
 
 
Vietnam Journal of Science and Technology 60 (5) (2022) 853-868 

doi:10.15625/2525-2518/16300 

 

DYNAMIC RESPONSE OF FG-CNTRC BEAMS SUBJECTED                 

TO A MOVING MASS 

Ismail Esen
1
, Thi Thom Tran

2, 3, *
, Dinh Kien Nguyen

2, 3 

1
Department of Mechanical Engineering, Karabuk University, Makina Mühendisliği Bölümü,  

Karabük, Turkey 

2
Institute of Mechanics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet 

Street, Cau Giay District, Ha Noi, Viet Nam 

3
Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 

18 Hoang Quoc Viet Street, Cau Giay District, Ha Noi, Viet Nam 

*
Email: ttthom@imech.vast.vn 

Received: 18 July 2021; Accepted for publication: 1 September 2021 

Abstract. This article presents the forced vibration of composite beams reinforced by single-

walled carbon nanotubes (SWCNTs) and subjected to a moving mass. Considering the 

distribution of carbon nanotubes such as uniform (UD-CNT), functionally graded Λ (FGΛ-CNT) 

and X (FGX-CNT), three different beams are studied. Based on a third-order shear deformation 

theory (TSDT), the motion equations of the beams are derived using Hamilton's principle. 

Including mass interaction forces, the motion equations are transformed into a finite element 

equation in which a two-node beam element with eight degrees of freedom is utilized. To 

improve the efficiency of the beam element, the transverse shear rotation is employed as an 

independent variable in the derivation of the beam element. The vibration characteristics, 

including the dynamic magnification factors and the time histories for mid-span deflections are 

computed by using the Newmark method.  Numerical result reveal that the vibration of the 

beams is clearly influenced of the CNT reinforcement, and the dynamic magnification is 

significantly decreased by increasing the CNT volume fraction. It is also shown that the FGX-

CNT beam is the best in dynamic resistance in terms of the lowest dynamic deflection and 

dynamic magnification factors. The effects of the total volume fraction and the moving load 

velocity on the dynamic behaviour of the functionally graded carbon nanotube reinforced 

composites (FG-CNTRC) beams are examined in detail and highlighted.   

Keywords: FG-CNTRC beams, third-order shear deformation theory, finite element, moving mass. 

Classification numbers: 2.9.4, 5.4.2, 5.4.5. 

1. INTRODUCTION 

After facing some failure problems caused by delamination and unavoidable micro defects 

in classical laminated composites, some advanced composites such as carbon nanotubes 

reinforced composites (CNTRC) have been the subject of extensive researches due to their 
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preferable advantages in the electrical, thermal and mechanical properties. Using molecular 

dynamics simulations, Bohlén and Bolton [1] reported that the Young’s modulus of the 

composite beams is increased by the oriented CNTs in the used direction. The general rule of 

mixture for the single-walled carbon nanotubes (SWCNTs) is found to be inaccurate in [2] and 

then, an extended rule of mixture is proposed in [3]. Some researchers [4, 5] validated the 

previous results of the mechanical properties of the SWCNT using the finite element method. 

Based on the idea of optimal distribution of CNTs, Shen [6] applied the concept of 

functionally graded material (FGM) to CNTRC and then, the concept of functionally graded 

carbon nanotube-reinforced composites (FG-CNTRCs) is strongly supported by recent 

publications. Ke et al. [7, 8] used Timoshenko theory to investigate the nonlinear free vibration 

and dynamic stability of FG nanocomposite beams reinforced with SWCNTs. Also using 

Timoshenko theory, Yas and Samadi [9] studied free and forced vibration of an FG 

nanocomposite beam randomly reinforced with straight SWCNTs under a moving load. Free 

vibration of FG-CNT composite beams was investigated by Lin and Xiang [10] using the first-

order shear deformation theory (FSDT) and the third-order shear deformation theory (TSDT). 

