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Abstract. Computer-aided drug design has now become a compulsory tool in the drug discovery 

and development process. It uses computational approaches to discover, develop, and analyze 

drugs in order to identify potential compounds with expected biological activities. In the first 

part, this review provides a comprehensive introduction of the virtual screening technique, 

knowledge and advances in both structure-based virtual screening and ligand-based virtual 

screening strategies. In the second part, recent database of compounds provided worldwide and 

drug-like parameters which are helpful in supporting for the virtual screening process will be 

discussed. This information will provide a good platform to estimate the advance of applying 

these techniques in the new drug-lead identification and optimization. 
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1. INTRODUCTION 

Viet Nam has a long history of traditional medicine, since long time ago, our ancestors 

have known how to use the surrounding plants as inexpensive but effective medicines in treating 

diseases [1]. Through time, the experience of using these medicinal plants has been improved, 

not only common colds can be treated, but even terminal illnesses such as cancer, cardiovascular 

diseases ... can also be treated or supported with traditional medicine. The mechanism of action 

behind these remedies to this day is still a question that modern science cannot fully explain. 

In recent decades, millions of compounds have been isolated from plants, marine organisms 

and microorganisms worldwide [2, 3]. Amongst these, many compounds have potential to 

develop into drugs serving human life. The study of the chemical composition of these plants 

and animals has contributed to elucidating the ability to cure diseases of the traditional remedies 

[4]. In addition, it also contributes to the discovery of the main bioactive compounds that help in 

the treatment of diseases and avoid side effects. However, due to financial and technical 
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difficulties, not all the isolated compounds were tested for their therapeutic activity, even if they 

were tested, it was not sufficient. 

Nowadays, with the robust development of information technology, complex chemical 

processes can be simulated with relatively high accuracy. With the advantage of saving time and 

money on the testing of large compound databases coupled with an increasing number of 

biological targets, a number of virtual screening methods and virtual biopharmaceutical assays 

have been developed by scientists using computerized software [5, 6].  

In this review, the concept of virtual screening along with its strategies applied in drug 

discovery will be presented. This is followed by a brief introduction about the database of small 

molecules and drug-likeness parameters in supporting the virtual screening procedures. 

2. OVERVIEW OF COMPUTER-AIDED DRUG DESIGN 

The application of information technology in chemistry - biology - medicine research has 

been developed since the late 1950s in the world. In the 1960s, simple computer programs were 

available to simulate the NMR spectrum [7]. Using Hansch model to analyze the structure – 

activity relationship, multiple computers were connected to solve complex regression equations 

[8]. However, the actual molecules were quite complex to solve the problems of spatial structure 

at that time. 

In the 1970s, with the improvement in processing speed and user-friendly interface, IT 

started to have a more significant contribution [8]. The main difficulty during this time was that 

there were no computer programs able to accurately describe molecules and their properties 

from theoretical results. This barrier was then solved by graphical programs powerful enough to 

represent HOMO, LUMO, MUP (molecular electrostatic potential), bipolar moment vectors off 

molecules [7, 8]. In the early 1990s, multi-core computers (clusters) have been developed with 

enough power to perform computations on chemical processes in a short time [9]. These results 

contributed to the increasing interest of scientists in the use of information technology in 

chemical research. 

In traditional research of natural products chemistry in the past, compounds were mainly 

isolated randomly through experiments and their biological activities were then identified using 

simple assays such as: antibiotic, anti-flammatory and cytotoxicity assays. Since recent decades, 

in developed countries, new drug generations are being discovered and developed through 

powerful genetic and biochemical screening tools [10]. These methods will allow the rapid and 

precise detection of compounds containing the desired activity in a wide variety of extracts. 

More importantly, these trials also provide preliminary information about the mechanism of 

action of the bioactive compounds in drug development, which is important for the orientation of 

further drug design in the later stage [5, 8]. 

