Improvement of *Bacillus clausii* HH1 cell density via culture medium optimization and pH-stat fed batch fermentation

Tuan Anh Pham¹,², *, Thi Phuong Nguyen¹, Kim Anh To¹

¹School of Biotechnology and Food Technology, Hanoi University of Science and Technology, No. 1, Dai Co Viet Road, Hai Ba Trung, Ha Noi, Viet Nam

²Laboratory of Applied Miro-organisms, Hanoi University of Science and Technology, No. 1, Dai Co Viet Road, Hai Ba Trung, Ha Noi, Viet Nam

Email: anh.phamtuan2@hust.edu.vn

Received: 30 June 2022; Accepted for publication: 16 February 2023

Abstract. In this study, the culture medium and fermentation modes were studied aiming to improve the cell density of *Bacillus clausii* HH1. Firstly, the factorial design method using Minimum Run Resolution IV design was used to evaluate the relative importance of culture medium components to the growth of *Bacillus clausii*. The results showed that three components peptone, yeast extract and malt extract were the components significantly affecting the bacterial biomass. Then, the optimization of these three ingredient concentrations using a response surface methodology with the Box-Behnken design resulted that the maximal biomass had been achieved using the medium containing 7.64 g/L peptone, 10 g/L yeast extract and 6.36 g/L malt extract. Finally, the pH-stat fed batch fermentation was conducted in a 2-liter bioreactor where the 9X concentrated optimal culture medium was feed into the bioreactor based on the pH signal. As a result, the microbial cell density increased by 2.9-fold compared to that achieved through batch fermentation.

Keywords: *Bacillus clausii*, culture medium optimization, pH-stat fed batch fermentation.

Classification numbers: 1.3.2.

1. INTRODUCTION

The genus *Bacillus* are the main micro-organisms that currently receive much interest as probiotics with numerous advantages including the production of interest extracellular enzymes and the ability of heat-stable spores formation which facilitates its processing, storage, and use [1]. Among the genus, *Bacillus clausii* is known to be able to produce antibacterial substances against pathogen gram-positive bacteria such as *Enterococcus faecium*, *Clostridium difficile*, to stimulate the synthesis of immunomodulatory substances such as NOS II, IFN-gamma [2]. The bacterium indeed is known to resist to several antibiotics and suggested to be used with the antibiotic treatment with safety [3]. Furthermore, it has been shown to be effective and safe in
the treatment of acute diarrhea and prevention of recurrent respiratory tract infections in children [4]. In addition, the ability of B. clausii spores to germinate in experimental conditions mimicking the gastrointestinal tract is consistent with the beneficial health reported for this spore forming bacterium [5]. Therefore, B. clausii spores have been used in commercial probiotic products.

One of challenge in production of probiotics B. clausii is to attain a high cell density in the fermentation. B. clausii is known as a fast-growing, alkaliphilic aerobic microbe so a suitable medium is required for a better biomass production [6]. Statistical experimental designs are generally used to determine the main medium components [7], then to optimize the media for micro-organisms to growth and produce the products [8, 9].

Controlling nutrient concentration and biological state of the bacteria during the fermentation is another approach to improve the biomass in the culture. Fed batch fermentation techniques have been applied extensively in industrial fermentations to improve the cell density. The major advantage of such techniques is the possibility to adjust the medium component concentration in the culture broth to values favorable for cells to prolong the desired development phase of the bacterial culture [9, 10]. The pH-stat fed batch fermentation is a simple feedback control scheme that controls nutrient feeding via measurement of pH of the culture [11]. It can be used singly or in combination with other fed-batch techniques to enhance the microbial biomass in the bioreactor [12, 13].

In this study, a statistic experimental using Minimum Run Resolution IV design was used to investigate the main culture components significantly affecting B. clausii growth. Then, the response surface methodology (RSM) using Box-Behnken design was carried out to investigate the relationships between the main independent variables and to optimize the culture medium. Finally, the pH-stat fed batch fermentation to improve the B. clausii cell density in bioreactor was examined and discussed.