Ansari et al. [11] studied the nonlinear forced vibration of FG-CNT Timoshenko beams with the 

aid of the general differential quadrature method. In [12], using different TSDTs, Aydogdu 

obtained the natural frequencies of SWCNTRC beams. The nonlinear vibration of imperfect 

shear deformable FG-CNTRC beams is dealt with by Wu et al. [13] based on the FSDT and von 

Kármán geometric nonlinearity. Chaudhari and Lal [14] investigated the nonlinear free vibration 

of elastically supported FG-CNT beams in thermal environment. Thermal post-buckling 

performance of temperature-dependent FG-CNTRC beams with various geometric imperfections 

was studied by Wu et al. [15] based on the FSDT. Gholami et al. [16] presented the nonlinear 

resonant dynamics of geometrically imperfect FG-CNT composite beams subjected to harmonic 

transverse loads by using the TSDT. Shafiei and Setoodeh [17] investigated nonlinear free 

vibration and post-buckling of FG-CNT beams on nonlinear foundation. Vo-Duy et al. [18] 

investigated the free vibration behaviour of laminated FG-CNTRC beams using finite element 

method. Ranjbar et al. [19] studied the temperature-dependent of axially FG-CNT reinforced 

micro-cantilever beams under low velocity impact. For the nonlinear dynamic analysis of FG-

CNT beams, Fallah et al. [20] proposed a semi-exact solution method. Using a multiscale finite 

element analysis, Palacios and Ganesan [21] investigated the dynamic response of CNT 

reinforced-polymer materials.  

The problem of moving load maintains its importance in many areas from micro 

electromechanical systems to bigger space applications. Considering potential advanced 

applications of the moving load, the dynamics of reinforced composite beams in different types: 

uniform, X type and Λ type are first modeled using the TSDT and the finite element method in 

this study. Including the interaction forces of the mass with the beam, the governing equations of 

the motion of the FG-CNTRC beams are converted to a dynamic finite element equation. A two-

node beam element has been developed for the analysis of the whole beam system. The effects 

of the distribution of CNTs along the beam thickness, the total CNT volume fraction TCNTV  and 

the velocity of the moving mass on the dynamic behaviour of the FG-CNTRC beams are studied 

in detail. 

2. FG-CNT BEAM UNDER A MOVING MASS 

Figure 1(a) shows a composite beam with length L, width b, thickness h under a moving 

mass M. Three types of aligned CNT reinforced beams as shown in Figure 1(b) are considered, 
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namely uniformly distributed CNT beams (UD-CNT), functionally graded CNT beams type X 

(FGX-CNT), and functionally graded CNT beams type Λ (FGΛ-CNT). The orientations of 

reinforcing CNT are along the length direction, which is the x-axis. The distribution of CNTs in 

FGΛ-CNTRC beams as a function of z coordinate is given by [10]  
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Figure 1. (a) a FG-CNT reinforced beam under a moving mass M; (b) cross sections of different beam 

models, UD-CNT, FGX-CNT and FGΛ-CNT. 

However, the manufacturing for such a graded distribution is very costly and difficult. A 

better way to manufacture CNTRC is to align CNTs functional grading in a polymer matrix and 

only linear distribution can readily be achieved in engineering practice. So, only linear distribution 

is considered in the current study, i.e. k = 1 

 
 (3) 

For FGX-CNT beams, the distribution and volume fraction of CNTs are respectively given 

by [10] 
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with k = 1,  
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For UD-CNT beams, the CNTs are uniformly dispersed along the thickness of the beam, 

which makes the CNTs volume fraction along the z coordinate the same as total CNTs volume 

fraction 
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The effective material properties are evaluated from the results of MD simulations and 

mixture rule [2,3].  Hence, the expressions of the properties are [10] 
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in which 

    1m CNTV z V z   (9) 

Here, 11 22, , , ,m cnt ntm cE E EG  and 12

cntG  are Young’s modulus and shear modulus of matrix and CNT, 

respectively,      1, 2,3i i   are  efficiency parameters of CNT/matrix; 
m  and 12

cnt  are Poisson’s 

ratios of matrix and CNT, and m  and cnt  are mass densities of matrix and CNT, respectively. 