To conduct these screening methods, it is necessary to determine the crystal structure of the 

targeted protein/enzyme (receptor) in which its function is responsible for the development of 

disease. In addition to accurate prediction and understanding of the mechanism of action of the 

drug, these methods also provide important knowledge for the development of new drugs when 

the disease has become drug-resistant [11, 12]. When the drug is used incorrectly or due to 

environmental conditions, chemical agents can lead to resistance due to a mutation in the 

structure of the DNA of the pathogenic protein. The traditional research pathway could not help 

to detect these changes, however, with the application of new computational technology in 

chemistry and biology, the problem can be solved by studying changes in the DNA structure, 
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changes in the interaction between receptors – bioactive molecule (ligand), thus, suggesting 

ideas for scientists to modify the structure of the currently used bioactive molecule to make the 

drug's effectiveness back. This study requires a close collaboration of researchers in three fields - 

biology, chemistry and medicine, in which: 

- Molecular biologists are pioneers in the research and discovery of the crystal structure of 

the proteins/enzymes that are responsible for the emerge and development of disease. 

- Chemists screen the big database of molecules based on their potential to inhibit these 

biological targets and then synthesize/semi-synthesize them. 

- Biological experiments, pre-clinical and clinical tests in the following stage are the 

combination of work between chemists, biologists, doctors, and pharmacists. 

In modern bioactive compounds screening models, a virtual in silico (virtual screening) 

method has emerged recently and immediately plays an important role in the drug discovery 

process. This method uses advances in computer science to virtual screening, describe and 

predict new structure of compounds that are expected to have biological activities [13, 14]. The 

main advantage of this method is that it minimizes the cost and time involved in drug discovery 

and development. It is often described as a multi-step sequential method through different 

screening criteria from which gradually narrows the selection of compounds with the potential to 

develop drugs with desired biological activities. The compounds studied do not have to be 

readily available, and their bioactivities are predicted virtually so it could save the expenses and 

material [13, 15]. Based on this principle, any compound can be assessed through virtual 

screening. Depending on the scale of the study, the compound database for virtual screening can 

reach tens of millions of compounds, and all of these compounds can be analyzed at a single 

screening. 

Table 1. Lists of some in silico screening projects in the world. 

Name of the 

project 
Protein 

Function of 

protein 
No. of ligands Ref. 

Malaria 

Plasmepsin PMII 
Decomposition of 

Hemoglobin 
1 million [30] 

Glutathione-S-Transferase-

GST 
Detoxify 4.3 millions [31] 

Dihydrofolate-Reductase-

DHFR 
DNA synthesis 4.3 millions [32] 

Avian flu Neuraminidase Create new virus 300 millions  [33] 

Diabetes Amylase/Glucoamylase 
Decomposition of 

carbohydrates 
300 millions  [34] 

COVID-19 
Main protease  1 billion [23] 

Spike protein  10 millions [35] 

Typically, each new drug on the market costs about 800 million euros and takes 10-15 

years for the research and development process [16 - 19]. Meanwhile, with modern networked 

computer systems (eg Grid computation) millions of structures can be virtually screened in a 

matter of weeks. For example, WISDOM (World-wide in Silico Docking On Malaria) is a 
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successful project using Grid in screening and developing anti-malarial drugs on networked 

machines around the world. During the three years of the project (2007 - 2010), hundreds of 

millions of compounds were screened and dozen of potential compounds have been tested in 

vitro followed by in vivo and are under clinical and preclinical testing [20 - 22]. Another typical 

example is the COVID-19 pandemic, since the first case appeared in December 2019 until now, 

there is no efficient drugs has been discovered and with the pressure to find effective drugs 

quickly, many research units around the world have been using virtual screening method to 

screen billion of compounds with the aims to repurposing drugs or find new therapeutic 

compounds for treatment (Table 1) [23 - 29].  

The in silico screening methods usually uses receptor-ligand interactions to find the 

compounds (ligand) whose structure is best predicted to bind with the receptor (targeted 

protein/enzyme) here with the lowest ΔG value (Figure 1) [36]. The structure of the receptor in a 

three-dimensional model (3D) is determined for each study case, the ligands are developed 

based on the structure of chemical compounds, especially the well-known skeleton and clearly 

sourced.  

   

 

   

Figure 1. Diagram illustrating the interaction between protein and ligand. 

 The research using virtual screening method was first recognized and published in 1997 

[37]. Since then, the application of this model has been increasingly popular and becomes a new 
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research trend in the pharmaceutical industry, along with that is the number of published studies 

related to this field is increasing dramatically (Table 2, Figure 2).  

Table 2. Statistics of virtual screening studies published in some prestigious international scientific 

journals in 2000 in comparison to 2021. 

