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Abstract. In this study, the effects of temperature and relative humidity on the resonant 

frequency of a micro-electro-mechanical system (MEMS) cantilever resonator under 

atmospheric pressure (p=101325 Pa) are discussed. The squeeze film damping (SFD) problem of 

MEMS cantilever resonators is modeled by solving the modified molecular gas lubrication 

(MMGL) equation, the equation of motion of micro-cantilever, and their appropriate boundary 

conditions, simultaneously in the eigen-value problem. The effective viscosity (µeff(RH, T)) of 

moist air is utilized to modify the MMGL equation to consider the effects of temperature and 

relative humidity under atmospheric pressure. Thus, the effects of temperature (T) and relative 

humidity (RH) on the resonant frequency of MEMS cantilever resonators over a wide range of 

gap thicknesses and under atmospheric pressure are discussed. The results showed that the 

frequency shift increases as the relative humidity and temperature increase. The influence of 

relative humidity on the resonant frequency becomes more significant under conditions of higher 

temperature and smaller gap thickness. 

Keywords: squeeze film damping (SFD), resonant frequency, MEMS cantilever resonator, relative 

humidity, temperature, atmospheric pressure. 

Classification numbers: 5.2.4, 5.4.4, 5.4.2, 5.4.3, 5.4.4. 

1. INTRODUCTION  

Micro-cantilever, which is one of the major structures of micro-electro-mechanical system 

(MEMS) resonators, is successfully used in various sensor applications such as physical sensors 

(e.g. pressure, temperature) [1], chemical sensors (e.g. gas molecules, protein adsorption) [2, 3], 
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bio-sensors (e.g. virus particles, bacterial) [4], and environmental monitoring (e.g. temperature, 

humidity) [5, 6]. The main advantages of such MEMS sensors are small size, fast response time, 

extremely high sensitivity, and accuracy. For a MEMS resonator, resonant frequency (f), 

frequency shift (Δf), and quality factor (Q) are important dynamic characteristics that enable it to 

operate in various environments such as vacuum, gas, and liquid.  

In air environment, the vibration of MEMS cantilever resonator is strongly resisted by 

viscous air damping. The environmental effect (e.g. temperature, humidity, pressure) is the main 

problem for the dynamic performance of MEMS cantilever resonators. The external squeeze 

film damping (SFD) is one of the dominant damping sources of MEMS cantilever resonators 

that appears as the gas flow is squeezed through a small gap thickness between vibrational 

structure and stationary substrate [7, 8]. In the literature review, the resonant frequency of 

MEMS resonators with the SFD problem has been investigated at various pressures, gap 

thicknesses, cantilever sizes, and resonator modes [9 - 11]. However, the effects of temperature 

and humidity are not considered as main effects on the resonant frequency of MEMS cantilever 

resonators in a wide range of pressures. In gas rarefaction, a low pressure is introduced into an 

ultra-small gap thickness. Under such conditions, the effect of gas rarefaction on MEMS devices 

even at atmospheric pressure becomes important to discuss. In gas rarefied flow, the mean free 

path (λ) of gas molecules enhances considerably, then the slip flow takes place on the solid 

surfaces. The inverse Knudsen number, D (= )2/(0  h ), which varies from 0.001 (rarefied 

gas flow region) to 100 (continuous gas flow region), is used for the gas rarefaction correction of 

the gas flow over a wide range of small gap thicknesses (h0). The effective viscosity (

Peff Q/  ), which is defined as the ratio of the dynamic viscosity (µ) and the Poiseuille flow 

rate (QP), is used to modify the MMGL equation over a wide range of inverse Knudsen numbers 

(0.001  D  100) [12 - 14]. In previous works, the effects of gas rarefaction [15], surface 

roughness [16], temperature [17], and relative humidity [18, 19] are discussed as important 

effects on the quality factors of MEMS resonators under gas rarefied conditions. Moreover, the 

influence of temperature and humidity on the resonant frequency of MEMS resonators under 

atmospheric pressure has not been discussed. In the literature review, many studies have 

investigated the effect of temperature on the dynamic performance of MEMS resonators [20 - 

22] under atmospheric pressure. However, the dynamic viscosity (µ) of moist air [23], which is a 

function of temperature and relative humidity, has a strong influence on the dynamic 

performance of MEMS resonators [24, 25] under atmospheric pressure. Recently, the effects of 

temperature and humidity have been experimentally found to strongly influence the dynamic 

performance of MEMS paddle resonators with proof mass under atmospheric pressure [26]. 

