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Abstract. Free vibration of a silicon microbeam in micro-electromechanical systems (MEMS) 

subjected to electrostatic and axial forces is studied in the framework of a sinusoidal shear 

deformation theory. A nonlinear finite element formulation based on the von Kármán nonlinear 

assumption and the modified couple stress theory (MCST) is formulated and employed to 

establish the discrete nonlinear governing equations for the microbeam. The deflection of the 

microbeam at a given direct current (DC) voltage is firstly calculated by the Newton Raphson 

method and used to evaluate the natural frequencies. The influence of the applied voltage and 

the microsize effect on the frequencies is investigated in detail. The results reveal that the 

microstructural parameter has an important role in the vibration the microbeam, and the natural 

frequencies are underestimated by ignoring the microstructural parameter. The dependence of 

the pull-in voltage upon the material length microscale and the axial force is also examined and 

discussed. 
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1. INTRODUCTION 

Microbeams are found in many micro-electromechanical system (MEMS) devices, e.g. 

capacitive MEMS switches and resonators, filters, and resonant sensors. Accurate prediction of 

frequencies of the microbeams is crucial for correct use of the microbeams. Due to the electric 

actuation, deflections of the microbeams in MEMS are usually large, and thus nonlinear analyses 

are necessary to adopt in predicting mechanical characteristics of the MEMS microbeams. 

Various methods have been developed for assessing the mechanical behaviour of microbeams 

actuated by electric and mechanical forces. 
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In the early works, the small size effect has not been taken into consideration in analysing 

MEMS microbeams. For example, Choi and Lovell [1] adopted the traditional Euler-Bernoulli 

beam theory to compute deflections and stresses of clamped microbeams subjected to both the 

electrostatic and mechanical forces. Abdel-Rahmanet et al. [2] proposed a nonlinear model of 

microbeams accounting for electrostatic forcing and restoring force for estimation of deflections 

and frequencies of MEMS microbeams. The static and dynamic pull-in behaviour of an axially 

loaded MEMS microbeam due to the electric actuation was investigated by Younis et al. [3], 

taking into account the viscous damping effect. Younis and Nayfeh [4] derived the first-order 

nonlinear differential equations for analyzing a resonant microbeam subjected to an electric 

actuation and an axial force. The response of a microbeam-based resonant sensor to                                  

super-harmonic and    

sub-harmonic electric actuations was investigated in [5] using the perturbation method. The  

pull-in phenomenon of electrostatically actuated microcantilever beams actuated by electrostatic 

force was considered by Chaterjee and Pohit [6]. Finite element method was adopted by several 

authors to study the pull-in phenomenon of MEMS microbeams [7, 8]. In these works, the 

deformation of the microbeams was modelled by using the traditional Euler-Bernoulli beam 

theory. A commercial finite element software named COMSOL was employed by Kaneria et al. 

[9] in their study of the pull-in phenomenon of microcantilever in MEMS devices.  

The influence of the microsize effect on the behaviour of MEMS microbeams was recently 

considered. The modified couple stress theory (MCST) was used in combination with Euler-

Bernoulli beam theory by Farokhi and Ghayesh [10] to construct the equation of motion for 

computing dynamic response of a MEMS microcantilever under an electric excitation. It has 

been shown by the authors that an overestimated deflection is obtained, while the static pull-in 

voltage is underestimated when the microsize effect is not taken into account. Ghayesh and 

Farokhi [11] modelled the electrode in MEMS by a microplate to study the nonlinear behaviour 

of MEMS resonators actuated by electric force. The static pull-in phenomenon of 

microcantilevers in MEMS, taking the microsize effect into account, was studied by Baghani 

[12] using an analytical method. The method based on the modified variational iteration 

procedure allows to evaluate the nonlinear response of the microbeams to electric actuation. The 

size-dependent resonant phenomenon of MEMS resonators simultaneously subjected to DC and 

AC voltages was considered by Ghayesh et al. [13] within the framework of Euler-Bernoulli 

beam theory and the MCST. The Galerkin method was adopted by the authors to compute the                                              

frequency-response curves. 

