risk of cancer which is often 

not possible by traditional methods [21]. Ultimately, for deep learning to be accepted in routine 

patient care, collaboration between experts in both the oncology and deep learning fields is 

imperative for clinical validation of interpretable deep learning methods [72]. Finally, cancer 

development is a gradual process that dynamically involves numerous events and actors that 

interplay through complex patterns. Deep learning is the most powerful technology developed so 

far to detect intricate latent features and patterns, both spatially and sequentially. Deep learning 

may prove to be a valuable tool for preventing cancer and also for determining the cause of 

cancer. One would also expect deep learning to play a role in pinpointing the pathway for cancer 

development or precisely identifying the triggering points along the tumorigenesis process. 
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