Also, the effects of temperature and humidity on the frequency response of double-clamped 

micro-beam resonators with D values ≥ 0.0018 (low and atmospheric pressures) have been 

simultaneously discussed [27]. However, the effects of temperature and humidity on the 

resonant frequency of single-clamped MEMS cantilever resonators over a wide range of D 

(0.001D 100) (different gap thicknesses (h0) and atmospheric pressure) have not been 

simultaneously considered. In this work, the SFD problem of MEMS resonators is numerically 

studied by solving the MMGL equation. Then, the MMGL equation is modified with the 

effective viscosity (µeff(RH, T)) [23] which is the ratio between the dynamic viscosity (µ) [23] 

and the Poiseuille flow rate (QP) [12] in a wide range of D (0.001 D 100) changing as a 

function of temperature (T) and relative humidity (RH) under atmospheric pressure. Thus, the 

effects of temperature and relative humidity on the resonant frequency of MEMS cantilever 

resonators over a wide range of gap thicknesses (h0) and under atmospheric pressure are 

discussed. 



 
 

Chi Cuong Nguyen, et al. 
 

 

726 

2. MATERIALS AND METHODS  

2.1. The MMGL equation for the SFD problem of MEMS cantilever resonators 

In Figure 1, the transverse vibration of the micro-cantilever is resisted by a distributed 

pressure force ( ( , , )p x y t ) of gas film per unit area of the micro-cantilever. Whereas, an 

electrostatic force (Fe) tends to bend the cantilever towards the fixed substrate. To model the 

SFD problem, the modified molecular gas film lubrication (MMGL) equation [14, 15] is used to 

obtain the pressure distribution of the gas film as below. 

 
3 3

12 ( , ) 12 ( , )eff eff

h p h p
h

x RH T x y RH T y t

 


 

       
              

               (1) 

where   is the air density, h is the gas film spacing, p  is the pressure, RH is the relative 

humidity of water vapor, and T is the temperature (
o
C).   

 

Figure 1. 2D geometric model for transverse vibration of MEMS cantilever resonators under the SFD 

problem and the excited voltage. 

The effective viscosity (µeff) [17] is used to consider the gas rarefaction effect 

),(

),(

TpQ

TRH

P

eff


             (2) 

where QP [12] is the Poiseuille flow rate of gas flow in a small gap thickness, and ),( TRH
[23] is the dynamic viscosity of moist air under atmospheric pressure (p = 101325 Pa). 

Therefore, µeff (RH, T) is used to modify the MMGL equation to discuss the effects of 

temperature and relative humidity under atmospheric pressure (p = 101325 Pa). 

In moist air, the molar fraction of water vapor [23] is defined as the ratio of water vapor 

moles to the total number of moles of the mixture as below 

v v
v

v a

n p
x

n n p
 


           (3) 

where vx is the mole fraction of water vapor in moist air; 𝑛𝑣 and 𝑛𝑎 are the number of moles of 

water vapor and dry air, respectively; pv is the partial pressure of water vapor, p is the partial 

pressure of total atmospheric pressure. 

The relative humidity (RH) [23] is defined as the ratio of the partial pressure of water vapor 

in air (pv) divided by the saturated pressure of water vapor (psv) at a given temperature as below 
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v v

sv sv

x p
RH

x p
                          (4) 

v svx x RH                            (5) 

where xsv is the molar fraction of the saturated water vapor.  

The molar fraction of saturated vapor pressure is corrected as a function of pressure and 

temperature as below. 

( , ) sv
sv

p
x f p T

p
                   (6) 

where f (p,T) is a numerical number for the so-called enhancement factor because of the 

interaction effects between the real gas molecules. 

