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Abstract. This paper studies dynamic behavior of an inclined sandwich beam with a 

homogeneous core and functionally graded carbon nanotube reinforced composite (FG-CNTRC) 

face sheets under a moving mass. The effective properties of the face sheets are estimated by the 

extended rule of mixture. Three types of carbon nanotube distribution, namely uniform 

distribution (UD), functionally graded ( FG- ) and V (FG-V) distributions, are considered. 

Based on the first-order shear deformation theory, a finite element formulation is formulated by 

using hierarchical functions to interpolate the displacements and rotation. Using the derived 

formulation, dynamic response of the sandwich beam is computed with the aid of the Newmark 

method. The obtained result reveals that the inclined angle has a significant influence on the 

response of the beam, and the dynamic magnification factor decreases for the beam associated 

with a larger inclined angle. The effects of various parameter, including the nanotube volume 

fraction, the type of carbon nanotube distribution, the layer thickness ratio and the moving mass 

velocity on dynamic behavior of the sandwich beam are examined and highlighted. 

Keywords: Inclined sandwich, carbon nanotube reinforcement, first-order shear deformation, moving 

mass, dynamic analysis. 

Classification numbers: 2.9.4, 5.4.2, 5.4.5. 

1. INTRODUCTION 

Carbon nanotubes (CNTs) with their outstanding elastic modulus and low mass density 

have become one of the ideal materials for reinforcement of polymers in fabricating structural 

elements. Based on the idea of optimal distribution of CNTs in the matrix phase, Shen [1] 

proposed the concept of functionally graded carbon nanotube-reinforced composite (FG-

CNTRC) materials. After that, the researches on FG-CNTRCs beams increased rapidly, and it 

has been shown that even a small amount of CNTs can significantly improve mechanical 
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properties of the beams. Using Timoshenko beam theory, Ke et al. [2, 3] investigated the 

nonlinear free vibration and dynamic stability of FG nanobeams reinforced by single-walled 

carbon nanotubes (SWCNTs). Yas and Samadi [4] presented free vibration and buckling 

analysis of FG-CNTRC beams on elastic foundation. Ansari et al. [5] studied forced vibration of 

nanocomposite Timoshenko beams reinforced by SWCNTs. The third-order shear deformation 

theory was adopted by Lin and Xiang [6] in determining vibration frequencies of uniform 

distribution (UD) of CNTs and FG-CNT beams with various boundary conditions. Mohseni and 

Shakouri [7] studied free vibration and buckling of FG-CNTRC beams with variable thickness 

resting on elastic foundation. For sandwich beams with FG-CNTRC face sheets, Wu and 

Kitipornchai [8] investigated free vibration and buckling of sandwich beams with the aid of 

Galerkin method. Ebrahimi and Farazmandnia [9] proposed a higher-order shear deformation 

beam theory for free vibration analysis of FG-CNTRC sandwich beams in thermal environment.  

In many practical circumstances, the beams are not completely in horizontal position, and 

special treatments are required in dynamic analysis of inclined beams with a moving mass. In 

[10], Wu presented the concept of moving mass element, taking into consideration of the effects 

of inertia force, Coriolis force and centrifugal force. Mamandi and Kargarnovin [11] introduced 

an equivalent moving load horizontal beam model for studying dynamic behavior of inclined 

beams traveled by successive moving masses/forces. Bahmyari et al. [12] employed the finite 

element method to compute dynamic response of inclined laminated composite beams under 

moving distributed masses. Recently, Nguyen et al. [13] presented dynamic analysis of an 

inclined sandwich beam made of bidirectional functionally graded under a moving mass. 

In this paper, the dynamic behavior of an inclined FG-CNTRC sandwich beam under a 

moving mass is studied on the basis of the first-order shear deformation theory for the first time. 
The sandwich beam is formed from a homogeneous core and two face sheets made from FG-

CNT reinforced material. Three types of CNT distribution, namely UD, FG- , and FG-V are 

considered. A finite beam element using hierarchical functions to interpolate the displacements 

and rotation is derived and used in conjunction with Newmark method to compute dynamic 

response of the beam. Numerical investigation is carried out to highlight the effects of the beam 

inclined angle, the nanotube volume fraction, the type of carbon nanotube distribution as well as 

the layer thickness ratio and moving mass velocity on the dynamic behavior of the beam. 