In this paper, the free vibration of a clamped silicon microbeam in MEMS with an axial 

force is investigated by finite element method. The microsize effect is modelled via the MCST, 

and the deformation of the microbeam is described by sinusoidal shear deformation theory. As 

mentioned above, defections of the microbeam under the electric force in MEMS are relatively 

large, and they should be computed before evaluating the frequencies. To this end, the von 

Kámán nonlinear strain-displacement assumption is employed herein to derive a two-node beam 

element, the Newton-Raphson method is firstly used to compute the beam deflections. With the 

obtained deflection, the tangent stiffness matrix is evaluated, and then used to construct the 

eigenvalue problem. The natural frequencies are computed for the microbeam under different 

voltages and axial forces.  The influence of the microsize effect, the applied voltage and the 

axial force on the frequencies of the microbeam is studied in detail and highlighted. The 

dependence of the pull-in voltage at which the instability occurs is also examined and discussed. 

2. MATHEMATICAL FORMULATION 
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Figure 1 shows a clamped microbeam with length L, rectangular cross section formed one 

side of a capacitor [4, 13].  Shown in the figure, h, b and d, respectively, are the height, width of 

the beam, and the air-gap between the electrode and the microbeam. The x-axis of the Cartesian 

system (x, z) in Figure 1 is chosen on the mid-plane, and the z-axis directs upwards.  

In order to account for the microstructural effect, the MCST with only one microscale 

parameter proposed by Yang et al. [14] is employed in the present work to calculate the strain 

energy of the microbeam as follows 

 
1

: : d
2

b

V

U V  σ ε m χ  (1) 

In the above equation, V is the volume of the microbeam; σ and  denote the stress and strain 

tensors, respectively; m is the deviatoric part of the couple stress tensor, and χ is the symmetric 

curvature tensor. 

 

Figure 1. Model of a clamped microbeam in MEMS 

The components of the symmetric curvature tensor are defined as 
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where i (i = 1, 2, 3) are the components of the rotation vector that can be expressed as 
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where u1, u2 and u3 are the displacements in the x, y and z directions, respectively. 

The components of the deviatoric part of the couple stress tensor based on the linear 

behaviour of the beam material can be written as 
22ij ijm Gl   (4) 

where 
2(1 )

E
G





is the shear modulus, l is the material length microscale parameter; E and ν 

are Young’s modulus and Poisson’s ratio, respectively. 

According to the sinusoidal shear deformation theory [15], the displacements u1, u2 and u3, 

are respectively given by 
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where u0(x,t), wb(x,t) and ws(x,t) denote the in-plane displacement in x-direction, the bending and 

shear components of the transverse displacement, respectively. In equation 5 and hereafter, the 

subscript comma denotes the derivative with respect to the spatial variable x, e.g. ,b x bw w x   .  

Based on the von Kármán nonlinear assumption, the normal and shear strains deduced from 

equation 5 are as follows 
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with  
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 (7) 

Based on the Hook’s law, the constitutive equations of the beam material are 

,xx xx
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 (8) 

In this case, the tensors in equation 1 can be expressed as 
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with 
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Using equation 9, one can recast the strain energy in equation 1 in the form 
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The kinetic energy of the microbeam deduced from equation 1 is as follows 
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(12) 

where ρ is the mass density. The over dot in equation 12 and hereafter denotes the derivative with 

respect to the time variable t (the corresponding velocity). 

The beam subjected to the electrostatic force per unit length has the form [10, 13] 

 
 

2

0 DC

2

3

V
,

2 ( , )

b
q x t

d u x t





    (13) 

where VDC is the DC polarization voltage, and 
0  is the dielectric constant of vacuum. 