The molar fraction of water vapor ( vx ) is then calculated as below 

( , ) ( , )v sv
v

p p
x f p T f p T RH

p p
                           (7) 

The total atmospheric pressure (p) is  

v ap p p                         (8) 

The correction factor, f(p,T) in equation of Greenspan (1976) [28] is given by  

 , exp 1 1sv

sv

p p
f p T

p p
 
   

        
     

                        (9) 

with  

 14
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i

ii
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
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                 (10) 
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( 1)
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i

i

B T 



 
  

 
                     (11) 

where -4

1 3.53624 10 ,A   -5

2 2.93228 10A   , -7

3 2.61474 10A   , -9

4 8.57538 10A   , 1 -10.7588,B 

-2

2 6.32529 10B   , -4

3 -2.53591 10B   , and 7

4 1033784.6 B .  

The saturated vapor pressure (psv) [23] is a function of temperature as below 

1000 0.1 10e
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0 0.78614E  , 1 10.79574E  , 2 5.028E  , 4

3 1.50475 10E   , and
3

4 0.42873 10E   . 

The dynamic viscosity of moist air (µ) is calculated by the following empirical formula of 

Tsilingiris (2018) [23] in the temperature range between 0 and 100 
o
C as below  

 

   

1

(1 )1

a v v v

v v vav v av

x x

x xx x

 


  
 

      
                         (13) 

where the viscosity of dry air ( a ) and water vapor ( v ) calculated by the following empirical 

formulae [23] as below 

 
0

4

1
273
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i
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M M T


                        (14) 

0 1v V VM M T                                  (15)  

where 
0

-7-9.8601 10AM    , 
1

-89.08012 10AM   , 
2

-10-1.1764 10AM    , 
3

-131.2350 10AM    , 

4

-17-5.797 10AM   , 
0

-68.058 10VM   , and 
1

-84.0005 10VM   . 

Also, Φ𝑎𝑣 and Φ𝑣𝑎 are interaction factors for calculating a and v  
as below  

2
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2
1 1

4
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           
       

                   (17) 

where  28.9635aM  and  18.015vM  are the molar mass of dry air and water vapor 

[kg/kmol], respectively. 

The Poiseuille flow rate, QP(D) [12] is used to modify the MMGL equation considering the 

gas rarefaction for arbitrary value of inverse Knudsen number, D ( 23 1010  D ) as below 
C

P bDDaDQ 6/31)(                           (18) 

where 17468.1,35355.1,01807.0  cba  

The inverse Knudsen number (D), which is defined as the ratio of the molecular mean free 

path length (λ) of gas to the gap thickness (h) as follows 





22

h

K
D

n

                   (19) 

The mean free path of a gas (λ) [29], which is defined as an average distance that molecule 

travelled by collisions of the other molecules, is estimated as follows  




22 22 dN

M

pdN

RT

aa 



                        (20) 

where R=8.314 (J/mol) is the gas constant, 
236.0221 10aN   is the Avogadro's number, M is 

the molecular weight of gas, and d is the diameter of the cross section of gas molecular at a 

stable state.  

The mean free path of moist air ( ) [17] can then be expressed as follows 



 
 
Effects of temperature and relative humidity on resonant frequency of MEMS … 
 

729 

0

00

0

00

0

00

)()( TpRHp

Tp

Tpp

Tp

pT

Tp

swawa 






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where 0  (= 66.5 nm) is reference mean free path of gas at reference pressure of gas,                   

0p
 
(= 101325 Pa) and temperature, T0 (= 300 K). Therefore, the mean free path (λ) of moist air 

for ambient pressure (p) can be expressed as a function of temperature (T) and relative humidity 

(RH) under atmospheric pressure. 

2.2. The linear equation of motion for micro cantilever 

Under small displacement (w), the linear equation of motion for the transverse 

displacement of the micro-cantilever [30] is given as follows 

4 4 4 2

4 2 2 4 2
2 ( , , ) ( , )p m b e

w w w w
D t p x y t F w t

x x y y t


    
      

     
                   (22) 

where DP (=
3 2/12(1 )bEt v ) is the cantilever flexural rigidity, E  is the Young’s modulus, v is the 

Poisson’s ratio, tb is the cantilever thickness, w(x, y, t) is the transverse displacement at a 

position along the cantilever (x, y), and t is time, m  is the material density of the cantilever.  