The effective elastic and shear moduli are calculated as follows [10] 
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3. GOVERNING EQUATIONS 

The Shi's third-order shear deformation theory [22] derived from an elasticity formulation, 

rather than by the hypothesis of displacements is employed herewith to establish governing 

equations of the FG-CNTRC beam. This theory, as demonstrated in [22], gives better results 
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than the first-order and other higher order shear deformation theories do. The axial and 

transverse displacements at any point of the beam are of the form: 
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In the mid-plane,    0 0, , ,u x t w x t are the axial, transverse displacements;  is rotation of the 

cross section. The transverse shear rotation is defined by [23]. 
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Based on Eq. (12), Eq. (11) is modified as 
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The strains related to the displacement field are 
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The constitutive equation based on Hooke’s law is 

  
 

0

0

xx xx

xz xz

E z

G z

 

 

    
    

    

 (15) 

where   xx  and 
xz are the normal and shear stresses, respectively. 

From Eqs. (14) and (15), the strain energy (U) of the beam is 
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where A is the cross-sectional area, and the rigidities 11 12 22 34 44 66, , , , ,A A A A A A and 11 22 44, ,B B B

are defined by the following integrations: 
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For the displacements in Eq. (13), the kinetic energy (T) of the beam is  
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where  z  is the mass density. The symbol (.) represents the time derivative, and the mass 

moments in Eq. (18) are derived as follows 
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The kinetic energy 
mT of the moving mass is [24] 
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Due to the interaction with the moving mass, the potential energy of the composite beam                   

is [25]. 
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where  . is the Dirac delta function, g is the acceleration of gravity,  ,pMw x t  is the interaction 

force,  px t is the time dependent location of the mass at time t, and given by    px t vt . From 

the total exact differentiation of  ,w x t  with respect to px , the interaction force in z direction can 

be derived as [25]: 
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When Eqs. (16), (18), (20) and (21) are used in Hamilton’s principle, the following forced 

equations of the motion can be derived for the composite beam and moving mass system: 
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4. FINITE ELEMENT MODELLING 

4.1. Element formulation 

Including the mass interaction terms, the derivation of the closed form solution of the system 

of differential equations (23) is difficult. But by using proper nodal variables, a finite element 

formulation can be easily achieved using a two-node beam element. In this study, the beam is 

divided into two-node beam elements with length l and each node has four nodal variables with 

axial and transverse displacements 0u and 0w , derivation of transverse displacement 0,xw , and 

transverse shear rotation 0 .  Considering these variables, the vector of the displacements of 

proposed beam element is of the form: 
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Including the potential energy from the interaction terms in Eq. (21) and using Eq. (16), the 

total strain energy of the beam having r finite elements can be written as 
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 (30) 

Considering Eqs. (18) and (20), the total kinetic energy is  

 1

2

r

i

T   T
d md  (31) 

where the element mass matrix m is in the form 

 11 11 12 22 34 44 66 uu ww u u m i s     
       m m m m m m m mm  (32) 
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 (33) 

4.2. Modelling of the damping 

The viscous damping matrix of the FG-CNTRC beam element can be determined through 

the Rayleigh damping as  

    
0 1 0 12 2 2 2

2 2
, ,

i j i j j i j j i i

j i j i

a a a a
      

 

 

 

 
   

 
c m k

 

(34) 
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wherem andk are the property matrices of the beam element, 
 i and j are damping ratios 

related to natural frequencies 
i and .j

 
In this paper, the damping ratios

1 2 0.005   are used. 

The Coriolis force component ,2 xMvw in (22) can be derived for the contacted beam element s as 

given below:  

 
,2  T

m w x wi s
vM


c N N  (35) 

4.3. Equation of motion of the entire system 

The motion equation of the whole system shown in Figure 1 is  

   M Cq Kq Fq  (36) 

where, M, C, and K are the global mass, damping and stiffness matrices, respectively; q ,  q and 

q are the vectors of acceleration, velocity, and displacement, respectively; and F is the nodal 

external force at time t. The global stiffness, mass and damping matrices are obtained using the 

property matrices in (30), (33) and (34), respectively. The matrices 
m i s

k and
m i s

m and 
m i s

c

in (30), (33) and (35) resulting from mass interaction are only added to the matrices of the 

element s. The nodal external force F is constituted of zeros, except for the coefficients of the 

instantaneous element nodal force vector f of the element s as  

  
T

0 ... ... 0F f  (37) 

with  

 T

wMgf N  (38) 

 

Newmark method is used herein to solve the equation of motion (36) for obtaining the beam 

deflections.  

