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Abstract. Switched reluctance motor (SRM) has many advantages with very strong nonlinearity, 

hence it is difficult to control. This paper presents a new method to control the speed of switched 

reluctance motor based on backstepping technique and nonlinear state observation. This 

controller is first applied for switched reluctance motor with nonlinear drive model. This model 

is a combination of both the commutator and the motor in the same model. The combined model 

of switched reluctance motor helps to reduce the influence of nonlinearity due to the switching 

lock, increasing the accuracy in controlling this motor. The state variables of the controller are 

approximated by nonlinear state observer, including speed observer, flux observer, and rotor 

position observer. The observer state variables are compared with directly measured state 

variables. This nonlinear state observer improves the switched reluctance motor drive system by 

reducing actual measuring devices, such as incremental encoder and torque transducer. The 

stability of the closed control loop was analyzed using Lyapunov stability criterion. The 

simulation is carried out with both traditional backstepping controller and the backstepping 

controller combined with nonlinear state observation. The quality of the nonlinear state observer 

and backstepping control system are analyzed theoretically and through numerical simulations. 

Keywords: Swiched Redutance Motor; Backstepping Technique; Nonlinear State Observer. 

Classification numbers: 4.10.3; 4.10.4. 

1. INTRODUCTION 

The switched reluctance motor (SRM) is an electric motor with many outstanding 

advantages such as low manufacturing cost, simple structure, wireless rotor that allows high 

working temperature, large torque, etc. [1 - 3]. Due to the structure of the SRM and the operating 

principle of continuous switching between each phase, the SRM has strong nonlinearity. In 

many works, SRM models have been presented as linear or nonlinear for independent phases [4 

- 6]. In the work [7], it was the first combined dynamic model of SRM with logical transitions in 
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one model. Then, the author of this work has linearized the dynamic model to design the linear 

controller for SRM. 

In order to reduce error caused by linear modeling process, in this paper, we propose a new 

design method based on backstepping technique combined with nonlinear state observer. The 

research results are verified through numerical simulations. 

After general introduction, this paper is organized as follows. Section 2 presents the 

nonlinear model of SRM (the model including the phase shift switches and dynamics of SRM). 

In section 3, a controller based on backstepping technique and nonlinear state observer are 

designed. Section 4 illustrates the simulation results. Finally, section 5 is conclusion. 

2. NONLINEAR MODEL OF SRM SYSTEM 

The mathematical model of SRM used to design the controller is represented in the form of 

differential equations based on the basic machine equations. The dynamics of SRM includes 

voltage equations, torque equations and mechanical equations. 

Differential equation of SRM with m phases has the following form: 

 .
j

j j

d
u R i

dt


   (1) 

where:  j = 1, 2, 3, …, m; ju  is voltage of phase j; R is resistor of phase j; ji  is current of phase 

j; j  is flux of phase j. 

From equation (1), flux of any phase j is represented: 

 
0

( . )

T

j j jv R i dt    (2) 

Flux j  depends on both current ji  and the angle  , so it is represented in details as follows: 

 ,j ji  . 

The mechanical equation of SRM: 

 
2

2 e l

d
J T T

dt


   (3) 

where: 
eT  is torque of one phase; 

iT  is torque of load; J  is moment of inertia. 

According to the principle of energy conversion in SRM, the torque generated is equal to 

the energy variation of magnetic field in stator coil according to rotor angular position. 

 

'W
( , )

j

j jT i






 (4) 

where: 

 
'

0

W ( , ) ( , )

ji

j j j j ji i di      (5) 

The torque of the SRM is a nonlinear function in terms of current and rotor position. Then, 

the total torque generated is equal to the total torque of phases: 

 1 2

1

( , , ,..., ) ( , )
m

e m j j

j

T i i i T i 


  (6) 
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To control the SRM, we need to determine the flux  ,j ji   as accurately as possible. For 

convenience in the research and development of control algorithms, flux property can be 

approximated as a continuous function [7], as follows: 

 
( )

( , ) (1 )j ji f

j j si e


  


   (7) 

with j = 1, 2, …, m; 
s  is magnetic flux saturation. 