The boundary conditions of the micro-cantilever are set with 

 clamped edges at one side ( 0x ) as follows. 

0),,0( tyw ;         (23) 

0
),,0(






x

tyw
        (24) 

and free edges at other sides ( bx  , y = 0, and y = wb) as follows 

2 3

2 3

( , , ) ( , , )
0b bw y t w y t

x x

 
 

 
                     (25) 
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


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



y
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y
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           (26)  

2 3

2 3

( , , ) ( , , )
0b bw x w t w x w t

y y

 
 

 
                        (27)  

2.3. The resonant frequency of MEMS cantilever resonators 

Theoretically, the resonance frequency (fn) of MEMS cantilever resonator can be calculated 

using the analytical model [31] for micro-cantilever as below 





22

3/
2

2




b

ib

n

Eat
f


                           (28) 

where a1 (= 1.875), a2 (= 4.694), and a3 (= 7.855) are constants for calculating resonant 

frequencies for the 1
st
, 2

nd
, and 3

rd
 resonator modes, respectively. 
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In this study, the resonant frequency, fSFD (= 0 / 2  ) of SFD can be evaluated by the 

Finite Element Method (FEM) [32] by taking the imaginary part of the eigen-value, ( Im( ) ) 

as follows. 









2

)Im(

2

0 SFDf                (29) 

Therefore, the natural frequency ( 0 ) (imaginary part of complex eigenvalue ( )) of 

MEMS resonators is numerically calculated by obtaining the resultant eigenvalue,   

( i   ), and is the damping factor. The calculated procedures of the eigenvalue problem 

can be found in Section 2.5 of Nguyen and Li [15]. 

3. RESULTS AND DISCUSSION 

3.1. Effective viscosity, µeff(RH,T) 

In Figure 2, the saturation pressure of water vapor ( swp ) is plotted as a function of 

temperature (T). According to this result, swp  increases as T increases over a wide range of 

temperatures (0 
o
C < T < 100 

o
C). 

 

Figure 2. Saturation pressure of water vapor (psv) versus temperature (T). 

In Figure 3, the Poiseuille flow rate (QP) of moist air is plotted as a function of temperature 

(T) under atmospheric pressure (p = 101325 Pa). The results showed that QP increases linearly 

with increasing temperature at atmospheric pressure (p = 101325 Pa).   
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Figure 3. Poiseuille flow rate (QP) of moist air versus temperature (T) for different relative humidity             

(RH) at atmospheric pressure (p = 101325 Pa). 

In Figure 4, the effective viscosity of moist air (μeff) in Eq. (2) is plotted as a function of 

temperature (T) and relative humidity (RH) under atmospheric pressure (p = 101325 Pa). The 

results showed that μeff of dry air constantly increases as T increases, while μeff of moist air 

increases to a maximum value and then decreases as T increases. Furthermore, μeff decreases as 

RH increases over a wide range of T. Therefore, we note that the effective viscosity decreases as 

temperature and relative humidity increase. Also, the influence of RH on the effective viscosity 

becomes significantly stronger at higher temperatures.   

 

Figure 4. Effective viscosity of moist air (μeff) versus temperature (T) for different relative humidity (RH) 

values under atmospheric pressure (p = 101325 Pa). 

3.2. Effects of relative humidity (RH) and temperature (T) on resonant frequency (f) 
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Table 1. Calculated results of resonant frequency by FEM (  2/presentpresentf  ) and error (%) between 

simulation and analytical results [31]. 

b  mode 
1f  [31] [Hz] presentf  Error (%) 

1

1

presentf f

f

  

250 1
st
 19303.9 19356.1 0.270 

 2
nd

 120984.4 121294 0.256 

3
rd

 338793.9 339640.2 0.250 

200 1
st
 30162.4 30259.3 0.321 

 2
nd

 189038.1 189605.5 0.300 

 3
rd

 529365.5 530908.9 0.292 

In this study, the effects of temperature (T) and relative humidity (RH) of moist air on the 

resonant frequency of MEMS cantilever resonators under atmospheric pressure are considered. 