2. MATHEMATICAL MODEL 

Figure 1 shows an inclined sandwich beam with length L, width b and height h in two 

Cartesian coordinate systems, a local system ( , )x z and a global one  , .x z  The core of the 

sandwich beam is homogeneous, while the two face sheets are made of CNTRC material. The 

beam is subjected to a moving mass 
cm moving from left end to right end of the beam with a 

constant speed v. Denoting 
0 1 2 3/ 2, , , / 2,h h h h h h    respectively, are the coordinates along 

the z-axis of the bottom layer, the interfaces between the layers and the top layer. Also, ,f ch h

are, respectively, the thickness of a face sheet and core layer. It is assumed that the moving mass 

is always in contact with the beam, and the core layer and the face sheets are perfectly bonded. 

Three types of distribution of CNTs in the beam cross-section, namely the UD, FG- , and FG-

V, as shown in Figure 2 and given in Table 1 [14] are considered.  
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Figure 1. An inclined FG-CNTRC sandwich beam under a moving mass. 

 

 

    

 

Figure 2. Cross-section of sandwich beam with three types of CNT distribution. 

Table 1. Volume fraction CNTV of CNTs in face sheets of sandwich beam. 

Distribution type Bottom face sheet 
0 1( )h z h   Top face sheet 

2 3( )h z h   

UD 
*

CNTV  
*

CNTV  

FG-Λ  
*0

1 0

2 CNT

z h
V

h h




 *3

3 2

2 CNT

h z
V

h h




 

FG-V 
*1

1 0

2 CNT

h z
V

h h




 *2

3 2

2 CNT

z h
V

h h




 

In Table 1, 
*

CNTV  is the total CNT volume fraction in two face sheets and it is the same for 

the three types of the CNTs distribution;  

*

CNTV  defined by 
   

* ,
/ /

CN
CNT CNT m CNT m

CN CN

w
V

w w   


 
where 

CNw is the mass fraction of 

nanotube, 
CNT and are the densities of CNT and matrix, respectively. 

The material properties of two CNTRC face sheets are determined according to the 

extended rule of mixture as [8] 

 32
11 1 11

22 22 12 12

; ;m m m
m m m

CNT CNT CNT
CNT CNT CNT

V V V V
E V E V E

E E E G G G


       (1) 

m

FG-V

hf 

  Homogeneous   Homogeneous   Homogeneous h 

hf 

hc 

 
 
 

  
 





 

 
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
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 

 

 
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In Equation (1), 
11 22 12, ,E E G are the elastic moduli and shear modulus of the 

nanocomposite; 11 22,CNT CNTE E and 12

CNTG  denote the elastic moduli of the CNTs; ,m mE G  are the 

moduli of the matrix phase; 
CNTV and 1m CNTV V   are the volume fractions of the CNT and the 

matrix, respectively; and
1 2 3, ,    are the CNT efficiency parameters. 

The Poisson’s ratio of the FG-CNTRC face sheets are determined as 

 
12

12 12 21 22

11

;m

m

CNT

CNTV V E
E


       (2) 

where 
12 21and   are Poisson’s ratio for a nanocomposite; 12 , mCNT  are Poisson’s ratios of the 

CNT and matrix, respectively.  

The effective elastic and shear moduli of the k
th
 layer are calculated as follows 

 
   ( ) ( ) (2) (2)11

12

12 21

; ( 1,3); ;
1

k k c cE
E z G z G k E E G G

 
    


 (3) 

in which ,c cE G are the elastic and shear moduli of the core material. The effective mass density 

of the k
th
 layer is defined as 

 ( ) (2)(z) ( 1,3);k CNT m c

mCNTV V k         (4) 

with 
c is the mass density of the core material. 

