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Abstract. We numerically study in this work the magnetic properties induced by the on-site 

electron-electron interaction in graphene nanoflakes shaped diamond with a variety of sizes. By 

the mean-field Hubbard approximation, a phase transition in analogy to infinite graphene from 

non-magnetism to antiferromagnetism is observed. A very weak interaction U, approximately 

zero, is reported to be able to trigger magnetic ordering in a finite nanoflake compared to infinite 

structure. Furthermore, the investigation also indicates the edge and size dependence of 

magnetism. The antiferromagnetic ground state is of robust stability to larger zigzag nanoflake 

size and stronger interaction. The phase transition point, Uc, is found to be sensitive to the size 

denoted by means of the reduction of Uc as the size increases. The important role of edge effect 

causing the spin polarization along zigzag termination is confirmed for the diamond nanoflakes. 
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1. INTRODUCTION  

With the aim to exploit the spin degree freedom of electrons as an information factor for 

data storage and logic devices, spintronics has attracted much attention. Unlike the conventional 

electronic devices, spintronic devices consume a lower energy and have a faster processing 

speed. The spintronics effect is thus promoted to be one of the most promising technologies for 

further development of high-speed, low-energy consuming and multi-functional electronic 

nanodevices in the future [1]. In this regard, two-dimensional materials are considered as an 

excellent candidate to create ideal next-generation spintronic devices owing to interesting 

intrinsic physical phenomena, for example quantum spin Hall effect, long spin relaxation time, 

long spin diffusion length, etc. [2]. Among the outstanding 2D materials is                          

nanostructured graphene. 
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The successful isolation of graphene not only breaks the limitation in Mermin-Wagner 

theorem, but paves also the way for a novel era, Graphene era, along with technological 

advancement. Thanks to unique electronic band structure near Fermi energy, pseudospin 

conservation, high thermal conductivity and electron mobility, biocompatibility, non-toxicity, 

etc. [3 - 5], graphene, typically graphene with nanostructure, has been widely distributed in most 

fields of research, moving from laboratory to practical applications in industry and human living. 

In the spintronic field, graphene possesses a weak spin-orbit coupling, resulting in the relatively 

easy control of the electron spin [6] by the external fields such as the electric field or the Rashba 

spin-orbit coupling. Many recent experimental results have confirmed the potential of graphene 

for spin transport with long spin diffusion lengths over tens of micrometers and long spin 

relaxation time at room temperature [7 - 9].  

    

Figure 1. Diamond shaped graphene nanoflakes studied in this work with (left) armchair edge                              

and (right) zigzag edge. 

Most notably, finite sized graphene behaves as a new magnetic material with nontrivial 

magnetic properties. Consequently, the investigation of intrinsic magnetic properties in graphene 

has been highly encouraged as the main subject in many works. As indicated, infinite graphene 

is of non-magnetic material because of the balance of the two graphene sublattices. Yet 

numerous studies on both theory and experiment show that the magnetic ordering can be 

induced by defects such as vacancies, impurities effect, light and heavy adatoms, non-metal 

doping or Coulomb correlation because they are considered as sources so as to generate the 

imbalance in the two graphene sublattices [10 - 14]. On the other hand, the electronic states 

localized at zigzag edges and the reduction of dimensionality not only give rise to a significant 

modification in the electronic band structure, but also directly affect the magnetism at 

nanoscales. Theoretical and recent experimental findings have indicated the spin polarization on 

the zigzag graphene nanoribbons [4, 15]. The edge magnetism in other nanostructures has been 

theoretically predicted as well [16]. However, the issue concerning the intrinsic magnetism in 

graphene nanoflakes is still being debated due to the lack of experimental evidences.  

Therefore, we focus on investigating systematically the on-site electron-electron 

interaction, denoted by Coulomb energy U, induced edge magnetism in diamond-shaped 

graphene nanoflakes with various sizes and two different edges; armchair and zigzag, using the 

mean-field Hubbard model at half-filling and zero temperature (Figure 1). According to the 

computational results, the antiferromagnetic ordering stability is enhanced by increasing 

nanoflake size and interaction. In contradistinction to the size dependence of magnetism 

observed in the zigzag edge structure which is characterized by the shifting of phase transition 

point in the proximity of zero, the size independent magnetism is found in the armchair edge 

nanoflakes. These findings thus will contribute to a better understanding of the intrinsic edge 

magnetism of graphene nanoflakes and enhance its feasibility in spintronic devices. In the 
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subsequent sections, we in turn suggest research model and method, show results and discussion, 

and finally give a short conclusion.  