In general, due to special structure of SRM, the performance of this motor is not the same 

as that of general electric motor. Rotor of SRM rotates at discrete angles so the function  jf   

can be represented by a Fourier series as follows: 

 
1

2 2
( ) { sin[ ( 1) ] os[ ( 1) ]}j n r n r

n

f a b nN j c c nN j
m m

 
  





        (8) 

in which, 
rN  is the number of rotor poles, and if higher order components in Fourier series is 

omitted, the simpler function (8) is obtained: 

 
2

( ) sin[ ( 1) ]j rf a b N j
m


      (9) 

The torque of phase j is represented as follows: 

 
( )

2

( )
( , ) {1 [1 ( )] }

( )

j ji fjs
j j j j

j

df
T i i f e

f d


 

 


    (10) 

The state space equations of SRM as follows: 

 
1

1

1
( , ) ( , )

m

j j l

j

j j j j

j j

j j

d

dt

d
T i T

dt J

di
Ri u

dt i i





  

  














 
   

 


      
                 

  (11) 

The state model of SRM is illustrated below based on [7]. Considering SRM with m = 4 

phases, the state vector is 
1 2 3 4 1 2 3 4 5 6[ , , , , , ] [ , , , , , ]  T Tx i i i i x x x x x x . The state equation of 

motor is: 

 
1 2x x  (12) 
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 

   

 

3 1 1 4 2 1

5 3 1

2 1 3 2 4 3 5 4 6 1 2

( ) ( )1 1 2 1
3 1 1 4 2 12 2

1 1 1 2 1 1

( )3 1
5 3 12 2

3 1 1 4

1
( , ) ( , ) ( , ) ( , ) ( , )

( ) ( )
1 [1 ( )] 1 [1 ( )]

( ) ( )

( )1
   = 1 [1 ( )]

( )

l

x f x x f xs s
r r

x f xs s
r

x T x T x T x T x T x x
J

f x f x
N x f x e N x f x e

f x x f x x

f x
N x f x e

J f x x f

   

 

 

 



    

 
    

 


   


 6 4 1( )4 1

6 4 1

1 1

2 1

( )
1 [1 ( )]

( )

sin( )

x f x

r

f x
N x f x e

x x

Bx mgl x



 
 
 
 

  
 

  
 
 

 (13) 

   1 13 1 1 3 1 1 3 1 1

1

1 1( )( ) ( ) ( )

3 1 1 3 3 2 1 1 1( ) ( )
f xx f x x f x x f x

s s sx
x e f x Rx e x x e f x u  

   


                    

(14) 

      
  2 14 2 1 4 2 1 4 2 1

1

1 1( )( ) ( ) ( )

4 2 1 4 4 2 2 1 2( ) ( )
f xx f x x f x x f x

s s sx
x e f x Rx e x x e f x u  

   


           

        (15) 

  3 15 3 1 5 3 1 5 3 1

1

1 1( )( ) ( ) ( )

5 3 1 5 5 2 3 1 3( ) ( )
f xx f x x f x x f x

s s sx
x e f x Rx e x x e f x u  

   


                    

(16) 

  4 16 4 1 6 4 1 6 4 1

1

1 1( )( ) ( ) ( )

6 4 1 6 6 2 4 1 4( ) ( )
f xx f x x f x x f x

s s sx
x e f x Rx e x x e f x u  

   


                   

(17) 

Where: 

 1

1

2
cos ( 1)i

r r

f
bN N x j

x m

  
   

  
 (18) 

Note that, in the upper state spatial  model, 
2Bx  is an opposite component to the rotation 

while mgl  is the torque of the load. 

From (13), we denote: 

  3 1 1( )1 1

2

1 1 1

( )1
( ) 1

( )

  
  

 

x f xs
a r

f x
f x N e

J f x x
 

  3 1 1( )1 1
1 12

1 1 1

( )1
( ) ( )

( )

  
  

 

x f xs
a r

f x
g x N f x e

J f x x
 

  4 2 1( )2 1

2

2 1 1

( )1
( ) 1

( )

  
  

 

x f xs
b r

f x
f x N e

J f x x
 

  4 2 1( )2 1
2 12

2 1 1

( )1
( ) ( )

( )

  
  

 

x f xs
b r

f x
g x N f x e

J f x x
 

  5 3 1( )3 1

2

3 1 1

( )1
( ) 1

( )

  
  

 

x f xs
c r

f x
f x N e

J f x x
 

  5 3 1( )3 1
3 12

3 1 1

( )1
( ) ( )

( )

  
  

 

x f xs
c r

f x
g x N f x e

J f x x
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  6 4 1( )4 1

2

4 1 1

( )1
( ) 1

( )

  
  