Based on the first-order shear deformation theory (FSDT), the displacements in x- and z-

directions,  1 , ,u x z t and  3 ,, ,u x z t  respectively, at any point of the beam are given by 

 
1 3( , , ) ( , ) ( , ); ( , , ) ( , )u x z t u x t z x t u x z t w x t    (5) 

where z is the distance from the mid-plane;  ,u x t and  ,w x t are, respectively, the 

displacements of the point on the mid-plane in x- and z-directions;  ,x t is the cross-sectional 

rotation.  

The axial strain  xx and the shear strain  xz resulted from Eq. (5) are of the forms 

 
, , ,;xx x x xz xu z w        (6) 

In Eq. (6) and hereafter, a subscript comma is used to indicate the derivative of the variable with 

respect to the spatial coordinate x, that is    
,

. . /
x

x   . 

The constitutive equation based on the linear behavior of the beam material is given by 

    ( ) ( );
k kk k

xx xx xz xzE G       (7) 

where 
( )k

xx and 
( )k

xz are the axial stress and shear stress at the 
thk layer, respectively; the effective 

elastic and shear moduli 
   

,
k k

E G are defined in Eq. (3);  is the shear correction factor, equals 

to 5/6 for the beams with rectangular cross-section considered here in.  

The elastic strain energy of the beam is given by 

  
 

2( ) ( ) 2 2

11 , 12 , , 22 , 33 ,

0 0

1 1
( ) 2

2 2

L L

k k

xx xx xz xz x x x x x

A

U dAdx A u A u A A w dx              
      (8) 
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The kinetic energy of the beam is of the form  

    2 2 2 2 2

111 3 11 12 22

0 0

1 1
( ) 2

2 2

L L
k

A

z u dAdx I u I w I u I dxu             (9) 

where the effective mass density  k
  is defined in Eq. (4); and an overhead dot (.) is used to 

indicate derivative with respect to time t. In Eqs. (8) and (9), A is the cross-sectional area;

11 12 22, ,A A A and 
33A  are, respectively, the extensional, extensional-bending coupling, bending 

rigidities and the shear rigidity, which are defined as  

 
       

1 1

3 3
2

11 12 22 33

1 1

, , 1, , ;
k k

k k

k k

h h

k kh h

A A A b E z z dz A b G dz

 
 

     (10) 

and 
11 12 22, ,I I I  are the mass moments, defined as 

 
     

1

3
2

11 12 22

1

, , 1, ,
k

k

h

k

k h

I I I b z z dz




    (11) 

The potential energy due to the moving mass is given by [11] 

      2

, ,

0

cos 2 sin

L

x xxV mg mw mvw mv w w mg mu u x vt dx          
   (12) 

where g = 9.81 m/s
2
 is the acceleration of gravity,   is the beam inclined angle as shown in 

Figure 1; mu and mw are the inertial forces; ,2 xmvw and 
2

,xxmv w are the Coriolis and 

centrifugal forces, respectively; (.)  is the Dirac delta function; x is the abscissa of the moving 

mass, measured from the left end of the beam. Noting that the transverse displacement w in Eq. 

(12) is evaluated at 0.z   

Applying Hamilton’s principle to Eqs. (8), (9) and (12) leads to differential equations of 

motion for the beam. However, a closed-form solution for such equations is hardly obtained. 

Finite element formulation is derived in the next section to compute the dynamic response of the 

beam.     

3. FINITE ELEMENT FORMULATION 

Linear functions can be adopted to interpolate. However, the element formulated from the 

linear functions encounters the shear locking problem. In this paper, the hierarchical functions 

are adopted to interpolate the displacements u, w and the rotation θ as [15] 

 
1 1 2 2 1 1 2 2 3 3 1 1 2 2 3 3 4 4; ; ;u N u N u N N N w N w N w N w N w             (13) 

where 1 2 3 4, , ,N N N N are the linear, quadratic, and cubic forms of the hierarchical shape 

functions with the following forms 

 
       2 2

1 2 3 4

1 1
1 ; 1 ; 1 ; 1

2 2
N N N N             (14) 

with  2 1
x

l
    is the natural coordinate, and  , , 1,2i i iu w i  are nodal displacements at node 

1 and node 2, while 
3 3 4, ,w w are the values of and w  inside the element. It is worthy to note 

that, as emphasized in [15], the inside values in hierarchical interpolation are just parameters, not 
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necessary to have a physical meaning. One can easily verify that the shape functions 

 1,2,3,4iN i   in Eq. (14) satisfy the partition of unity. A beam element for dynamic analysis 

can be formulated from nine degrees of freedom as shown in Eq. (13). However, a more efficient 

element with less degrees of freedom can be derived by constraining the shear strain 
xz in Eq. 