2. MATERIALS AND METHOD

2.1. Materials

Bacillus clausii HH1 provided by the School of Biotechnology and Food Technology (SBFT – HUST) was used in this study. This strain was stored at -20 ºC, activated in nutrient agar plate before use.

2.2. Methods

Bacterial cultivation

A seed culture was grown in 250 mL baffled flask containing 50 mL of seed medium (peptone 5 g/L; yeast extract 5 g/L; meat extract 2 g/L; K2HPO4.3H2O 1.9 g/L and NaCl 1 g/L) at 37 ºC, 120 rpm for 12 h.

Flask culture: 50 mL culture medium (peptone 10 g/L; yeast extract 10 g/L; meat extract 3 g/L) in 250 mL baffled flask was inoculated with the seed culture to achieve the OD600nm 0.1. The flask was cultivated at 37 ºC, shaking 120 rpm. The optical density at 600 nm was measured for monitoring the bacterial growth at various intervals.

Screening of culture medium components
Minimum-Run resolution IV screening design was used to evaluate the relative importance of various media components including glucose, peptone, yeast extract, meat extract and malt extract at three levels (+1; 0 and -1) for B. clausii growth. Total 16 experiments in 250 mL baffled flask were carried out following the condition indicated in the Table 1. The microbial growth was evaluated at 12 h by measurement the OD_{600nm}.

Optimization of the culture medium

The central composite matrix experiment was designed to investigate the effect of the main components of the culture medium to B. clausii biomass. In this study, an RSM combined with Box-Behnken design was used. This design was composed of three levels (low, medium, and high, being coded as −1, 0 and +1) and a total of 15 runs in 250 mL baffled flask were carried out to optimize the level of three independent variables: peptone concentration (A) yeast extract concentration (B) and malt extract concentration (C) (Table 2). The B. clausii growth was evaluated by OD_{600nm} measurement.

Batch-fermentation

Batch fermentation in 2 L bioreactor: 1 L optimal culture medium was filled in 2 L bioreactor equipped with DO (dissolve oxygen), pH, temperature, and antifoam probes. After sterilization at 110 °C for 30 mins, the temperature was maintained at 37 °C and pH was automatic adjusted to 8.5 by adding 2 N HCl or 2 N NaOH. The inoculum was pumped to the bioreactor to achieve OD_{600nm} 0.1. The pO_{2} was maintained at 20 % by automatically changing the stirring speed from 400 to 750 rpm, then manually changing the aeration rate from 1.8 to 2.4vvm when stirring speed achieved maximum value but pO_{2} was below 20 %.

pH-stat fed batch fermentation

The pH-stat fed batch was initiated as a batch fermentation for 6 h in 2 L bioreactor containing 800 mL optimal culture medium. The 2 N HCl bottle then was replaced by the feeding bottle. The 9X concentrated culture medium (7.64 g/L, yeast extract 10 g/L and malt extract 6.36 g/L) was used for feeding into the bioreactor. The feeding medium was automatically pumped into the bioreactor whenever the pH was higher than 8.5 through acid pump. The optical density at 600 nm was measured for monitoring the bacterial growth. The standard plate count on LB medium was used to determine the bacterial numbers.

3. RESULT AND DISCUSSION

3.1. Screening of culture medium components for B. clausii growth

The composition of the nutrient medium has a great influence on the microbial growth. Various components usually used for culture of Bacillus [14, 15], among them, naturally derived nutrient such as glucose, malt extract, peptone, meat extract and yeast extract were the most components used as carbon and nitrogen sources. However, the effect of each ingredient on microbial growth are still controversial. Glucose was used to optimize the B. subtilis growth, and maximum cell density achieved at 33.4 g/L in the study of Mosquera [16]. Contrarily, using similar species, Koin-Puchowska et al. showed that glucose was not as good as saccharose or trehalose for microbial growth. According to these authors, the effect of nitrogen was in the order of yeast extract − peptone > malt extract > beef extract [15]. In the research of Ojha et al.,
Improvement of *Bacillus clausii* HH1 cell density via culture medium optimization and pH-stat …

that order was changed to was yeast extract > tryptone > beef extract > malt extract > peptone [17].