2. MODEL AND METHODS 

To study the effect of the on-site electron-electron interaction on the magnetic properties in 

the graphene nanoflakes, we use Hubbard model and its single-band Hamiltonian at half-filling 

is given as follows: 

                                                     (1) 

where    
  (    ) and          

    (        
    ) are creation (annihilation) and spin density 

operators at site i for spin σ on sublattice A (B), respectively. t describes the nearest neighbor 

hoping parameter and the on-site Hubbard interaction is characterized by U. The entanglement 

of the interaction problem in equation (1) is here addressed within the mean-field theory (MFT). 

Whereas, the spin density operator     is analyzed into an average value plus a small deviation:  

                                                                                                                        (2) 

After several simple mathematical calculations, one gets: 

                                                            (3) 

Neglecting a tiny correlation fluctuation       , Eq. (1) within the MFT approximation 

reads 

                                   (4) 

The problem in the Hubbard Hamiltonian is solved by self-consistent algorithm, starting by 

providing randomly initial values for ⟨niσ⟩. The initial values are plugged in the Hubbard 

Hamiltonian matrix and the iterative calculation is started. At each cycle, the Hamiltonian matrix 

is diagonalized to get eigenvalues and eigenvectors which are used to compute new spin 

densities ⟨ni↑⟩ and ⟨ni↓⟩. These new spin densities are then used as the initial values for the next 

iteration. The procedure is repeated until satisfying the convergence condition of self-

consistency. Eventually, the magnetic moment at site i is computed by the equation: 

                                                                                                                      (5) 

The total spin is the sum of   ,   ∑    . As a noticeable point, the total spin should be zero 

for the system with sublattice balance and nonzero for one with sublattice imbalance according 

to Lieb’s theorem.   
 

 

3. RESULTS AND DISCUSSION 

We first revisit the magnetic properties in the infinite graphene system. A Mott-Hubbard 

point (or a critical point) at Uc ≃ 2.23t where the graphene undergoes a phase transition from the 
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gapless semi-metal to antiferromagnetically ordering insulator is observed. In fact, no accurate 

value of Uc has been reported due to the absence of direct experimental measurements for the 

graphene case. Therefore, different numerical approximation results in a variation of Uc, as 

reported in our previous work [17]. A finite single-particle gap is opened as Uc > 2.23t and is 

proportional to U and magnetization (see Figure 2).  

 

Figure 2. (a) Edge magnetization and (b) single-particle gap of diamond graphene nanoflakes with the 

armchair edges for different sizes as a function of U/t. 

In what follows, we discuss in detail the magnetization on the diamond graphene nanoflakes. 

Figures 2 and 3 depict the dependence of edge staggered magnetization,  

           ,                                                 

where N
edge 

is the number of carbon atoms located at the edges, and single-particle gap on size 

and Coulomb energy U/t. Dissimilar to the infinite system, there exists a natural band gap in the 

nanoflakes without interaction and it decreases gradually via the number of sites. A transition 

from the nonmagnetic to antiferromagnetic states at a finite U, thereafter named U
c
, is also 

observed over all nanoflakes considered. At a weak Coulomb energy U, our calculations show 

that the spin magnetic moments arrange parallelly along the zigzag edges caused by the edge 

localized electronic states while such behavior is not formed at the armchair edges where 

electronic states are delocalized. As shown in Figure 2, due to the symmetry in the sublattices, 

and the non-existence of zigzag termination, in resemblance to the honeycomb lattice the critical 

point in the armchair nanoflakes is independent of the number of sites, U
c
∼ 2.23t. As a 

consequence, the onset of an antiferromagnetic ordering state appears above the Mott-Hubbard 

point. These results are in good agreement with previous articles [18]. For the zigzag edge 

nanoflakes, our calculating results reveal the instability of U
c
 against the size. In parallel with the 

decline of the single-particle gap, the U
c
 is required much lower than 2,23t and decreases rapidly 

upon the size from 30 (U
c 
≃ 1.51t) to 126 (U

c 
∼ 0.01t) carbon atoms.  