(6) to constant, and this procedure leads to   3 1 2 4 3,
8 6

l l
w w     [16]. Then, the variables in 

(13) can be written in the forms 

 
         

        

2

1 2 1 2 3

2 2

1 2 1 2 3

1 1 1 1
1 1 ; 1 1 1 ;

2 2 2 2

1 1
1 1 1 1

2 2 8 6

u u u

l l
w w w

        

       

         

        

 (15) 

In matrix forms, we can write Eq. (15) in the forms 

 ; ;u wu w   N d N d N d  (16) 

where 

     1 2 1 3 2

1 3 4 2 3

0 0 0 0 0 ; 0 0 0 0 ;

0 0
8 6 8

T T

u

T

w

N N N N N

l l l
N N N N N

 

 
  
 

N N

N
 (17) 

The vector of nodal displacements for a generic element (d) has seven components as 

  1 1 1 3 2 2 2

T
u w u w  d  (18) 

In the above equations and hereafter, the superscript ‘T’ is used to denote the transpose of a 

vector or a matrix. With the interpolation, one can write the strain energy of the beam (8) in the 

form  

 1
, with

2
uu u s

ne
TU       kd kk kd k k  (19) 

where ne is the total number of elements; k is the element stiffness matrix; , ,uu u k k k and 
sk

are, respectively, the element stiffness matrices stemming from the axial stretching, stretching-

bending coupling, bending and shear deformation. Using        
2

, , , ,

2
. . ; . . ; ,

2 4x xx

l l
d dx

l 
  

these matrices have the following forms 

 

   

, 11 , , 12 ,

0 0

, 22 , , 33 ,

0 0

; ;

;

l l

T T

uu u x u x u u x x

l l

T T T

x x s w x w x

A dx A dx

A dx A dx

 

    

  

   

 

 

k N N k N N

k N N k N N N N

 (20) 

      Similarly, the kinetic energy (9) can also be written as 

 
, with

1

2
uu u ww

ne
T

    d d m m m mm m  (21) 
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where m denotes the element mass matrix, and 

 

11 11 12 22

0 0 0 0

; ; ;

l l l l

T T T T

uu u u ww w w u uI dx I dx I dx I dx           m N N m N N m N N m N N  (22) 

are, respectively, the element mass matrices resulted from the axial and transverse translations, 

axial translation-rotation coupling, and cross-sectional rotation.  

       The potential energy in Eq. (12) is now of the form 

 
 

ne
T T T T ex

c c cV     d m d d c d d k d d f  (23) 

where , ,c cm c and 
ck are, respectively, the element mass, damping and stiffness matrices due to 

the effects of the inertia, Coriolis and the centrifugal forces of the moving mass; 
ex

f is the time-

dependent element nodal load vector generated by the moving mass. The expressions for these 

matrices and vector are as follows  

 2

1 1 2

2

1 1 3 1 4 1 2 1 3

2 2 2
2 2

1 3 3 3 4 2 3 3

2 2 2
2

c c 1 4 3 4 4 2 4 3 4

2

1 2 2

2

1 2 2 3 2 4 2 2 3

2 2 2
2 2

1 3 3 3 4 2 3 3

0 0 0 0 0

0 0
8 6 8

0 0
8 64 48 8 64

0 0
6 48 36 6 48

0 0 0 0 0

0 0
8 6 8

0 0
8 64 48 8 64

N N N

l l l
N N N N N N N N N

l l l l l
N N N N N N N N

l l l l l
m N N N N N N N N N

N N N

l l l
N N N N N N N N N

l l l l l
N N N N N N N N





 



   

m

cx

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
(24a) 

 