Name of journal No. of publication in 

2000 

No. of publication in 

2021 

Journal of Chemical Information and 

Modeling 

438 2,332 

Journal of Medicinal Chemistry 316 5,467 

Bioorganic & Medicinal Chemistry 

Letters 

196 4,095 

Journal of Computer-Aided Molecular 

Design 

151 1,096 

Bioorganic & Medicinal Chemistry 145 3,875 

ChemMedChem 92 4,065 

European Journal of Medicinal 

Chemistry 

84 4,241 

Chemical Biology & Drug Design 77 1,067 

ACS Chemical Biology 13 648 

ChemBioChem 11 802 

Nature Chemical Biology 8 351 

Angewandte Chemie 2 1,032 

 

Figure 2. Total number of publications related to virtual screening since 1961 to 2020.  
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In Viet Nam, research directions in terms of chemistry and biological activity of natural 

compounds play an important role in finding sources of medicines, contributing to agricultural 

development and environmental protection as well as producing some functional foods. The 

research and application of information technology in the fields of chemical and other life 

sciences have been initiated and developed during recent decades. In chemistry, up to now, most 

of the research focuses on isolation, structure elucidation, design and synthesis of compounds, 

study of the relationship between structure of some series of compounds and their bioactivities. 
The use of information technology for in silico screening of new drugs recorded only few studies 

published. However, it is gradually becoming a new trend attracting the attention of many 

research groups in Viet Nam. 

3. VIRTUAL SCREENING STRATEGIES 

3.1. Structure-based virtual screening approach 

Table 3. Examples of commonly used virtual screening softwares. 

Software Free for academia Website 

AutoDock Yes http://autodock.scripps.edu/ 

Dock Yes http://dock.compbio.ucsf.edu/ 

FlexX No http://www.biosolveit.de/flexx/ 

Glide No http://www.schrodinger.com/ 

Gold No http://www.ccdc.cam.ac.uk/products/life_sciences/gold/ 

EADock No 
http://lausanne.isb-

sib.ch/agrosdid/projects/eadock/eadock_dss.php 

Surflex No http://www.tripos.com/index.php 

ICM No http://www.molsoft.com/docking.html 

LigandFit No http://accelrys.com/products/discovery-studio 

eHiTS No http://www.simbiosys.ca/ehits/index.html 

SLIDE Yes on demand 
http://www.bch.msu.edu/~kuhn/software/slide/index.ht

ml 

ROSETTA_DOC

K 
Yes on demand http://rosettadock.graylab.jhu.edu/ 

Virtual Docker No http://www.molegro.com/mvd-product.php 

Ligand_Receptor 

Docking 
No http://www.chemcomp.com/software-sbd.htm 

FRED Yes on demand http://www.eyesopen.com/oedocking 

ZDOCK Yes http://zlab.umassmed.edu/zdock/ 

For the structure-based virtual screening approach (SBVS), the input data included: X-ray 

crystal structure of the targeted protein/enzyme (receptor) and database of compounds (ligands). 

These compounds will be screened by docking them on the active sites of the receptor using 

different computation algorithms. In the field of molecular modeling, docking is a method which 

predicts the preferred orientation of one molecule to a second when bound to each other to form 
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a stable complex. Next, the docking score will be evaluated to rank the binding affinity between 

the ligand and the receptor. This is usually a multi-step process in which compounds are ranked 

and selected based on the interaction score and a number of other criteria [38]. Usually, only a 

handful of compounds with the highest scores are physically tested. Typically, only few 

compounds with the highest rank will be processed for further in vitro and in vivo experiments. 

In the early years of this virtual screening method, the algorithm software used for research 

was called UCSF Dock, since then a lot of other softwares have been developed, for example: 

Gold, Dock, Glide, FlexX, AutoDock (Table 3) [39 - 63]. 

One of the critical steps in the SBVS model is the scoring of ligands [59, 60]. Nowadays, 

although prediction of binding conformation between ligands and receptor could be done with 

different software, the scoring and ranking compounds are still challenging. Some of the 

difficulties come from the fact that in some cases, molecular interactions are difficult to 

parameterize. Scoring function is used for the following purpose: a) to evaluate the binding pose 

of a compound generated by different algorithms to choose the most energetically preferred 

pose; b) to rank the studied compounds from which determine the most potential candidate. The 

scoring methods have been continuously developed over the years [61, 62], they could be 

grouped into three main categories: force field-based, knowledge-based and empirical [63, 64]. 