 

x f xs
d r

f x
f x N e

J f x x
 

  6 4 1( )4 1
4 12

4 1 1

( )1
( ) ( )

( )

  
  

 

x f xs
d r

f x
g x N f x e

J f x x
 

Equation (13) can be rewritten as follows: 

 

     

 

2 3 4 5

6 2 1

( ) ( ) ( ) ( ) ( ) ( )

      ( ) ( ) sin( )

      

  

a a b b c c

d d

x f x g x x f x g x x f x g x x

B mgl
f x g x x x x

J J

 (19) 

Derivative (19) with respect to time, we have: 

 
2 3 3 4 4

5 5 6 6 2 1 1

( ) ( ) ( ) ( ) ( ) ( )

      ( ) ( ) ( ) ( ) ( ) ( ) cos( )

            

            

a a a b b b

c c c d d d

x f x g x x g x x f x g x x g x x

B mgl
f x g x x g x x f x g x x g x x x x x

J J

(20) 

From equation (14) to equation (17), we denote: 

   1 13 1 1 3 1 1

1

1 ( )( ) ( )

1 1 3 3 2( ) ( ) 
  


       

f xx f x x f x

a s s x
p x e f x Rx e x x  

 3 1 1
1

( )

1 1( ) ( )


   
x f x

a sq x e f x  

   2 14 2 1 4 2 1

1

1 ( )( ) ( )

2 1 4 4 2( ) ( ) 
  


       

f xx f x x f x

b s s x
p x e f x Rx e x x  

 4 2 1
1

( )

2 1( ) ( )


   
x f x

b sq x e f x  

   3 15 3 1 5 3 1

1

1 ( )( ) ( )

3 1 5 5 2( ) ( ) 
  


       

f xx f x x f x

c s s x
p x e f x Rx e x x  

 5 3 1
1

( )

3 1( ) ( )


   
x f x

c sq x e f x  

   4 16 4 1 6 4 1

1

1 ( )( ) ( )

4 1 6 6 2( ) ( ) 
  


       

f xx f x x f x

d s s x
p x e f x Rx e x x  

 6 4 1
1

( )

4 1( ) ( )


   
x f x

d sq x e f x  

The equations from (14) to (17) are rewritten as follows: 

 

3 1

4 2

5 3

6 4

( ) ( )

( ) ( )

( ) ( )

( ) ( )

 


 


 
  

a a

b b

c c

d d

x p x q x u

x p x q x u

x p x q x u

x p x q x u

 (21) 

Substituting (21) into (20), we have: 
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2 3 1

4 2

5 3

6 4

( ) ( ) ( ) ( ) ( ) ( )

      ( ) ( ) ( ) ( ) ( ) ( )

      ( ) ( ) ( ) ( ) ( ) ( )

      ( ) ( ) ( ) ( ) ( ) ( )

      

     

     

     

a a a a a a

b b b b b b

c c c c c c

d d d d d d

x f x g x x g x p x g x q x u

f x g x x g x p x g x q x u

f x g x x g x p x g x q x u

B
f x g x x g x p x g x q x u 2 1 1cos( )

mgl
x x x

J J

 (22) 

The SRM operates based on the principle of supplying voltage to each phase. If we 

consider the number of phases is 4, we have j ju k u , with j = 1, 2, 3, 4, jk  is phase shift switch 

that only allows the values of 0 and 1. Equation (22) can be represented as follows: 

 

 

3 4

2

5 6

1 2 3 4 2 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
=

( ) ( ) ( ) ( ) ( ) ( ) ( )

     ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) cos( )

       
 

     

    

a a a a b b b b c

c c c d d d d

a a b b c c d d

f x g x x g x p x f x g x x g x p x f x
x

g x x g x p x f x g x x g x p x

B mgl
g x q x k g x q x k g x q x k g x q x k x x x

J J

(23) 

Then we denote: 

 
3 4

5 6

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
F( )=

( ) ( ) ( ) ( ) ( ) ( ) ( )

       
 

     

a a a a b b b b c

c c c d d d d

f x g x x g x p x f x g x x g x p x f x
x

g x x g x p x f x g x x g x p x
 

and  

 1 2 3 4G( )= ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )  a a b b c c d dx g x q x k g x q x k g x q x k g x q x k  

We have another form of equation (23) as follows: 

 2 2 1 1=F( ) ( ) cos( )  
B mgl

x x G x x x x
J J

 (24) 

We denote: 

 
2 1 1( ) F( ) cos( )

( ) ( )


  


 

B mgl
f x x x x x

J J

g x G x

 (25) 

we have: 

 
2 ( ) ( ) x f x g x u  (26) 

To facilitate the design, we represent equation (26) as a state model. Let 
2 1x z , we have a 

state model of SRM: 

 
   

1 2

2




 

z z

z f x g x u
 (27) 

With    ,f x g x  are defined in equation (25). 