The work done by the electric force is given by [10] 

  3

0

, d

L

FW q x t u x   (14) 

The microbeam is also considered to be subjected to an axial force P, resulting in the 

energy WP of the form 

   
22 2 2

3, , , , , , ,

0 0 0

1 1 1
d d 2 d

2 2 2

L L L

P x b x s x b x s x b x s xW Pu x P w w x P w w w w x         (15) 

Applying Hamilton's principle to energy expressions given by equations 11, 12, 14, and 15 

leads to nonlinear differential equations of motion for the microbeam. However, it is difficult to 

derive a closed-form solution for such equations, and a finite element formulation is derived in 

the next section to establish the discretized equation of motion for the microbeam. 

3. FINITE ELEMENT FORMULATION 

The discretized equation of motion is established in this section by using a finite element 

formulation. To this end, we consider herewith a two-node beam element with length le. The 

vector of nodal displacements (de) with ten degrees of freedom has the form 

 
10 1

T
e e e

e b s


d u w w  (16) 

where  

     01 02 1 , 1 2 , 2 1 1, 2 2,, ,
T TTe e e

b b b x b b x s s s x s s xu u w w w w w w w w  u w w  (17) 

are the element vectors of nodal axial displacements, bending and shear parts of the transverse 

displacements, respectively. 

The displacements inside the element are interpolated according to 

0 , ,e e e

b b s su w w  Nu Hw Hw  (18) 

where  1 2N NN  and  1 2 3 4H H H HH are the matrices of the shape functions. The 

following linear and Hermite shape functions are employed here with 
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With the interpolations, one can express the strain energy in equation 11 in the                            

following form 
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with neB being the number of elements. 

The kinetic energy in equations 12 can now be rewritten as 
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The work of the electric force in (14) and the energy WP in equation 15 can also be written in 

the form 

0

( , )( )d
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The element stiffness matrix derived from the strain energy of the beam can be written in 

sub‐matrices as 
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The sub-matrices in the above equation are calculated by differentiating twice the beam 

strain energy in equation 20 as follows 
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The element stiffness matrix stemming from the axial force P is of the form 
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The element mass matrix can be also rewritten in sub‐ matrices as 
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where 
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Finally, the element vector of the nodal forces is 

 
(10 1)

T
b s

e e e
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f 0 f f , 
(4 1) (4 1)

( , )b s T

e e q x t
 
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It should be noted that the electrostatic force q(x,t) in the above equation, as defined by 

equation 13, is dependent on the current displacement u3(x,t). Thus, together with the large 

deflection, the dependence of the force on the displacement u3(x,t) is also a nonlinear source of 

this problem. 

4. NUMERICAL PROCEDURE 

To compute the frequencies of the microbeam in MEMS, the following two steps to be 

performed. 

+ 1
st
 step: the Newton-Raphson method is used to solve the following nonlinear equilibrium 

equation for the static displacements of the beams 

 ( ) ( ) 0
Bne

P

e e e e e e
     k d k d f d  (30) 

+ 2
nd

 step: using the obtained displacements, the elements stiffness matrices ( )e ek d and 
P

ek  

in equations 24 and 26, respectively, are formed and assembled into the global stiffness matrix 

 K , and then the equation of motion for free vibration of the microbeam is constructed as 

    0 M D K D  (31) 

where M is the global mass matrix of the microbeam. 

By assuming a harmonic form for the displacements D, equation 31 leads to the following 

eigenvalue equation 
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    2 0 K M D  (32) 

where  and D  are the frequency and the eigenvector of the nodal displacements, respectively. 

The eigenvalue equation 32 is solved by the standard method [16] for the eigenfrequencies                             

and eigenvectors. 

5. NUMERICAL RESULTS 

The effects of the loading and microscale parameters on frequencies of the microbeam are 

numerically investigated in this section. Otherwise mentioned, a clamped microbeam made from 

silicon with the following properties [17] is used in the investigation 
3169GPa, 2332kg/m , 0.06E      (33) 

For the convenience of discussion, the dimensionless fundamental frequency parameter (μ) 

and microscale parameter (η) are introduced as [16] 

4 2

1 ,
AL l AG

EI EI


     (34) 

with
1  being the fundamental natural frequency. 

The constraints for clamped boundaries are as follows u0 = wb = ws = wb,x = ws,x = 0 at x = 0, 

L. 

