
 
 
Vietnam Journal of Science and Technology 60 (3) (2022) 569-584  

doi:10.15625/2525-2518/16122 

 

NONLINEAR FREE VIBRATION OF MICROBEAMS PARTIALLY 

SUPPORTED BY FOUNDATION USING A THIRD-ORDER FINITE 

ELEMENT FORMULATION  

Le Cong Ich
1, *

, Tran Quang Dung
1
, Nguyen Van Chinh

1
,  

Lam Van Dung
1
, Nguyen Dinh Kien

2, 3
 

1
Department of Machinery Design, Le Quy Don Technical University, 236 Hoang Quoc Viet,   

Ha Noi, Viet Nam 

2
Graduate University of Science and Technology, VAST, 18 Hoang Quoc Viet, Ha Noi, Viet Nam 

3
Department of Solid Mechanics, Institue of Mechanics, VAST, 18 Hoang Quoc Viet,                           

Ha Noi, Viet Nam 

*
Emails: lecongich79@lqdtu.edu.vn / ichlecong@gmail.com 

Received: 7 June 2021; Accepted for publication: 26 July 2021 

Abstract. Geometrically nonlinear free vibration of microbeams partially supported by a three-

parameter nonlinear elastic foundation is studied in this paper. Equations of motion based on the 

modified couple stress theory (MCST) and a refined third-order shear deformation beam theory 

are derived using Hamilton’s principle, and they are solved by a finite element formulation. The 

validity of the derived formulation is verified by comparing the present results with the 

published data for the case of the microbeams fully resting on the foundation. Numerical 

investigation is carried out to show the effects of the length scale parameter, the aspect ratio, the 

nondimensional amplitude and the boundary conditions on the nonlinear free vibration behavior 

of the microbeams. The obtained numerical results reveal that the foundation supporting length 

plays an important role on the vibration of the microbeams, and the influence of the foundation 

supporting length on the frequency ratio is dependent on the boundary conditions. It is also 

shown that the frequency ratio is decreased by the increase of the length scale, regardless of the 

boundary condition and the initial deflection. The influence of the nonlinear foundation stiffness 

on the ratio of nonlinear frequency to linear frequency of the microbeams is also studied and 

discussed. 

Keywords: Microbeam, modified couple stress theory, refined third-order beam theory, nonlinear elastic 

foundation, nonlinear free vibration. 

Classification numbers: 5.2.4, 5.4.2 

1. INTRODUCTION  

Thanks to the advanced technologies, the micro/nanoelectromechanical systems (MEMS/ 

NEMS) can now be easily manufactured from various materials. The main structures used in the 

MEMS/NEMS are beams, plates and shells. Due to the small size effect, the classical continuum 

theories (CCTs) are not sufficient to model mechanical behavior of these microstructures. Other 
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theories such as the higher‐order continuum theories (HCTs) have been developed to accompany 

a material length scale parameter (MLSP) [1] in modeling mechanical behavior of these 

microstructures. The HCTs have been adopted by many researchers in analyzing the 

MEMS/NEMS equipped with beams/plates/shells [2 - 4]. A review of the HCTs for analysis of 

microstructures can be found in [5]. 

The modified couple stress theory (MCST) developed by Yang et al. [4] for nonlinear 

vibration analysis of microbeams can be considered as the most popular HCTs. The theory 

includes only one MLSP, and the couple stress tensor is symmetric. Wang et al. [6] presented a 

nonlinear free vibration analysis of Euler-Bernoulli microbeams on the basis of the MCST and 

von Kármán geometrically nonlinear theory. This problem was also studied by Ke et al. [7], but 

for microbeams made from functionally graded material. Static bending, postbuckling and free 

vibration of nonlinear microbeams were investigated by Xia et al. [8], in which the nonlinear 

model was considered within the context of non-classical continuum mechanics via the 

introduction of a material length scale parameter.  