The model in equation (27) is perfectly suitable to use backstepping technique to design the 

controller for SRM. 
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3. BACKSTEPPING CONTROL DESIGN USING NONLINEAR STATE OBSERVER 

FOR SRM 

3.1. Backstepping control 

In section 2 of this paper, the dynamic model of SRM is represented as state model (27): 

 
   

1 2

2




 

z z

z f x g x u
 (28) 

This is a model of a second order tight feedback system. According to the backstepping 

technique [8 - 11], we need to design in 2 steps. 

Step 1: Let speed tracking error 
d dz  is 

1e , we have: 

 
1 1 de z z   (29) 

Take derivative of the function 
1e  over time, we have: 

 
1 1 2d de z z z z     (30) 

Let 
2 2 1e z    in which, 

1  is virtual control signal for the first sub-system. 

Substituting to equation (30), we have: 

 
1 1 2 2 1d d de z z z z e z        (31) 

To determine virtual control signal that ensures 
1 0e  , we choose member Lyapunov 

function: 

 
2

1 1

1

2
V e

                                           
 (32) 

Take derivative of 
1V  over time we have: 

   2

1 1 1 1 2 1 1 1 1 2dV e e e e z c e e e        (33) 

To have equation (33), virtual control signal has following form: 

 
1 1 1 dc e z     (34) 

in which, 
1c  is a positive constant. If 

1 0e   then 
2 0e   

Step 2: 

 
2 2 1e z    (35) 

Take derivative of the function 
2e  over time, we have: 

 
2 2 1e z    (36) 

From (28), we have: 

    2 2 1 1     e z f x g x u  (37) 

To determine the signal control u that ensures 
2 0e  , we choose Lyapunov function for 

the closed loop: 

 
2

2 1 2

1

2
V V e   (38) 
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Take derivative over time we have: 

 
2 1 2 2V V e e   (39) 

Substituting equation (33) and (37) to equation (39), we have: 

    2

2 1 1 1 2 2 1        V c e e e e f x g x u
   

 (40) 

Select control signal for system in equation (40): 

 
 

 
2 2 1 1      


c e e f x

u
g x

 (41) 

with 
2c  is positive constant. 

Theorem: SRM has a state model (28) which is controlled by backstepping controller (41) with 

1c , 
2c  are positive constants to ensure closed loop Lyapunov stable. 

Proof. Select Lyapunov function for closed loop as follows: 

  2 2 2

1 2 1 2 2

1 1

2 2
V e e V e V      (42) 

Take derivative of V over time we have: 

    2

1 1 1 2 2 1        V c e e e e f x g x u
    

 (43) 

Substituting u from equation (41) to equation (43), we have: 

 
   2

1 1 1 2 2 2 2 1 1 1

2 2

1 1 2 2 0

              

   

V c e e e e f x c e e f x

V c e c e
 (44) 

 What needs to be proven has been proven. 

3.2. Nonlinear State Observer 

The nonlinear state observer is intended to estimate the states: flux, position and rotor speed 

from observing directly the value of voltage, current and moment. The structure of nonlinear 

state observer is illustrated in Figure 1. 

 

Figure 1. Structure of nonlinear state observer. 

3.2.1. Nonlinear flux observer 

The model of nonlinear flux observer is shown below. We set a new state: 
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  ln 1
j

j j j

s

f i


 


 
    

                            

 (45) 

With j  is flux of phase j. 