Some scoring models use a combination of force field-based and empirical models.  

The force field scoring function [65, 66] assumes the free binding energy is the sum of 

molecular mechanical force fields potentials: Coulomb, Van der Waals, hydrogen bonds. 

Solvation [67, 68] and entropy [69] energies can also be considered. The empirical scoring 

function [52, 70] considers the free binding energy to be the sum of the bonds including: 

hydrogen bonds, hydrophobic bonds by fitting the calculated score with experimental binding 

affinity data for a training set of ligand-protein complexes [71]. The knowledge-based scoring 

function [72, 73] is based on statistical data analysis of atomic pair frequencies in ligand-protein 

complexes with known three-dimensional structures.  

Over the past two decades, considerable efforts have been made to refine the scoring 

functions to accurately predict binding free energies, thus, they can be used for ranking except in 

the case of quantitative biological activities. However, due to the complexity of the ligand-

protein binding process and the approximate calculations performed when calculating the 

desolvation and entropy processes, the docking score has yet to prove accurate in the binding 

affinity prediction [59, 74, 75]. Some methods that have been proposed to improve scoring 

include adding elements to calculate solvation and entropy effects [68] to give precise algorithm 

using high-level quantum calculations [76], target-specific scoring functions [77] and scoring 

simultaneously by combining multiple scoring models [78, 79]. On the other hand, it is more 

efficient way to use the docking score as the orientation to determine the suitability of the 

interaction in combination with other parameters such as tightness-of-fit by specific molecule 

that reflect the essence of the binding event. These parameters can be obtained by observing 

hydrogen bonds, which is very important parameter in docking, the spatial configuration of the 

π-π bond and/or the space occupancy of the hydrophobic region that pre-positions the ligand in 

the binding site. 

Another unexploited aspect of the SBVS model is the flexibility of the target receptor [80], 
which will consume more computer resources and be more complex to process. In recent years, 

one of the biggest challenges facing many docking algorithms has been the flexible processing 

of target receptors. "Soft docking" (included in all docking softwares) allows small overlaps 

between the ligand and the receptor without large steric penalties [81]. However, this can 

increase the failure of outcome results because it causes more diverse structures to be bonded. It 
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also does not allow change of large conformation compounds, such as side-chain rotations or 

protein backbone motions. Some softwares such as AUTODOCK4 [46], DOCK [41], GOLD 

[48], EADock [49], IFREDA [51], FlexE [82] or GLIDE induced Fit [83] (Table 4) allow 

simulation around torsional degrees of freedom of the selected side chain using similar methods 

to explore the spatial conformation of flexible ligands. 

Table 4. Docking programs that allow flexibility of protein. 

Name of 

program 
Ligand flexibility 

Protein 

flexibility 
Scoring function Ref. 

Autodock 
Evolutionary 

algorithm 

Flexible side 

chain 
Force field [46] 

Dock Incremental build 
Protein side chain 

and flexibility 

Force field or 

contact score 
[41] 

Gold 
Evolutionary 

algorithm 

Protein side chain 

and backbone 

flexibility 

Empirical score [48] 

EADock 
Evolutionary 

algorithm 

Flexible side 

chain and 

backbone 

Force field [49] 

ICM, IFREDA 

Pseudo-Brownian 

sampling and 

local minimization 

Flexible side 

chains 

Force field and 

Empirical score 
[51] 

FlexE Incremental build 
Ensemble of 

protein structure 
Empirical score [82] 

Glide Induced Fit Exhaustive search 
Flexible side 

chains 
Empirical score [83] 

Currently, many other theoretical methods are being developed continuously and their 

applications also have great potential for virtual screening in the future. One of these theories is 

the Relaxed Complex Scheme (RCS). RCS uses a set of low energy structures extracted from the 

molecular dynamic (MD) simulation for searching in databases via molecular docking [84, 85]. 

It combines the advantages of the docking algorithm with the structural dynamic information 

obtained by MD simulation, detailed computation of the dynamic structure of both receptors and 

docked compounds. Longer-time of MD simulations could increase the possibility of studying 

the receptor's spatial configuration before docking. This model has been developed in 

combination with various MD software packages including: AMBER [86], NAMD [87], 

GROMACS [88] and AUTODOCK for ligand docking [46]. 