5. RESULTS AND DISCUSSION 

5.1. Validation 

Table 1. Comparison of frequency parameter of FG-CNTRC with L/h = 12. 

Distribution Source 0.12TCNTV   0.17TCNTV   0.28TCNTV   

UD-CNT 
Lin and Xiang [10] 12.4402 15.2313 17.2125 

Present 12.4401 15.2314 17.2125 

FGΛ-CNT  
Lin and Xiang [10] 12.1604 14.8671 16.9276 

Present 12.1618 14.8689 16.9308 

FGX-CNT 
Lin and Xiang [10] 13.7748 16.9068 18.5193 

Present 13.7748 16.9068 18.5208 

Table 1 shows the comparison of the fundamental frequency parameter for different total 

CNT volume fractions TCNTV . The fundamental frequency parameter is defined in [10] and 

slenderness ratio is / 12.L h   Very good agreement between the frequency parameter of the 
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present work and that of [10], regardless of the total CNT volume fraction  
TCNTV  and CNT 

distribution, is seen from Table 1, noting that Lin and Xiang computed the fundamental 

frequency parameter in Table 1 based on the TSDT and the Ritz method. 

5.2. Case study 

Noting that the input data in [10] is used to receive the results in Table 1 and to compute the 

below results. The thickness and width of the beams are h = b = 1 m. A moving mass kg100M 

is employed in all computations. The number of the finite elements is set to 20, and a uniform 

increment time step /200t T   where T is the total time necessary for the mass crossing the 

beam, is used for the Newmark procedure. For the convenience of discussion, the following 

dynamic magnification factor
dD  is introduced. 

  /2,
max ,d

st

w L t
D

w

 
  

 
 (39) 

where 3 /48st mw L Mg E I  is the static deflection of a fully matrix material beam under the load 

F Mg acting at the mid-span.  

Table 2. Dynamic magnification factors for three different types of FG distribution. 

L/h Distribution 0.12TCNTV   0.17TCNTV   0.28TCNTV   

20v 
(m/s) 

80v   

(m/s) 

150v   

(m/s) 

20v 
(m/s) 

80v 
(m/s) 

150v 
(m/s) 

20v 
(m/s) 

80v 
(m/s) 

150v 
(m/s) 

5 UD-CNT 0.1596 0.1686 0.1753 0.0975 0.1038 0.1023 0.0794 0.0849 0.0867 

FGΛ-CNT  0.1623 0.1719 0.1792 0.0994 0.1053 0.1032 0.0793 0.0848 0.0866 

FGX-CNT 0.1458 0.1518 0.1554 0.0901 0.0970 0.0974 0.0772 0.0824 0.0847 

10 UD-CNT 0.0631 0.0706 0.0825 0.0400 0.0425 0.0438 0.0302 0.0299 0.0301 

FGΛ-CNT  0.0656 0.0733 0.0875 0.0420 0.0450 0.0468 0.0311 0.0311 0.0314 

FGX-CNT 0.0536 0.0595 0.0656 0.0338 0.0340 0.0344 0.0270 0.0276 0.0261 

20 UD-CNT 0.0363 0.0411 0.0564 0.0242 0.0243 0.0359 0.0164 0.0180 0.0225 

FGΛ-CNT  0.0397 0.0455 0.0615 0.0265 0.0260 0.0393 0.0177 0.0190 0.0245 

FGX-CNT 0.0279 0.0272 0.0411 0.0182 0.0198 0.0249 0.0129 0.0144 0.0160 

30 UD-CNT 0.0323 0.0445 0.0509 0.0217 0.0270 0.0342 0.0137 0.0153 0.0213 

FGΛ-CNT  0.0357 0.0496 0.0552 0.0237 0.0304 0.0376 0.0150 0.0171 0.0235 

FGX-CNT 0.0230 0.0286 0.0357 0.0150 0.0168 0.0235 0.0100 0.0101 0.0148 

Table 2 lists the dynamic magnification factors for three different types of the CNT 

distribution at different values of the mass velocity. Four values of aspect ratio L/h are chosen to 

compute the factor 
dD . It is seen from the table that the factor 

dD decreases with increasing the 

total CNT volume fraction TCNTV , regardless of the aspect ratio and the mass velocity. Of the 

three types of the CNT distribution, the factor 
dD received from FGX-CNT beam is the smallest. 