Table 1. Minimum run resolution IV design for evaluation of medium component.

<table>
<thead>
<tr>
<th>Run</th>
<th>Glucose (g/l)</th>
<th>Peptone (g/l)</th>
<th>YE (g/l)</th>
<th>Meat extract (g/l)</th>
<th>Malt extract (g/l)</th>
<th>OD 600 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 (10)</td>
<td>-1 (1)</td>
<td>-1 (1)</td>
<td>-1 (0)</td>
<td>1 (5)</td>
<td>2.02</td>
</tr>
<tr>
<td>2</td>
<td>-1 (0)</td>
<td>-1 (1)</td>
<td>-1 (1)</td>
<td>-1 (0)</td>
<td>-1 (0)</td>
<td>3.45</td>
</tr>
<tr>
<td>3</td>
<td>-1 (0)</td>
<td>1 (10)</td>
<td>-1 (1)</td>
<td>-1 (0)</td>
<td>-1 (0)</td>
<td>5.51</td>
</tr>
<tr>
<td>4</td>
<td>-1 (0)</td>
<td>1 (10)</td>
<td>1 (10)</td>
<td>1 (5)</td>
<td>-1 (0)</td>
<td>12.05</td>
</tr>
<tr>
<td>5</td>
<td>-1 (0)</td>
<td>-1 (1)</td>
<td>1 (10)</td>
<td>1 (5)</td>
<td>-1 (0)</td>
<td>3.96</td>
</tr>
<tr>
<td>6</td>
<td>-1 (0)</td>
<td>1 (10)</td>
<td>-1 (1)</td>
<td>-1 (0)</td>
<td>1 (5)</td>
<td>9.31</td>
</tr>
<tr>
<td>7</td>
<td>0 (5)</td>
<td>0 (5.5)</td>
<td>0 (5.5)</td>
<td>0 (2.5)</td>
<td>0 (2.5)</td>
<td>11.74</td>
</tr>
<tr>
<td>8</td>
<td>-1 (0)</td>
<td>-1 (1)</td>
<td>1 (10)</td>
<td>-1 (0)</td>
<td>1 (5)</td>
<td>13.19</td>
</tr>
<tr>
<td>9</td>
<td>1 (10)</td>
<td>1 (10)</td>
<td>1 (10)</td>
<td>1 (5)</td>
<td>1 (5)</td>
<td>10.03</td>
</tr>
<tr>
<td>10</td>
<td>1 (10)</td>
<td>1 (10)</td>
<td>-1 (1)</td>
<td>1 (5)</td>
<td>-1 (0)</td>
<td>6.49</td>
</tr>
<tr>
<td>11</td>
<td>1 (10)</td>
<td>-1 (1)</td>
<td>1 (10)</td>
<td>1 (5)</td>
<td>-1 (0)</td>
<td>6.61</td>
</tr>
<tr>
<td>12</td>
<td>0 (5)</td>
<td>0 (5.5)</td>
<td>0 (5.5)</td>
<td>0 (2.5)</td>
<td>0 (2.5)</td>
<td>11.48</td>
</tr>
<tr>
<td>13</td>
<td>1 (10)</td>
<td>1 (10)</td>
<td>1 (10)</td>
<td>-1 (0)</td>
<td>1 (5)</td>
<td>9.75</td>
</tr>
<tr>
<td>14</td>
<td>1 (10)</td>
<td>-1 (1)</td>
<td>1 (10)</td>
<td>0 (5)</td>
<td>1 (5)</td>
<td>8.09</td>
</tr>
<tr>
<td>15</td>
<td>-1 (0)</td>
<td>1 (10)</td>
<td>-1 (1)</td>
<td>0 (5)</td>
<td>1 (5)</td>
<td>12.85</td>
</tr>
<tr>
<td>16</td>
<td>1 (10)</td>
<td>-1 (1)</td>
<td>1 (10)</td>
<td>-1 (0)</td>
<td>-1 (0)</td>
<td>5.39</td>
</tr>
</tbody>
</table>

(In parentheses are the actual concentration of each component)

Figure 1. The effective coefficient of each medium components to *B. clausii* growth.