The effect of nonlinear elastic foundation support on free vibration of microstructures has 

been reported by several authors. Şimşek [9] studied nonlinear bending and free vibration of 

microbeams on a nonlinear elastic foundation using MCST and He’s variational method. The 

nonlinear forced vibration analysis of a higher-order shear deformable functionally graded 

microbeam fully resting on a nonlinear elastic foundation based on modified couple stress theory 

was investigated by Debabrata [10].  

To the authors’ best knowledge, the nonlinear free vibration of microbeams partially 

supported by a nonlinear elastic foundation has not been reported in the literature, and it is 

studied in the present work. Based on the modified couple stress theory (MCST) and a refined 

third-order shear deformation beam theory, the governing equations and associated boundary 

conditions for the microbeams are derived from Hamilton’s principle and they are solved by a 

finite element formulation. The verification of the derived formulation is performed, and then a 

parametric study is carried out to highlight the effects of the aspect ratio, amplitude, the material 

length scale and the boundary conditions on the nonlinear frequencies of the microbeams. It is 

worthy to note that in addition to the influence of the partial foundation support on the vibration 

of the microbeams, the third-order shear deformation theory employed for the first time in 

geometric nonlinear analysis herein is the novel point of the present paper. 

2. MATHEMATICAL MODEL 

An isotropic microbeam of length L, rectangular cross section (b×h), partially supported by 

a foundation, as depicted in Figure 1, is considered. The foundation considered herein is a 

nonlinear foundation model stiffness of the Winkler elastic medium kw, Pasternak elastic 

medium ks and nonlinear elastic medium kNL [9]. It is assumed that the beam is supported by the 

foundation from the left end, and the supporting length is LF. The Cartesian system (x, y, z) in 

Figure 1 is chosen such that the x-axis is on the mid-plane and along the length, while the y-axis 

is along the width and the z-axis directs upwards.  

The refined third‐order shear deformation theory [11], in which the transverse displacement 

is split into bending and shear parts, is adopted herewith. According to the theory, the 

displacements of a point in x, y and z directions, 1 2( , , ), ( , , )u x z t u x z t  and 3( , , )u x z t , 

respectively, are given by 
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where u0(x,t) is the axial displacement of a point on the x‐axis; wb(x,t) and ws(x,t) are, 

respectively, the bending and shear components of the transverse displacement. A subscript 

comma in Eq. (1) and hereafter is used to denote the derivative with respect to the followed 

variable, e.g. ,b x bw w x   . 

 

Figure 1. Geometry of an isotropic microbeam partially supported by a nonlinear elastic foundation. 

The strain components based on the von-Kármán’s nonlinear strain–displacement 

relationship resulted from Eq. (1) are of the forms 
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 The constitutive equations based on linear behavior of the material are  
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where E and   are the Young’s modulus and Poisson’s ratio of the beam material. 

Based on the modified couple stress theory proposed by Yang et al. [4], the strain energy U 

in a deformed linear elastic body occupying a volume V can be written in the form  

 
1

: : d
2

V

U V  σ ε m χ  (5) 

where  is the classical stress tensor;  is the strain tensor; m is the deviatoric part of the couple 

stress tensor, and  is the symmetric curvature tensor. These tensors can be written in the form 
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1
[ ( ) ]

2

T   χ θ θ  (8) 

with l is the material length scale parameter which reflects the effect of the couple stress,   is 

the Lame’s constant, and  is the rotation vector, defined by 

1
curl( )

2
θ u  (9) 

with 1 2 3[ , , ]u u uu is the vector of displacements.  

Substitution of Eq. (1) into (9) yields  
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From Eqs. (8) and (10), the expression for the non-zero components of the symmetric 

curvature tensor can be written in the form 
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The equations of motion for the free vibration of the microbeam are derived from 

Hamilton’s principle as [12]  

2

1
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where T and U are, respectively, the kinetic and strain energies of the microbeam, and Uf is the 

strain energy stored in the foundation.  