The results obtained for the beam with UD and FGΛ  distributions are quite close together, 
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especially at higher values of the aspect ratio L/h. Table 2 also shows the effect of the aspect 

ratio L/h on the dynamic behaviour of the beam, the factor 
dD decreases sharply by increasing 

L/h. Furthermore, as in the case of the isotropic beams, the dynamic magnification factor 
dD

tends to increase as the moving load velocity increases. The dependence of the factor 
dD on the 

total CNTs volume fraction and the velocity of the moving mass for three types of the CNT 

distribution will be observed more clearly through the figures below for the beam with an aspect 

ratio / 20.L h   

Figure 2 shows the dynamic magnification factors 
dD of the UD-CNT, FGΛ-CNT and FGX-

CNT beams according to the velocity of the moving mass for three values of the total volume 

fraction of CNTs, 0.12, 0.17TCNTV  and 0.28. From this figure, the dynamic characteristics of the 

UD-CNT and FGΛ-CNT beams appear to be quite close, and when compared to each other, the 

UD-CNT beam is weaker than the FGΛ-CNT beam. Moreover, the maximum values of 
dD for the 

UD-CNT and FGΛ-CNT beams, as listed in Table 3, appear earlier than the FGX-CNT beam.This 

means that the FGX-CNT beam is better than the others in terms of resonance performance. One 

of the reasons for this feature of the FGX-CNT beam is that the effective mass is distributed close 

to the lower and upper planes of the beam, away from the beam mid-plane. 

As shown in Figure 2 and listed in Table 3, as the total volume fraction of CNTs increases, 

the velocity of the moving mass at which the maximum dynamic magnification factors occur in 

all beam types also increases. 

 

Figure 2. Comparison of dynamic magnification factors for three different FG-CNTRC beams. 

Table 3. Maximum dynamic factor Dd and corresponding moving mass velocity for three different beams. 

TCNTV  0.12 0.17 0.28 

Beam 

Type 

FGΛ-

CNT 

UD-

CNT 

FGX-

CNT 

FGΛ-

CNT 

UD-

CNT 

FGX-

CNT 

FGΛ-

CNT 

UD-

CNT 

FGX-

CNT 

v (m/s) 195 206 222 234 254 278 274 282 286 

Max

dD  
0.06303 0.05831 0.04343 0.04207 0.03871 0.02873 0.02801 0.02608 0.01995 
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Figure 3. Comparison of dynamic magnification factors for 0.12, 0.17,0.28TCNTV   

This means that the CNT addition raises the resonant frequency of the beam and the 

possible resonance will occur at higher speeds of the moving mass. From this, we can conclude 

that CNT reinforcement will provide a better dynamic behaviour compared to beams that are not 

reinforced, and this result may be useful for beams to be used in high-speed applications of the 

moving mass problems. 

Similar to the results of the previous analysis, Figure 3 and Table 4 show that the FGX-

CNT beam has the best resonance behaviour, which shows maximum factor
dD at higher speeds 

of the mass when compared to the other beam types. The UD-CNT beam looks slightly better 

than the FGΛ-CNT beam in terms of the mass velocity at which it undergoes resonance. The 

increase in the total volume fraction of CNTs in all three beam types causes maximum factor
dD  

to occur at higher mass velocities. That is, the addition of CNT improves the dynamic behaviour 

of the beam, which would be advantageous for applications where high strength, lightness and 

better resonance behaviour are desired.  

Table 4. Maximum dynamic factor Dd and corresponding moving mass velocity for beams with

0.12, 0.17,0.28TCNTV  . 