The dimensions of MEMS cantilever are as follows: Length, b  is 250 μm, Width, bw  is 10 μm, 

and Thickness, bt  is 1 μm. The MEMS cantilever beam is made of single-crystal Silicon with 

Young’s modulus, E = 910130 Pa, the material density, m  is 2330 kg/m
3
, Poisson’s ratio, ν is 

0.28, and the thermal expansion coefficient, m is 
6106.2  1/K. The gap thickness, h0 is 2 µm 

and the pressure, p is 101325 Pa. In Figure 5, the pressure distribution of gas film with the SFD 

problem in the 1
st
 mode of MEMS cantilever is presented. The result showed that the pressure, 

which is distributed much higher at the free boundary, tends to change the resonant frequency of 

MEMS cantilever resonator. In Table 1, the resonant frequency (f) increases as the length 

decreases and resonator mode increases. Also, the present results of resonant frequency                

(  2/presentpresentf  ) are almost the same with the error (%) of less than 0.32 % compared with the 

analytical results of resonant frequency (f1) from Eq. (28) [31] for different lengths and resonator 

modes. 

  

Figure 5. Pressure distribution with the squeeze film damping (SFD) problem in the 1
st
 mode of  

transverse vibration of micro-cantilever under atmospheric pressure (p = 101325 Pa). 
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Figure 6. (a) Natural frequency (ωSFD), (b) frequency shift (ΔfSFD) of MEMS cantilever plotted as a 

function of temperature (T) and relative humidity (RH) under small excited force (Fe = 0.071 Pa) and 

atmospheric pressure (p = 101325 Pa). 

 

In Figure 6, the results showed that the natural frequency (ωSFD) of moist air increases as T 

and RH increase because the SFD increases (as seen in Fig. 6(a)). In Fig. 6(b), the frequency 

shift (ΔfSFD) increases linearly as RH increases. The influence of relative humidity (RH) on ΔfSFD 

increases more significantly as the temperature (T) increases. Therefore, the frequency shift 

increases more significantly as relative humidity and temperature increase.   

  

Figure 7. (a) Natural frequency (ωSFD), (b) frequency shift (ΔfSFD) of MEMS cantilever plotted as a 

function of temperature (T) and relative humidity (RH) for different gap thicknesses (h0) under small 

excited force (Fe = 0.071 Pa) and atmospheric pressure (p = 101325 Pa).  

a) 
b) 

a) 
b) 
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In Figure 7, the natural frequency (ωSFD) increases as RH and T increase simultaneously 

because the SFD increases for different gap thicknesses (h0) (as seen in Figure 7(a)). Also, the 

influence of RH and T on ωSFD decreases and is almost neglected as gap thickness, h0 increases 

(the SFD decreases as h0 increases). Furthermore, the frequency shift (ΔfSFD) increases 

considerably with RH as h0 decreases (the SFD increases as h0 decreases) (as seen in Figure 

7(b)). Therefore, the influence of relative humidity (RH) on the natural frequency and the 

frequency shift is more significantly enhanced under conditions of higher temperature and small 

gap spacing. 

4. CONCLUSIONS  

The resonant frequency with the SFD problem of MEMS cantilever resonators is 

numerically calculated by solving the MMGL equation, the equation of motion of micro-

cantilever, and their appropriate boundary conditions, simultaneously in the eigen-value 

problem. The effective viscosity (µeff (RH, T)) is utilized to modify the MMGL equation to 

consider the effects of temperature and relative humidity under atmospheric pressure (p=101325 

Pa). Thus, the effects of temperature (T) and relative humidity (RH) on the resonant frequency 

and its frequency shift of MEMS cantilever resonators are discussed in a wide range of gap 

thicknesses and resonator modes. The obtained results showed that the frequency shift increases 

linearly as relative humidity and temperature increase. The influence of relative humidity, RH on 

the resonant frequency and the frequency shift becomes more significant under conditions of 

higher temperature and smaller gap thickness. 
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