From Eq. (1), the first variation of the kinetic energy on the time interval [t1, t2] is  
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where an over dot denotes the derivative with respect to the time variable t, and  is the mass 

density of the microbeam. 

The first variation of the strain energy induced by the nonlinear foundation is as follows  
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The first variation of the strain energy of the microbeam on the time interval [t1, t2] can be 

written as 
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(15) 

with A b h   and 
3 12J bh  are, respectively, the area and the inertia moment of the                 

cross-section.  

Substituting Eqs. (13), (14) and (15) into Eq. (12) and integrating by parts, the governing 

equations of motion in terms of the displacements for the microbeam can be obtained by setting 

the coefficients of the vỉtual displacements u, wb and ws to zero, and they have the following 

forms 
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where double over dots denotes the second-order differential with respect to time.  

Four types of boundary conditions, namely simply-supported (SS), clamped-clamped (CC), 

clamped-free (CF) and clamped-simply supported (CS) are considered herein. The constraints 

for these boundaries are as follows. 

- For SS: u0 = wb = ws = 0 at x = 0 and wb = ws = 0 at x = L 

- For CC: u0 = wb = ws = wb,x = ws,x = 0 at x = 0 and wb = ws = wb,x = ws,x = 0 L 

- For CF: u0 = wb = ws = wb,x = ws,x = 0 at x = 0 

- For CS: u0 = wb = ws = wb,x = ws,x = 0 at x = 0 and wb = ws = 0 at x = L 

(19) 

3. SOLUTION METHOD 

Finite element method is used herein to solve the equations of motion (16)-(18). To this 

end, the microbeam is assumed to be divided into a number of elements with length of le. Noting 

that the beam should be divided to get f f eL NE l   with NEf is an integer and is the number of 

elements for the supporting foundation. A two-node beam element with five degree of freedom 
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per node is considered herewith. The vector of the nodal displacements for the element is 

defined as follows 
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Linear polynomials are used to interpolate the axial displacement u from its nodal values, 

while Hermite cubic polynomials are employed for the transverse displacements 
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With the interpolation and using the Galerkin finite element method [14] to Eqs. (16)-(18), 
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One can write Eqs. (23) - (25) in a matrix form as 

       0
NE

e e e e  M q K q  (26) 

where  eM  and  eK  are the element mass and stiffness matrices, respectively, and they have 

the forms as  

   
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22 23 21 22 23

32 33 31 32 33

0 0
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The element stiffness and mass matrices are better to be derived in terms of the natural 

coordinate 1 2 ex l     with 1  ξ  1, 0  x  le, and d d / 2ex l  . The highest order of the 

integrals in Eqs. (28)-(35) is six, and thus Gauss quadrature with 4 points along the element 

length can be used to exactly. 

Assuming a harmonic form for the vector of nodal displacements, the discrete equation of 

motion (26) can be written in the form   

    2 0 K M D  (36) 

where [M] and [K] are, respectively, the global mass matrix and stiffness matrix;  and D  are, 

respectively, the frequency and the eigenvector of the nodal displacements corresponding to an 

eigenvalue. 

 A direct iterative algorithm is used herein to obtain nonlinear frequencies from Eq. (36). In 

the algorithm, the linearization is used to calculate the nonlinear terms from the previous 

iteration solution. For example, the terms 
2

, ,( ) ( )T

x b xxH w H H and , , ,( )( )T

x b x xH w H N  can be 

linearized as 

2 2

, , , , , , , , , ,( ) ( ) ( ) ( ); ( )( ) ( )T T T T

x b xx x b xx x b x x x b x xkk
      H w H H H w H H H w H N H w H N  (37) 

where the term in the square bracket is evaluated using the solution known from the k-th 

iteration. The procedure for the nonlinear algorithm contains three steps as follows [6]  

Step 1. Neglecting nonlinear terms in the stiffness matrix [K] of Eq. (36), the linear 

stiffness matrix [K]L is obtained and the corresponding linear eigenvalue problem is solved. 