Beam 

Type 
UD-CNT FGΛ-CNT FGX-CNT 

TCNTV  0.12 0.17 0.28 0.12 0.17 0.28 0.12 0.17 0.28 

v (m/s) 210 250 282 198 234 270 222 274 286 

Max

dD  
0.05830 0.03871 0.02608 0.06303 0.04207 0.02801 0.04343 0.02873 0.01995 

To better understand the dynamic behaviour of FG-CNTRC beams, it is necessary to look at 

the time histories for dimensionless mid-span transverse displacement of the beams under the 

moving mass. Figure 4 shows the time histories for dimensionless mid-span transverse 

displacement for the UD-CNT beam with different total CNT volume fractions 0.12, 0.17TCNTV 

and 0.28. Three values of the velocity of the moving mass, v=20, 50 and 100 m/s, are chosen to 

plot the figure. It is seen that the mid-span deflection of the UD-CNT beam is different, and it is 

dependent on the CNT amount. The number of the full vibration waves seen in the response curves 

can be used to recognise the dynamic characteristics of the beam. Thus, in the curves given 
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comparatively, the beam with the highest number of vibration waves behaves more rigid than the 

others and this beam is further away from the resonance zone for this speed. As can be observed 

from the curves in the graphs, for the UD-CNT beam with a higher CNT addition, the number of 

waves is higher than those with less CNT. As seen from the curves in the figure, the beam with the 

lowest total CNT volume fraction, 0.12TCNTV  , has the highest vibration amplitude and the one 

with 0.28TCNTV   has the lowest vibration amplitude. 

 

Figure 4. Time histories for dimensionless mid-span transverse displacement of UD-CNTRC beams.  

 

Figure 5. Time histories for dimensionless mid-span transverse displacement of FGΛ -CNTRC beams. 

 

Figure 6. Time histories for dimensionless mid-span transverse displacement of FGX-CNTRC beams. 
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Similarly, the time histories for dimensionless mid-span transverse displacement of the FGΛ-

CNT and FGX-CNT beams are given in Figures 5 and 6, respectively, for the same values of 

TCNTV and v. It is observed from the figures that the FGX-CNTRC beams create smaller vibration 

amplitudes for the same load velocities since they are far from the resonance zone. In this respect, 

in the dynamics of FG-CNTRC beams, the total volume fractions of CNTs and the distribution of 

CNTs along the thickness are important. Thus, in moving mass applications, it is possible to design 

a FG-CNTRC beam that can give the best dynamic performance for the mass and speed of the 

mass. 

6. CONCLUSIONS 

In this study, the dynamic behaviour of FG-CNTRC beams interacting with a moving mass is 

modelled and analysed. Using the third-order shear deformation theory in modelling, equations of 

motion are transformed into a finite element equation. A two-node finite beam element has been 

developed and the beam domain has been discretised. The developed finite element, which has 

axial elongation, transverse displacement, spatial derivative of transverse displacement and shear 

rotation degrees of freedom at the node points, has a total of 8 degrees of freedom. The obtained 

modelling was compared with the literature study and the finite element number was determined in 

terms of calculation accuracy. Three types of FG-CNTRC beams, namely UD-CNT, FGΛ-CNT 

and FGX-CNT beams, are modelled and their dynamic behaviours under the moving mass are 

analysed. Generally, it is understood from the analysis results that CNT addition improves the 

dynamic behaviour of beams of all types and this improvement increases with increasing the 

amount of CNTs. With the addition of CNTs, the FG-CNTRC beams behave stronger and the 

mass travelling velocity at which maximum displacement occurs increases. This also means that 

using FG-CNTRC beams for high-speed applications will bring an application advantage.  

 In addition, the distribution of the CNTs along the beam thickness is also important besides 

the total volume fractions of CNTs since the dynamic enhancement of the mixture model type X of 

the FGX-CNT beams, in which CNTs are concentrated on the lower and upper surfaces of the 

beam, is better than the other types. For the same amount of total volume fractions of CNTs, the 

dynamic behaviours of the FGΛ-CNT and UD-CNT beams are close to each other. It is understood 

from the analysis that the stiffness of the beams increases with increasing the amount of CNTs in 

all beam types. Using the method proposed in this study, it is possible to design and analyze an 

FG-CNTRC beam that can meet the desired dynamic properties for use in a moving load 

application. 
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