1 1, 1 3, 1 4, 1 2, 1 3,

2 2 2

1, 3 3 3, 3 4, 2, 3 3 3,

2 2 2

c c 1, 4 3, 4 4 4, 2, 4 3, 4

2

1, 2 2 3, 2 4, 3, 4 2 3

0 0 0 0 0 0 0

0 0
8 6 8

0 0
8 64 48 8 64

2 0 0
6 48 36 6 48

0 0 0 0 0 0 0

0 0
8 6 48 8

x x x x x

x x x x x

x x x x x

x x x x

l l l
N N N N N N N N N N

l l l l l
N N N N N N N N N N

l l l l l
m v N N N N N N N N N N

l l l l
N N N N N N N N N N





 

 

c

,

2 2 2

1, 3 3 3, 3 4, 2, 3 3 3,0 0
8 64 48 8 64

c

x

x x x x x

x

l l l l l
N N N N N N N N N N

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     

 
(24b) 
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1 1, 1 3, 1 4, 1 2, 1 3,

2 2 2

1, 3 3 3, 3 4, 2, 3 3 3,

2 2 2
2

c c 1, 4 3, 4 4 4, 2, 4 3, 4

1, 2 2 3, 2 4,

0 0 0 0 0 0 0

0 0
8 6 8

0 0
8 64 48 8 64

0 0
6 48 36 6 48

0 0 0 0 0 0 0

0 0
8 6

xx xx xx xx xx

xx xx xx xx xx

xx xx xx xx xx

xx xx xx

l l l
N N N N N N N N N N

l l l l l
N N N N N N N N N N

l l l l l
m v N N N N N N N N N N

l l
N N N N N N





 k

2 2, 2 3,

2 2 2

1, 3 3 3, 3 4, 2, 3 3 3,

8

0 0
8 64 48 8 64

c

xx xx

xx xx xx xx xx

x

l
N N N N

l l l l l
N N N N N N N N N N

 
 
 
 
 
 
 
 
 
 
 
 
 


 
 
    
  

 
(24c) 

 
ex

1 1 3 4 2 2 3
8 6 8

c

T

x z z z x z z

x

l l l
P N P N P N P N P N P N P N
 

  
 

f  (24d) 

where  .
cx

means that the expression  .  is evaluated at 
cx - the current abscissa of the mass 

measured from the left end of the element. Except for the element under the moving mass, the 

element matrices , ,c cm c ck and the vector 
ex

f are zeros for all other elements. ,x zP P  are the 

following force components induced by the moving mass. They are given by 

 c csin ; cosx zP m g P m g    (25) 

Noting that the effect of frictional force at the contact point between the moving mass and the 

inclined beam is small, and it is neglected in this paper. 

When the beam is an inclined angle   to the horizontal plane, the displacement 

components of an arbitrary point on the inclined beam in the local x and z directions, u and w are 

related to those in the global x  and z  directions, u  and w  as 

 cos sin ; sin cosu u w w u w        (26) 

Because the local rotations and the global ones are identical, the vector of local degrees of 

freedom d is related to the global one d  by d = Td where  1 1 1 3 2 2 2

T

u w u w  d and 

 cos sin 0 0 0 0 0

sin cos 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 cos sin 0

0 0 0 0 sin cos 0

0 0 0 0 0 0 1

 

 

 

 

 
 

 
 
 

  
 
 

 
 
 

T  (27) 

is the transformation matrix. The global element stiffness and mass matrices are finally 

computed as 
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 , andT T k T kT m T mT  (28) 

       Similarly, the element mass, damping, stiffness matrices and nodal load vector in Eqs. (24a, 

b, c, d) written in global coordinate system, respectively, are as follows 

 
c c c c c c; ; ;T T T ex T ex   m T m T c T c T k T k T f T f  (29) 

The finite element equation for the dynamic analysis of the inclined sandwich beam can be 

written as  

 ex  MD CD KD F  (30) 

where ,M K  are the instantaneous overall mass and stiffness matrices, respectively. They 

composed of the constant overall mass and stiffness matrices of the entire inclined beam itself 

and the time-dependent element property matrices due to the moving mass. The instantaneous 

overall damping matrix C  is obtained by adding the element damping matrix 
cc to the damping 

matrix of the inclined beam itself. The overall damping matrix of the inclined beam is 

proportional to the instantaneous overall mass and stiffness matrices by using the theory of 