With further increasing the size, a tiny value of Uc is needed to enable the spin polarization 

state, as shown in the inset of Figure 3. The reduction of Uc was reported in hexagon-shaped 

zigzag graphene nanoflakes within dynamical mean-field theory approximation, typically the Uc 

(a) (b) 
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shifts from approximately 3.1t (N = 54) to 2.0t (N = 150) [16]. The origination of this 

phenomenon can be in robust relation to single-particle gap. Figure 3 (b) indicates the inversely 

proportional single-particle gap to the increase of the size. 

 

Figure 3. (a) Edge magnetization and (b) single-particle gap of diamond graphene nanoflakes with zigzag 

edges for different sizes from 30 to 510 carbon atoms as a function of U/t. The inset of (a) denotes the size 

dependent U
c
. 

In addition, the magnetic ordering state only occurs at the zigzag termination while the 

armchair one suppresses the magnetic ordering formation. Consequently, armchair bond density, 

defined as ρ = Narm/Nt with Narm (Nt) being the number of the armchair bonds (total bonds), 

contributes considerably to the shift in the transition point Uc. The increase of the number of 

atoms on the zigzag edges at bigger nanoflakes, while Narm does not change, gives rise to the 

significant reduction of the armchair bond density, thus leading to favoring antiferromagnetic 

ordering in larger nanoflakes rather than in smaller ones at weak interactions.  

          

Figure 4. The distribution of local spin moments at each site in N = 286 for (a) U = 0.5t and (b) U = 2t. 

The area of each circle denotes the spin moment magnitude at each site. 

In the antiferromagnetic state, magnetization increases with the broadening of graphene 

nanoflakes for U < 2.23t. In addition to moving to higher values of both magnetization and gap, 

their size dependence is negligible as U/t goes far from 2.23t. At the mean-field level, temporal 

(a) (b) 

(a) (b) 
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fluctuations are not considered, giving rise to overestimate the value of single-particle gap [17]. 

More remarkably, for a weak U, the spin moments are polarized at the zigzag edge atoms and 

the magnetization sharply decreases as moving toward the center atoms, typically U= 0.5t (see 

Figure 4). The spin polarization would occur at all sites with sufficiently strong on-site electron-

electron interactions, i.e. U > 2.23t. Nevertheless, the local magnetic moments at the edge sites 

is substantially higher than those of others due to the reduction of the number of hopping 

channels for the edge sites in comparison with the inner sites. It can be hence confirmed that the 

primary contribution to the magnetization in the nanoflakes comes from the edge atoms. 

Moreover, the spin moments on all sites at a given edge align ferromagnetically because all the 

carbon atoms belong to the same graphene sublattice and such behavior is observed at adjacent 

edge connected by a zigzag bond. Conversely, the antiferromagnetic alignment at the edge 

connected by an armchair bond is shown due to atoms belonging to the remaining sublattice. 

The net total magnetic moment S equals zero, in accordance with Lieb’s theorem because the 

number of atoms in sublattice A is equal to that in sublattice B. Furthermore, it can be obviously 

seen that since there exists an armchair bond at the junction of the edges the local magnetic 

moment increases far away from the armchair defect and concurrently is completely suppressed 

at the armchair defect. As a consequence, the maximum value of local magnetic moment dwells 

in the edge sites close to the corners for the diamond nanoflakes. The consequence of such a spin 

distribution is closely related to the distribution of electrons along the edges, as discussed                        

in Ref. [19]. 

4. CONCLUSIONS  

We have produced the first report on how magnetism behaves in a variety of graphene 

nanoflakes shaped diamonds using the mean-field Hubbard approach. The absence of on-site 

electron-electron interaction results in a non-magnetic state with all sizes and edge terminations. 

An antiferromagnetic ground state along the zigzag edges is triggered at a weak interaction U. 

The spins on the same sublattices exhibit ferromagnetic ordering, while the spins on different 

sublattices are found to show antiferromagnetic ordering. We found that the magnetization 

manipulated by the nanoflakes size is a lot more than just due to the Coulomb interaction U. A 

quite large diamond zigzag nanoflakes require a tiny Uc, leading to the feasible existence of 

spontaneous magnetization in pure nanostructured graphene. The results are to further enhance 

the practical possibility of graphene in spintronic applications. m 
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