Bacillus clausii is well-known species and is used in many commercial probiotic products, however, the optimal medium culture for its growth has not been mentioned. In this paper, to evaluate the importance of nutrients on the growth of *B. clausii*, total 16 experiences were carried out following the Minimum Run Resolution IV design (Table 1).
The ANOVA analysis using Design Expert 11 software showed that this design was significant at the 95% level (p = 0.008 < 0.05). Glucose had a negative effective coefficient while the other four variables showed positive effective coefficients (Figure 1). The use of glucose causes a decrease in pH of the fermentation medium \[18, 19\], which could also inhibit alkaline strains such as \textit{B. clausii}, especially when the experiments were not adjusted to pH 8.5 during fermentation process. Therefore, the addition of glucose could be avoided in further experiments. The four variables showed efficiency coefficients as following order: yeast extract > peptone > malt extract > meat extract (Figure 1). Among them, meat extract showed the least positive coefficient to \textit{B. clausii} growth, so it can be excluded in further experiments.

3.2. Optimization of culture medium using response surface methodology

The study of individual and interactive effects of three independent and positive effective variables (peptone, yeast extract and malt extract) to the growth of \textit{B. clausii} was carried out using the statistic design approach of RSM. Total 15 experiments were carried out following the Box-Behnken design (Table 2).

<table>
<thead>
<tr>
<th>Run</th>
<th>Peptone (g/L)</th>
<th>Yeast extract (g/L)</th>
<th>Malt extract (g/L)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>OD 600nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.5</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>13.28</td>
</tr>
<tr>
<td>2</td>
<td>5.5</td>
<td>1</td>
<td>10</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>7.67</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>10</td>
<td>5.5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>13.36</td>
</tr>
<tr>
<td>4</td>
<td>5.5</td>
<td>10</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>12.58</td>
</tr>
<tr>
<td>5</td>
<td>5.5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>3.25</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>5.5</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>2.24</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>5.5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>10.13</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
<td>5.5</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>3.32</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>5.5</td>
<td>10</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>9.72</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>1</td>
<td>5.5</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>7.70</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>10</td>
<td>5.5</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>10.33</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>5.5</td>
<td>10</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>7.98</td>
</tr>
<tr>
<td>13</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12.23</td>
</tr>
<tr>
<td>14</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9.20</td>
</tr>
<tr>
<td>15</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11.43</td>
</tr>
</tbody>
</table>

Biomass (OD\textsubscript{600nm}) = 10.95 + 2.14A + 3.46B + 1.31C – 1.54AC - 1.99A2 - 1.45C2 \hspace{1cm} (1)

Here A: peptone; B: yeast extract; C: malt extract.

A quadratic model was suggested to fit the experiment data. The ANOVA analysis showed that P-value of this model was 0.0033 and the lack of Fit was not significant (P-value 0.9136). The quadratic model therefore can be used to fit the experimental data (Equation 1). The dependence of \textit{B. clausii} on peptone, yeast extract and malt extract were expressed as in the
following equation (insignificant coefficients were removed). The interaction between peptone-
malt extract or peptone-yeast extract to the bacterial growth were shown in the Figure 2.

Figure 2. Response surface plots showing the effect of malt extract –peptone and peptone-yeast
extract to B. clausii growth.

The optimization of culture medium for B. clausii growth was performed using the Design
Expert 11 software. It predicted that the highest B. clausii cell density could be attained (up to
OD$_{600}$ 14.85) in the medium containing peptone 7.64 g/L, yeast extract 10 g/L and malt extract
6.36 g/L. The experimental data at the optimal culture medium gave the maximum of OD$_{600}$ of
14.42, compatible with the predicted value by the software. The growth of B. clausii in optimal
medium was increased 1.3-fold comparing to that in the initial culture medium.