Rayleigh damping with a damping ratio of 0.5 % [10]. Equation (30) is solved herein by the 

average acceleration Newmark method, in which the nodal displacements at the new step (n+1) 

are updated from their previous step n according to [17] 

 ef ef

1 1i i K D F  (31) 

where 
ef

K and 
ef

1iF are, respectively, the effective stiffness matrix and load vector with the 

following  forms 

 
ef ef

1 12 2

4 4 4
; i i i i i

t t t
 

 
      
   

K M K F F M D D D  (32) 

The node nodal velocity and acceleration vectors at the new step (n+1) are updated as  

 
   1 1 1 12

2 4 4
;i i i i i i i i i

t t t
         

  
D D D D D D D D D  (33) 

Eqs. (31), (32) and (33) are totaly defined the nodal displacement, velocities and accelerations at 

the new step from the previous one. 

4. NUMERICAL RESULTS AND DISCUSSION 

Numerical investigation is carried out in this section for a simply supported inclined FG-

CNTRC sandwich beam with total thickness of the sandwich beam of 0.01 m. The matrix for 

two face sheets is poly-methyl methacrylate (PMMA) with
32.5GPa, 1190 kg/ m ,m mE    

0.3m  ; the armchair (10, 10) SWCNTs with 11 225.6466TPa, 7.08TPa,CNT CNTE E   
 

3

12 1.9445TPa, 1400kg/m ,CNT CNTG   0.175CNT 
 

are selected as the reinforcement for 

CNTRCs. The CNT efficiency parameters are given in work [8] as 

   1 2 3, , 0.137, 1.022, 0.715     for case of 
* 0.12;CNTV      1 2 3, , 0.142, 1.626, 1.138     for 

case of * 0.17;CNTV  and    1 2 3, , 0.141, 1.585, 1.109     for case of 
* 0.28.CNTV   The core 
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material of the sandwich beam is made of titanium alloy (Ti-6Al-4V) with 
3113.8GPa, 4430 kg/m , 0.342c c cE     . The ratio of homogeneous core thickness to face 

sheet thickness is defined by /c fh h . An aspect ratio /  20L h   and a moving mass 

0.5 c

cm AL  are assumed. A uniform increment time step /200t T    with T  is the total 

time necessary for the mass crossing the beam, is used for the Newmark procedure. The dynamic 

magnification factor 
dD  is introduced as

 /2,
max ,d

st

w L t
D

w

 
  

 
where 

3 / 48 c

st cw L m g E I  is the 

static deflection of a horizontal beam made of  fully Ti-6Al-4V  under mid-span concentrated 

load 
cm g , and 𝐼 is the inertia moment of area of the cross-section. 

4.1. Formulation verification 

Tables 2 and 3 compare the fundamental frequency parameter of the horizontal FG-

CNTRC sandwich beam obtained herein with the results using the differential quadrature 

method of Wu and Kitipornchai [8]. The frequency parameter is obtained for a sandwich beam 

with two types of CNT distribution, the FG-V and UD. The frequency parameter is defined as in 

[8], 110 110/ ,L I A   with 
110A and 

110I are the values of 
11A and 

11I of a homogeneous beam 

made of pure core material, and   is the fundamental frequency. Very good agreement between 

the frequency parameter of the present work with that of [8] is seen from Tables 2 and 3, 

regardless of the total CNT volume fraction 
*

CNTV  and ratio /c fh h . Noting that a Timoshenko 

beam theory is used to formulate governing equations in [8]. 

Table 2. Comparison of frequency parameter of sandwich beams with / 8,c fh h   L/h = 20. 

Distribution Source * 0.12CNTV   
* 0.17CNTV   

* 0.28CNTV   

FG-V 
Wu and Kitipornchai [8] 0.1453 0.1588 0.1825 

Present 0.1405 0.1544 0.1787 

UD 
Wu and Kitipornchai [8] 0.1432 0.1560 0.1785 

Present 0.1383   0.1515 0.1746 

Table 3. Comparison of frequency parameter of sandwich beams with L/h = 20, 
* 0.17CNTV  . 