5.1. Verification 

The derived formulation is firstly verified herewith. To this end, Figures 2 and 3 

respectively show the curves of relation between the frequency parameter µ and the applied 

voltage of the microbeam without and with the axial force P for L = 210 µm, b = 100 µm, d = 

1.18 µm, and  

η = 0, where for comparison the results of Ref. [17] are also given.  

Table 1. Comparison of static pull-in voltages 

Sources L = 250 µm L = 350 µm 

P/A = -25 P/A = 0 P/A = 100 P/A = -25 P/A = 0 P/A = 100 

Ref. [8] 33.04 39.13 58.84 13.27 20.36 36.99 

Ref. [18] 33.70 39.50 56.90 13.80 20.30 35.40 

Present 33.07 39.56 58.28 12.86 20.20 36.45 

Error (%) 0.09 & 1.87 1.10 & 0.15 0.95 & 2.43 3.09 & 6.81 0.79 & 0.49 1.46 & 2.97  

It can be seen from Figures 2 and 3 that the present results agree well with that of Ref. [17], 

irrespective of the axial force. One can see that the frequency parameter in the figures gradually 

decreases with increasing the voltage and it equals zero at the pull-in voltage. In Table 1, the 

static pull-in voltages of this paper are compared with the results of Ghazavi et al. [8], and 

Osterberg et al.  [18] for a microbeam with b = 50 µm, h = 3 µm, d = 1 µm, and η = 0. Table 1 

also shows that the pull-in voltages obtained herein agree well with that of the cited references, 

regardless of the beam length and the axial force. Noting that the Galerkin method with reduce-

order model of beam is employed in [17], while Refs. [8] and [18] employed the finite difference 

method and the 3D MEMCAD model, respectively. 
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Figure 2. Relation between frequency parameter µ and applied voltage VDC for h = 0.6 μm  

and without axial force (P=0) 

 

Figure 3.  Relation between frequency parameter µ with applied voltage VDC for h = 1.5 μm  

with an axial force P = -0.0009 N 

5.2. Influence of the size effect 

The influence of the microsize effect on the frequency parameters of the microbeam are 

shown in Table 2 and Figure 4. One can see from Table 2 and Figure 4 that both the parameter µ 

and the pull-in voltages are the compressive axial force amplitude for the beam associated with a 

large microscale parameter. The results in the table and the figure reveal that the microstructural 

effect has a significant influence on the frequency of the microbeam, and the frequency 



 
 
Free vibration of axially loaded microbeam in MEMS based on sinusoidal shear deformation theory 

 

515 

parameter is considerably underestimated by ignoring the microsize effect. Furthermore, the 

pull-in voltage at which the fundamental frequency of the microbeam becomes zero is also 

increased with increasing the microscale parameter. 

Table 2. Frequency parameters of MEMS microbeam with L=250 µm, b=100 µm, h=3µm, d=1 µm, 

P = -0.0008 N, and the different values of  and VDC 

VDC(V) 0 5 10 15 20 25 30 35 40 45 50 

=0 21.99 21.94 21.78 21.49 21.03 20.33 19.16 16.83 - - - 

=0.1 23.10 23.05 22.90 22.63 22.20 21.56 20.55 18.75 13.08 - - 

=0.2 24.16 24.11 23.97 23.71 23.31 22.72 21.82 20.32 17.01 - - 

=0.3 25.17 25.13 24.99 24.74 24.36 23.81 23.00 21.71 19.26 - - 

=0.4 26.15 26.10 25.97 25.73 25.38 24.86 24.11 22.96 20.98 15.41 - 

=0.5 27.08 27.04 26.91 26.69 26.35 25.86 25.16 24.12 22.44 18.82 - 

=0.6 27.99 27.95 27.83 27.61 27.28 26.82 26.16 25.21 23.74 20.97 - 

=0.7 28.87 28.83 28.71 28.50 28.19 27.74 27.13 26.25 24.93 22.65 15.94 

=0.8 29.72 29.68 29.57 29.36 29.06 28.64 28.05 27.23 26.03 24.08 19.74 

=0.9 30.55 30.51 30.40 30.20 29.91 29.50 28.95 28.17 27.07 25.35 22.03 

=1 31.36 31.32 31.21 31.02 30.74 30.35 29.81 29.08 28.05 26.51 23.78 

 

Figure 4. Variation of frequency parameter µ with applied voltage VDC for L = 210 µm, b = 100 µm,  

h = 1.5 µm, d = 1.18 µm, P = -0.0009 N and various values of . 