3.3. Batch fermentation

B. clausii was cultivated in 2 L bioreactor following the batch mode using optimal culture
medium. The fermentation kinetic was showed in the Figure 3. The pO$_2$ was approximately
maintained at 100 % at the first three hours corresponding to the microbial lag phase. Then the
pO$_2$ decreased sharply and reached the minimum after 5 h of fermentation, corresponding to the
log phase of the bacteria. To maintain the pO$_2$, the agitation was automatically increased from
400 rpm to 740 rpm.

The maximal OD$_{600nm}$ achieved at 8 h of fermentation, then B. clausii entered in the
stationary phase; the agitation was then slowed down to maintain the pO$_2$ 20 % corresponding to
the decrease of microbial oxygen demand. The specific growth rate of B. clausii achieved 0.73
(1/h), and maximal microbial density was 20.04 at OD$_{600nm}$.

Bacillus clausii is an alkaline species [6, 18], so the culture medium is usually brought to
alkaline pH for its optimal growth. Tabandeh et al., launched the B. clausii at initial pH 10.5
without pH control [18]. These authors observed that the pH of the culture medium decreased
from 10.5 to 8.5 at the end of the exponential phase, then it gradually increased to 9.5 during the
stationary phase. Based on the literature, in this study, the pH was adjusted to 8.5. As mentioned
in Fig. 3, to maintain the pH 8.5, 2 N NaOH was automatically pumped into bioreactor until the
7.2 h; after that 2 N HCl was fed to the bioreactor that coincided with the transition time
between the logarithm phase and the stationary phase of B. clausii (Fig. 3). Suzuki et al. [20]
discussed phenomenological change of pH during fermentation, at stationary phases using organic carbon–nitrogen sources such as peptone, cells consume a small amount of nutrients for energy to maintain their basic metabolism, probably from decomposition of pre-accumulated substances inside the cells or from partial lysis of the cells. As a result of oxidation of carbon compounds for maintenance energy formation, the cells excrete excess nitrogen as NH$_4^+$ which causes the pH rise, suggesting that substrates can be fed automatically in a link with pH rise. In the next experiments, fed batch fermentation based on pH (pH-stat) will be performed.

![Figure 3. Kinetic of the batch fermentation of B. clausii.](image)

3.4. pH-stat fed batch fermentation

![Figure 4. Kinetic of pH-stat fed batch fermentation of the B. clausii.](image)

To enhance bacteria growth, it is necessary to extend the log phase in the fermentation process. The fed-batch fermentation techniques can be used to prolong the log phase and resulting in higher biomass [21]. In this study, pH-stat fed batch fermentation was carried out to
extend the log phase of \textit{B. clausii} in the bioreactor aiming to improve \textit{B. clausii} growth (Figure 4). A concentrated medium should be used for feeding to the culture to avoid diluting the culture, therefore the 9X optimal culture medium for biomass was used for feeding into bioreactor in pH-stat fed-batch fermentation.

At the first 6.6 hours of fermentation, 2 N NaOH was used for maintaining the pH 8.5 in the bioreactor. Then, from 6.6 h to 12 h of the fermentation, the feeding medium was automatically added via the acid pump. \textit{B. clausii} log phase was initiated at 4 h of fermentation and last until 12 h, it was 4 h extended comparing with that in the batch fermentation. The maximal OD\textsubscript{600nm} achieved of 57.3; 2.9-folds higher than that in the batch fermentation. The bacterial density was 1.48×10^{10} CFU/mL after 12 h of fermentation.

4. CONCLUSION

Using screening the components by Mini Run IV design and optimization of the main components via the response surface methodology with Box-Behnken design, the optimum culture medium for \textit{B. clausii} HH1 growth was established. In the optimal culture medium, the microbial growth was enhanced 1.3-fold comparing the initial medium. The pH-stat fed batch fermentation applied could extend the microbial log phase for 4 h resulting in the improvement of the cell density of \textit{B. clausii} 2.9-folds higher than in the batch fermentation mode. This result is very promising and is subject to a further scaling up trial.

\textit{Credit authorship contribution statement.} Pham Tuan Anh: Methodology, Writing the manuscript. Nguyen Thi Phuong: experiment, analysis. To Kim Anh: Editing, Supervision.

\textit{Declaration of competing interest.} The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

\textbf{REFERENCES}