Distribution Source / 8c fh h   / 6c fh h   / 4c fh h   

FG-V 
Wu and Kitipornchai [8] 0.1588 0.1642 0.1743 

Present 0.1544 0.1605 0.1717 

UD 
Wu and Kitipornchai [8] 0.1560 0.1599 0.1668 

Present 0.1515 0.1561 0.1641 

 

In Figure 3, the time histories of an inclined homogeneous beam under a moving mass 

obtained by present formulation are compared with those of Mamandi and Kargarnovin [11] for 

5


  and three values of the mass velocity parameter,  0.1, 0.25   and 0.5 ( / crv v  , with 
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/c c

crv E I A
L


  is the critical velocity of a moving force on a simply supported Euler–

Bernoulli beam). A good agreement between the time histories of the present work with those of 

Ref. [11] is noted from Figure 3. Noting that the Galerkin method was used in Ref. [11]. It is 

worthy to note that the results in Tables 2, 3 and also in Figure 3 have been converged by using 

8 elements, and this number of elements is used to discretize the beam in all computations 

reported below. 

 
Figure 3. Comparison of time histories for mid-span deflection of inclined homogeneous beam with

5


  . 

4.2.Dynamic response 

The time histories for dimensionless mid-span transverse displacement of the FG-V, UD 

and FG-Λ sandwich beam are shown in Figure 4 for three values of the total CNTs volume 

fraction 
* 0.12, 0.17, 0.28CNTV   and two values of the beam inclined angle /12, / 4   . The 

moving mass velocity 100v  m/s and the ratio of thickness / 8c fh h   are chosen to plot the 

figure. As seen from the figure, for all three types of CNT distribution and two inclined angles, 

the mid-span deflection sharply decreases with increase in the total CNTs volume fraction. This 

is explained by the fact that the beam is stiffer when reinforcing by more CNTs. In addition, the 

maximum displacement of the beam is achieved at an earlier time for the beam associated with a 

larger 
* .CNTV  Looking at Figure 4 more closely, one can see that the difference in the mid-span 

deflections obtained from three CNT distribution types is not much. The deflection of the FG-V 

beam is the smallest, while that of the FG- beam is the highest. The influence of the beam 

inclined angle is also clearly seen from the figure, where the mid-span deflection is smaller for 

the beam with a higher inclined angle, regardless of the total CNTs volume fraction and the type 

of CNT distribution. However, it can be seen that the beam inclined angle only changes the 

magnitude of mid-span deflection, not the way the beam vibrates. 
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Figure 4. Time histories for dimensionless mid-span transverse displacement for different total CNTs                  

volume fraction ( 100v  m/s, / 8c fh h  ). 

Table 4. Dynamic magnification factors of FG-CNTRC sandwich beam for v = 100 (m/s). 

  *

CNTV  
/ 4c fh h   / 6c fh h   / 8c fh h   

FG-V UD FG-Λ  FG-V UD FG-Λ  FG-V UD FG-Λ  

0 

0.12 1.9306 2.1362 2.3855 1.9713 2.0913 2.2255 1.9804 2.0581 2.1416 

0.17 1.3763 1.5399 1.7425 1.4902 1.5974 1.7199 1.5647 1.6403 1.7225 

0.28 0.8472 0.9623 1.1080 0.9836 1.0674 1.1638 1.0882 1.1517 1.2217 

12


 

0.12 1.8645 2.0628 2.3035 1.9036 2.0194 2.1489 1.9123 1.9873 2.0679 

0.17 1.3290 1.4871 1.6828 1.4393 1.5428 1.6610 1.5111 0.1515 1.6635 

0.28 0.8185 0.9297 1.0704 0.9503 1.0312 1.1243 1.0513 1.1125 1.1801 

6


 