Step 2. The linear eigenvectors obtained in Step 1 are appropriately scaled up such that the 

maximum transverse displacement is equal to a given vibration amplitude. Then, the scaled 

normalized linear eigenvectors are used to evaluate the nonlinear stiffness matrix [K]NL. The 

nonlinear eigenvalues and eigenvectors are obtained from the updated eigensystem (36).  

Step 3. The eigenvector is scaled up again and Step 2 is repeated until the relative error 

between the eigenvalues obtained from two consecutive iterations i and i+1 satisfies the 

prescribed convergence criteria as 

1

0

i i

NL NL

i

NL

 




 
  (38) 

where 
k

NL is the frequency at iteration k (k = i, i+1) and
0 is a small value number, which is set 

to be 
510
in this work. 

4. NUMERICAL INVESTIGATION 

Numerical investigation is carried out in this section to study the effect of various 

parameters on the nonlinear free vibration behavior of microbeams. To this end, an aluminum 

microbeam with L/h = 100, b=2h, l = 17.6 µm and the material properties are [3]: E=70 GPa, 

ρ=2702 kg/m
3
, υ=0.3.  

The following dimensionless parameters are, respectively, used for the fundamental 

frequency, foundation stiffness, deflection, length scale and foundation supporting length 
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4 2 2 4

ratio , , , , , ,
fNL w s NL

w s NL F

L

Lk L k L k r L w l
K K K w

EJ EJ EJ r h L


  


        (39) 

where /r A J .  

Before computing the nonlinear frequency ratios of the microbeam, the accuracy and 

convergence of the derived formulation are firstly verified. To this end, Table 1 shows the 

convergence for the SS and CC microbeams with 
max 0.2, 0.4, 0.6 and 0.8w h  . The results in 

this work are also compared with that of Refs. [6] and [8] for several cases. Noting that both 

Refs. [6] and [8] used 
maxw h  for evaluating the nonlinear frequency ratios, which is diferent 

from (39). As seen from the Table 1, the convergence of the derived formulation is achieved by 

using just four elements for the majority of cases and six elements for the case of 

max2 and 0.6 or 0.8w h   , regardless of the boundary conditions and the length scale 

parameter  . Also, a good agreement between the result of the present work with that of Refs. 

[6, 8] can be seen from Table 1. Because of this convergence, six elements are used for the 

microbeams in all the computations reported below. Noting that the number in brackets in Table 

1 is the number of iterations required for the convergence condition in Eq. (38), and the 

maximum number of iterations is seven for the cases in the table. 

Table 1. Convergence of the derived formulation in evaluating the nonlinear frequency ratio values  ratio 

of microbeam without foundation. 

B.C.   maxw
h

 
NE Refs. 

2 4 6 8 [6] [8] 

SS 1 0.2 1.0075 (3) 1.0078 (3) 1.0078 (3) 1.0078 (3) 1.0084 1.0084 

  0.4 1.0297 (3) 1.0308 (3) 1.0308 (4) 1.0308 (4) 1.0330 1.0330 

  0.6 1.0655 (4) 1.0678 (4) 1.0678 (5) 1.0678 (5) 1.0729 1.0727 

  0.8 1.1135 (5) 1.1170 (5) 1.1170 (6) 1.1170 (6) 1.1264 1.1259 

 2 0.2 1.0190 (4) 1.0197 (4) 1.0197 (5) 1.0197 (5) 1.0213 1.0213 

  0.4 1.0736 (4) 1.0762 (5) 1.0762 (6) 1.0762 (6) 1.0828 1.0824 

  0.6 1.1584 (5) 1.1625 (5) 1.1627 (6) 1.1627 (7) 1.1780 1.1776 

  0.8 1.2658 (5) 1.2714 (6) 1.2716 (7) 1.2716 (7) 1.2997 1.3064 

CC 1 0.2 1.0017 (3) 1.0018 (3) 1.0018 (4) 1.0018 (5) - - 

  0.4 1.0070 (4) 1.0073 (4) 1.0073 (4) 1.0073 (5) - - 

  0.6 1.0157 (4) 1.0163 (4) 1.0163 (5) 1.0163 (6)   