5.3. Influence of the axial force 

The influence of the axil force on the vibration behaviour of the microbeam in MEMS is 

illustrated in Table 3 and in Figure 5. As can be seen from the table and figure, the axial force 

has a significant influence on the frequency parameters as well as the pull-in voltages. The 
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increase of the amplitude of the compressive force (P < 0) results in an increase of the 

frequency. The effect of the tensile force (P > 0) is opposite, and the frequency decreases with 

increasing the tensile force. A similar influence of the axial force on the pull-in voltage can also 

be observed from Figure 5. The influence of the axial force on the frequency parameter can be 

explained by the fact that the flexural rigidity is reduced as the beam is subjected to a 

compressive axial force, and it is increased under a tensile axial force [19]. 

Table 3. Frequency parameters of microbeam MEMS with L = 250 µm, b = 100 µm, h = 3 µm,                                 

d = 1 µm,  = 0.25, and the variation of P and VDC 

VDC(V) 0 5 10 15 20 25 30 35 40 45 50 

P=-0.0030 23.75 23.70 23.56 23.29 22.88 22.27 21.34 19.74 15.84 - - 

P=-0.0024 24.01 23.96 23.81 23.55 23.15 22.55 21.64 20.11 16.60 - - 

P=-0.0018 24.26 24.21 24.07 23.81 23.41 22.82 21.93 20.46 17.27 - - 

P=-0.0012 24.51 24.46 24.32 24.06 23.67 23.09 22.23 20.81 17.86 - - 

P=-0.0006 24.75 24.71 24.56 24.31 23.93 23.36 22.51 21.14 18.41 - - 

P=0 24.99 24.95 24.81 24.56 24.18 23.62 22.79 21.47 18.91 - - 

P=0.0006 25.23 25.19 25.05 24.81 24.43 23.88 23.07 21.79 19.38 - - 

P=0.0012 25.47 25.43 25.29 25.05 24.68 24.14 23.34 22.10 19.82 5.71 - 

P=0.0018 25.71 25.66 25.53 25.29 24.92 24.39 23.61 22.41 20.24 12.23 - 

P=0.0024 25.94 25.90 25.76 25.53 25.16 24.64 23.88 22.70 20.64 14.24 - 

P=0.0030 26.17 26.13 25.99 25.76 25.40 24.89 24.14 23.00 21.03 15.57 - 

 

Figure 5. Frequency parameter µ versus applied voltage VDC for L = 210 µm, b = 100 µm,  

h = 1.5 µm, d = 1.18 µm,  = 0 and various values of P 
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4. CONCLUSIONS 

The free vibration of a microbeam with an axial force under electric actuation in MEMS 

has been investigated on the basis of the sinusoidal shear deformation theory and the MCST. 

Based on the von Kármán geometrically nonlinear assumption, a two-node beam element was 

formulated and employed to establish the discretized governing equations for the microbeam. 

Using the Newton-Raphson method, the deflections of the beams were firstly computed and then 

used to evaluate the tangent stiffness to construct the eigenvalue problem. The fundamental 

frequencies and the pull-in voltages were determined and the influence of the applied voltage, 

the axial force as well as the microsize effect on the vibration behaviour of the microbeam was 

examined in detail. The numerical results obtained in the present work showed that the axial 

force and the microsize parameter played an important role in the vibration frequencies and the 

static pull-in voltages of the beam. It has also been shown that the fundamental frequencies and 

the static pull-in voltage were considerably underestimated when the microstructural effect was 

ignored. 
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