The electro dynamic equation of the SRM: 

    j j j j jri u g                                            (46) 

With     

  
1

j

j j

s

g e





   (47) 

Flux Observer is shown as follows: 

         ˆ ˆ ˆT

i jdiag ri u g i i ai           (48) 

  
ˆ

ˆ 1 j

j s e


 


   (49) 

With 0   and          
1 2 3 4

T

g g g g g         

 

 

3

4

1

2

0

0

0

0

i

i
i

i

i

 
 
  
 
 
 

 

3.2.2. Rotor’s position observer 

A model of rotor’s position observer is presented in this part. The matrix  
3

X i  is 

calculated from [12]: 

  

1

2

3
3

4

0

0

0

0

i

i
X i

i

i

 
 
 
 
 

 

 (50) 

Matrix  ,G i   is defined as: 

        
   

 

1 1

3 3 3

2

,
, :

,

T T
G iai

G i X i X i X i
G ib






  
     

 
 (51) 

The rotor’s position observer is shown as follows: 

 
 

 
2

1

,1ˆ arctan
,r

G i

N G i






 
  

  

 (52) 

3.2.3. Rotor’s speed observer 

The rotor’s speed observer in this part is designed based on equation (11) that illustrates 

SRM motor and position of rotor observed above. The first step of this design observer is to 
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approximate the torque of load. After that, Luenberger’s observer is designed to observe the 

speed of rotor. 

First of all, we determine the filter as follows: 

  
 

2

1
:

1
G p

Tp



                                           (53) 

in which: :
d

p
dt

  and 0T   is filter time constant. 

The torque of load is approximated with the following formula: 

      2 ˆˆ ,l EG p T i Jp G p     (54) 

Based on equation (11) that illustrates SRM, the motor observer is designed as follows: 

 

 

   

1 2 1 1

2 2 1

ˆˆ ˆ ˆ

1ˆ ˆˆ ˆ ˆ,E L

x x x

x x T i
J



  

  

     
 

 (55) 

with 
2

ˆx̂  , 
1 2, 0 , ˆ

L  is calculated from equation (54), ̂  is designed in angular observer 

of rotor from equation (52). 

The accuracy of flux observer, rotor’s position observer and rotor’s speed observer were 

verified in [12]. 

3.3. Backstepping control design using the state observer 

The backstepping controller (41) proposed in section 3.1 is only available when the state 

variables of the SRM are directly observed. In order to control the SRM without measuring the 

output, we proposed a method of combining the backstepping controller (41) with the observer 

(Figure 2). Thus, instead of having to measure the flux, position and speed of rotor directly, it is 

only necessary to measure current, voltage and torque. 

The structure of the backstepping controller combined with the state observer is shown in 

Figure 2. 

 

Figure 2.  Structure of backstepping control system with nonlinear state observer. 
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The quality of the nonlinear state observer and system of SRM controller is verified in the 

next section. 

4. NUMERICAL SIMULATION 

 

Figure 3. Schematic diagram of SRM backstepping control system. 

Table 1. Parameters of SRM model, controller and observer. 

6rN   
1 2c 

 
0.2B   

 3 26.8 10 /J kg m   
2 0.1c 

 
 2l m

 

 0.05R  
 

100 
 1 100l   

 31.5 10a H   0.025T 
 2 2500l   

 31.364 10b H     

The simulation is performed on MATLAB/Simulink. SRM parameters and selected force 

parameters of the controller and observer are shown in Table 1. The schematic diagram of SRM 

backstepping control system is shown in Figure 3. 

The results of the nonlinear state observer test are shown in Figures 4, 5, 6; the phase 

current and torque of the system in Figures 7 and 8, and the control results are shown in Figure 9. 
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Figure 4. Flux observer and Flux. 

  

Figure 5. Rotor position observer. 

 

Figure 6. Speed observer. 
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Figure 7. Phase current. 

 

Figure 8. Torque of motor. 
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Figure 9. Speed characteristic of SRM. 

Table 2. Quality of BTP and BTP based observer. 

 BTP BTP based observer 

Steady state error 410
 

410
 

Setting time 

(seconds) 
0.4 0.5 

Overshoot (%) 0 0 

The simulation results show that the nonlinear state observer achieves the required quality. 

The observation error for steady state of flux”?) reaches its maximum value at 0.06 Wb (Figure 

4), the observation error for steady state of rotor position converges to 0 deg (Figure 5), the 

observation error for steady state of speed reaches its maximum value at 0.7 rad/s and converges 

to 0 rad/s (Figure 6). When this observer is combined with the backstepping controller, the 

control system gives a quality close to that of the backstepping control system through direct 

observation (Table 2). The torque characteristic is not good because the logic control of the 

switches is not optimal in terms of time.  

5. CONCLUSIONS 

The simulation results show that the SRM control system with the backstepping controller 

combined with the nonlinear state observer completely achieves the desired quality. Thus, in 

practice we can synthesize the controller without measuring motor output signals such as flux, 

speed and position of rotor. Besides improving control quality, we need to design logic control 

of switches.  
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