  0.8 1.0276 (5) 1.0287 (5) 1.0287 (6) 1.0287 (7) - - 

 2 0.2 1.0045 (4) 1.0046 (5) 1.0046 (5) 1.0046 (5) - - 

  0.4 1.0177 (4) 1.0184 (5) 1.0184 (5) 1.0184 (5) - - 

  0.6 1.0395 (5) 1.0409 (5) 1.0408 (6) 1.0408 (6)   

  0.8 1.0692 (5) 1.0714 (5) 1.0710 (6) 1.0710 (7) - - 

Since the data of nonlinear frequency ratios for the microbeam partially supported by the 

nonlinear foundation is not available in the literature, the accuracy of the derived formulation is 

verified herewith by comparing the nonlinear frequency ratio of a microbeam fully resting on the 
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nonlinear foundation obtained in the present work with that of Ref. [9] as shown in  Table 2 for 

the SS and CC microbeams. A good agreement between the result of the present work with that 

of Ref. [9] is noted from Table 2, regardless of the boundary conditions, the value of   and the 

foundation stiffness. 

Table 2. Verification study for nonlinear frequency ratio values ratio for SS and CC microbeams with 

nonlinear foundation. 

B.C.   maxw  

 

Kw = 100 Kw = 200 

Ks=50, KNL =100 Ks=100, KNL=200 Ks=50, KNL =100 Ks=100, KNL=200 

Present [9] Present [9] Present [9] Present [9] 