0.12 1.6703 1.8475 2.0626 1.7048 1.8085 1.9242 1.7124 1.7795 1.8516 

0.17 1.1907 1.3323 1.5077 1.2897 1.3824 1.4881 1.3538 1.4191 1.4901 

0.28 0.7343 0.8340 0.9600 0.8525 0.9250 1.0082 0.9427 0.9975 1.0580 

4


 

0.12 1.3600 1.5040 1.6787 1.3875 1.4717 1.5658 1.3935 1.4481 1.5067 

0.17 0.9710 1.0860 1.2288 1.0510 1.1264 1.2123 1.1027 1.1557 1.2134 

0.28 0.6001 0.6817 0.7844 0.6963 0.7554 0.8231 0.7694 0.8140 0.8633 
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Figure 5. Variation of dynamic magnification factor with moving mass speed of FG-V sandwich beam for 

different beam inclined angle. 

Table 4 lists the dynamic magnification factors 
dD of the FG-CNTRC beam for 100v   

m/s and various values of the inclined angle, the CNT volume fraction and the /c fh h  ratio. The 

table shows a significant influence of the volume fraction 
*

CNTV on the factor
dD , and the 

sandwich beam with the volume fraction 
* 0.28CNTV  has the lowest factor

dD , while the same 

sandwich beam with 
* 0.12CNTV  has the highest one, regardless of the distribution type and the 

inclined angle. A careful examination of the table shows that the influence of the volume 

fraction 
*

CNTV  on the factor 
dD  on is the most significant for the FG-V beam, it then follows by 

the UD and  the FG-Λ  beams.  

Thus, the decrease of the factor Dd with the increase of the volume fraction 
*

CNTV is less 

significant for the beam having a higher /c fh h  ratio.  One can also see that the influence of the 

volume fraction 
*

CNTV  on the factor Dd is hardly affected by the inclined angle.  

For example, with / 4   and / 4c fh h  ,  the factor Dd of the FG-V beam decreases 

55.88 % when increasing the volume fraction 
*

CNTV  from 0.12 to 0.28, while the coresponding 

values for the UD and FG-Λ  beams are 54.67 % and 53.27 %, respectively.  With / 4   and 

/ 8c fh h  , the factor Dd  of the FG-V, UD and FG-Λ  beams decreases respectively 44.79, 43.79 

and 42.70 % by the increases of volume fraction 
*

CNTV  from 0.12 to 0.28. The effect of the 
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moving mass velocity on the dynamic behavior of FG-CNTRC beam can be seen from Figure 5, 

where the variation of the factor Dd with the mass velocity v of the FG-V sandwich beam is 

shown for various values of the CNTs volume fraction 
*

CNTV  and the /c fh h  ratio.  It can be seen 

from the figure that the factor 
dD  reaches its maximum value at higher speeds for beams with a 

larger 
* .CNTV Looking closely at subfigures 5a and 5b, one can see that for 

* 0.12,CNTV   the 

increase in the ratio /c fh h  leads to the decrease in the factor 
dD , but this decrease is not 

significant. In contrast, for 
* 0.17, 0.28,CNTV   the factor 

dD  increases sharply with increasing 

the ratio /c fh h . As expected, a higher angle  is, a lower factor 
dD the beam has. 

5. CONCLUSIONS 

The dynamic behavior of FG-CNTRC sandwich beams under a moving mass has been 

studied on the basis of the first-order shear deformation beam theory. The beams consist of three 

layers, a homogeneous core and two FG-CNTRC face sheets. The effective properties of the 

faces CNTRC are determined by the extended rule of mixture. The discretized equation of 

motion in terms of the finite element analysis has been derived and solved by the Newmark 

method. The accuracy of the formulation has been confirmed through a comparison study. 
Results obtained from the numerical investigation reveal that the total CNTs volume fraction and 

the layer thickness ratio have a strong influence on the dynamic response of the beam, and the 

beam reinforced with more CNTs has the better dynamic response in term of lower dynamic 

magnification factor. It has been shown that the beam associated with a large inclined angle has 

a lower dynamic factor. The influence of the carbon nanotube volume fraction and the layer 

thickness ratio on the dynamic behavior of the FG-CNTRC sandwich beams has been studied in 

detail and highlighted.  
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