SS 0.25 1 1.0521 1.0505 1.0535 1.0525 1.0459 1.0445 1.0496 1.0486 

  2 1.1940 1.1893 1.2003 1.1964 1.1723 1.1678 1.1863 1.1825 

  3 1.3973 1.3902 1.4125 1.4037 1.3555 1.3486 1.3856 1.3772 

  4 1.6383 1.6303 1.6664 1.6509 1.5750 1.5670 1.6255 1.6106 

 0.5 1 1.0468 1.0453 1.0502 1.0492 1.0418 1.0404 1.0467 1.0457 

  2 1.1757 1.1709 1.1882 1.1846 1.1577 1.1532 1.1759 1.1723 

  3 1.3624 1.3545 1.3890 1.3811 1.3275 1.3200 1.3650 1.3574 

  4 1.5858 1.5761 1.6302 1.6166 1.5325 1.5231 1.5936 1.5804 

 0.75 1 1.0401 1.0387 1.0454 1.0445 1.0363 1.0350 1.0425 1.0416 

  2 1.1517 1.1470 1.1712 1.1678 1.1381 1.1338 1.1609 1.1576 

  3 1.3160 1.3078 1.3556 1.3486 1.2893 1.2816 1.3355 1.3287 

  4 1.5152 1.5044 1.5788 1.5670 1.4740 1.4636 1.5480 1.5365 

 1 1 1.0333 1.0321 1.0400 1.0392 1.0307 1.0295 1.0378 1.0370 

  2 1.1273 1.1230 1.1520 1.1489 1.1176 1.1136 1.1438 1.1409 

  3 1.2679 1.2601 1.3178 1.3115 1.2486 1.2412 1.3017 1.2956 

  4 1.4411 1.4301 1.5204 1.5101 1.4109 1.4003 1.4955 1.4854 

CC 0.25 1 1.0269 1.0273 1.0326 1.0315 1.0252 1.0255 1.0311 1.0301 

  2 1.1037 1.1052 1.1251 1.1209 1.0971 1.0986 1.1194 1.1156 

  3 1.2209 1.2240 1.2648 1.2558 1.2074 1.2106 1.2532 1.2452 

  4 1.3678 1.3733 1.4389 1.4233 1.3464 1.3520 1.4209 1.4068 

 0.5 1 1.0206 1.0208 1.0267 1.0260 1.0196 1.0197 1.0257 1.0250 

  2 1.0801 1.0809 1.1031 1.1004 1.0761 1.0769 1.0992 1.0968 

  3 1.1724 1.1743 1.2202 1.2144 1.1641 1.1661 1.2122 1.2069 

  4 1.2903 1.2937 1.3679 1.3579 1.2769 1.2805 1.3553 1.3461 

 0.75 1 1.0148 1.0149 1.0206 1.0201 1.0143 1.0143 1.0200 1.0195 

  2 1.0581 1.0584 1.0801 1.0783 1.0560 1.0563 1.0777 1.0761 

  3 1.1264 1.1273 1.1727 1.1689 1.1219 1.1229 1.1678 1.1643 

  4 1.2155 1.2171 1.2916 1.2851 1.2081 1.2099 1.2836 1.2775 

 1 1 1.0107 1.0106 1.0156 1.0153 1.0104 1.0104 1.0153 1.0149 

  2 1.0420 1.0421 1.0611 1.0599 1.0408 1.0410 1.0598 1.0586 

  3 1.0921 1.0924 1.1330 1.1303 1.0897 1.0901 1.1301 1.1276 

  4 1.1586 1.1593 1.2267 1.2222 1.1546 1.1554 1.2219 1.2176 
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Table 3. Nonlinear frequency ratio values ratio of microbeam partially supported by the nonlinear 

foundation with Kw = 200, Ks=100, KNL=200. 

B.C. F  
 

 

0.5   1   

maxw  
maxw  

1 2 3 4 1 2 3 4 

CF 0.25  1.0289(4) 1.1059(6) 1.2119(7) 1.3321(9) 1.0119(4) 1.0458(5) 1.0973(6) 1.1616(6) 

 0.50  1.0198(4) 1.0720(6) 1.1427(8) 1.2220(9) 1.0086(4) 1.0333(5) 1.0713(6) 1.1196(7) 

 0.75  1.0162(4) 1.0630(5) 1.1357(8) 1.2289(9) 1.0153(4) 1.0593(5) 1.1270(7) 1.2129(9) 

SS 0.25  1.0199(4) 1.0756(6) 1.1580(8) 1.2586(8) 1.0110(4) 1.0430 (5) 1.0934 (5) 1.1589 (6) 

 0.50  1.0390(4) 1.1452(6) 1.2962(9) 1.4718(9) 1.0293(4) 1.1109(5) 1.2309(7) 1.3755(9) 

 0.75  1.0693(4) 1.2553(6) 1.5178(9) 1.8268(9) 1.0485(4) 1.1826(4) 1.3782(5) 1.6142(7) 

CS 0.25  1.0199(4) 1.0746(6) 1.1541(8) 1.2490(10) 1.0084(4) 1.0327(5) 1.0708(6) 1.1199(7) 

 0.50  1.0253(4) 1.0964(6) 1.2029(6) 1.3334(10) 1.0142(4) 1.0555(4) 1.1202(5) 1.2035(6) 

 0.75  1.0532(5) 1.1990(6) 1.4089(7) 1.6600(9) 1.0309(4) 1.1184(4) 1.2511(4) 1.4168(6) 

CC 0.25  1.0080(3) 1.0314(4) 1.0688(5) 1.1179(5) 1.0035(3) 1.0141(3) 1.0313(4) 1.0548(6) 

 0.50  1.0190(4) 1.0728(5) 1.1540(7) 1.2533(9) 1.0103(3) 1.0402(4) 1.0873(5) 1.1482(6) 

 0.75  1.0307(4) 1.1180(5) 1.2503(6) 1.4154(7) 1.0167(3) 1.0652(4) 1.1416(5) 1.2407(5) 

 

Figure 2. Dimensionless amplitude 1maxw  versus nonlinear frequency ratio ratio of microbeams  

for Kw = 200, Ks=100, KNL=200. 

Table 3 lists the nonlinear frequency ratios of the SS, SC, CC, and CF microbeams partially 

supported by the nonlinear foundation with Kw = 200, Ks=100, KNL=200, 0.5, 1.0  , and 

various values of 
F , 

maxw . As seen from the table, the frequency ration in the table decreases 
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by the increase of 
maxw , and by decreasing  , regardless of the boundary conditions. The 

influence of the foundation supporting parameter 
F on the nonlinear frequency ratio is, 

however, dependent on the boundary conditions. The frequency ratio of the SS, CS and CC 

beams increases with increasing 
F , but that of CF beam decreases with increasing 

F . The 

dependence of the nonlinear frequency ratio upon   can be explained by the change of the effect 

of the material length scale l, as seen from Eqs. (5) and (7), and this leads to the change of the 

microbeam energy U.  

Figure 2 shows the influence of the dimensionless material length scale parameter   on the 

nonlinear frequency ratio ratio. In this figure, the nonlinear frequency ratio is plotted as a 

function of the dimensionless vibration amplitude (
maxw ) for the various values of the length 

scale parameter,  = 0, 0.25, 0.50, 0.75, 1), and for Kw = 200, Ks = 100, KNL = 200, F = 0.5, 

0.25. It is evident that an increase in the scale parameter leads to a decrease in the nonlinear 

frequency ratio, although both the linear and the nonlinear vibration frequencies increase with 

scale parameter. This situation can be interpreted by the fact that the increase in the linear 

frequency due to the scale parameter is larger than the increase in the nonlinear frequency. This 

fact holds true for all considered end conditions.  

 

Figure 3. Aspect ratio /L h  versus nonlinear frequency ratio ratio of microbeams  

for Kw = 200, Ks=100, KNL=200 and 
max 1w  . 

The effect of the aspect ratio L/h on the nonlinear frequency ratio of the microbeams is 

illustrated in Figure 3 for the SS, CC, CF, CS partially supported by the nonlinear elastic 

foundation with F= 0.25, 0.5 and 
max 1w  . The nonlinear frequency ratio, as seen from the 

figure, steadily increases with increasing the aspect ratio, and the increase is the most significant 

for L/h less than 20. The result in Figure 3 also shows the ability of the finite element 
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formulation derived in the present work in modeling the shear deformation effect of the 

microbeam. 

4. CONCLUSIONS 

The nonlinear free vibration analysis of microbeams partially supported on the nonlinear 

elastic foundation has been presented on the basis of the MCST and the refined third-order shear 

deformation beam theory. The equations of motion are derived from Hamilton’s principle and 

they are solved by a finite element formulation. Using an iterative procedure, the nonlinear 

frequency ratios have been computed for microbeams with various boundary conditions, and the 

effects of the length scale parameter, the aspect ratio and the nondimensional amplitude on the 

nonlinear frequency ratio have been studied in detail and highlighted. It has been shown that the 

foundation supporting length plays an important role on the vibration of the microbeams, and the 

influence of the foundation supporting length on the frequency ratio is dependent on the 

boundary conditions. The effects of the stiffness of the nonlinear foundation and the aspect ratio 

on the ratio of the nonlinear frequency to linear frequency of the microbeams have also been 

studied and discussed. The method proposed in this paper can be extended to nonlinear free 

vibration analysis of microbeams made of new composite materials such as functionally graded 

materials and carbon nanotubes reinforced composite materials, which are widely used in 

MEMS/ NEMS nowadays. 
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