3.2. Ligand-based virtual screening approach 

For ligand-based virtual screening approach (LBVS), the already known bioactive data are 

available in order to identify biologically active or inactive compounds and then search for more 

potential compounds based on structural similarity, pharmacology and other criteria. 
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One of the most popular models of LBVS studies is the quantitative structure–activity 

relationship (QSAR). The objective of QSAR is to determine the correlation between the 

structural/physical properties of known bioactive compound and their biological activity [89, 

90]. Information on compound activity levels such as binding affinity (KD) or inhibitory 

concentration (IC50) is essential for QSAR. Here the structure of a compound is often described 

by a set of structural and physical information that is considered relevant to their binding ability. 

The quality of the QSAR model is influenced by the compatibility of each case, structured – 

biological activity input data, compound description, the effect of the peripheral data, the 

suitability of the developed correlations, the 3D configuration, and the selection of solution 

directions [91].  

Machine learning is increasingly being used more commonly in the algorithm for the 

research direction of LBVS in order to quickly and accurately establish and find the structure–

activity correlation. Various technologies have been developed, each of them has its own 

advantages and disadvantages. Among these methods, regression models and classifications 

such as: Multiple Linear Regression, Nearest Neighbors, Naïve Bayesian Classification, Support 

Vector Machines, Neural Networks and Decision Trees have been applied successfully. These 

algorithms rely on certain different properties between active and inactive compounds to filter 

out potential candidate [92]. 

The efficiency of machine learning technology depends on many factors such as: diversity 

of data, ability to handle imbalances in data files (the number of inactive compounds is often 

superior to bioactive compounds) and parameters of the bioactivity of the compounds. 

4. DATABASE OF SMALL MOLECULES 

One of the prerequisites in traditional drug development is the identification of a specific 

biological target, for example, a compound that has been studied and demonstrated that its 

ability to interact with that target leads to the possibility to cure or improve symptoms. This first 

step involves the identification of potential biological targets and then validate them. Potential 

biological targeting requires research in the "Biological Space" (Figure 3) through human 

genetic sequencing, depending on high-speed sequencing technology and computer algorithms 

to process large amounts of output. Once a biological target has been found and validated, the 

next step is to identify an entity that can selectively interact with that target in a way that can 

induce a healing effect. According to the concept of the field of drug research, this entity is a 

small molecule chemical compound. Finding a compound that selectively binds to the active site 

of the receptor is not an easy task. To increase the chance of success, it is necessary to search in 

the "Chemical Space". In theory, the total number of compounds in the Chemical Zone can be 

estimated up to 10 million compounds [93 - 95]. This is a very large number and is beyond the 

capabilities of scientists currently. 

Although there have been many attempts to establish such super-large databases, obtaining 

sufficient compounds for the "Chemical Zones" are not possible at present. In addition, only few 

pharmaceutical corporations are known to possess database of more than 2 million compounds. 

However, only a small amount of compounds in those databases are stable, water-soluble, have 

functional groups suitable for binding to biological targets such as proteins or nucleic acids and 

have sufficient structural complexity [96] to be classified in the "Medicinal Chemistry Space" 

region. It is argued that the compounds in the "Chemical Zone" resulting from traditional 

screening collection are insufficient to solve unvalidated biological targets, thus, further 

extensive research is needed outside of this "Chemical Zone". A feasible source for research 
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could be constructed from natural compound derivatives which are obtained from bacteria, 

plants, animals, and marine organisms through emerging technologies. These compounds form 

the natural product-like combinatorial libraries [3, 97]. 

  
Figure 3. Model of bioactive compound search in pharmacological research. 

The drug-like compound concept was devised to define the properties required for a 

compound to be developed successfully to drug. Over time, more stringent regulations along 

with procedures with drug-oriented properties have been applied to compounds during database 

screening. Table 5 shows some criteria defined by Hann and Oprea [98]. 

Table 5. Properties used for drug-like criteria by Hann and Oprea [98]. 

Properties Drug-likeness 

Molecular Weight (MW) 200-460 

Lipophilicity (ClogP) -4/4.2 

H-bond donor (sum of NH and OH) ≤ 5 

H-bond acceptor (sum of N and O) ≤ 9 

Polar surface area (PSA) ≤ 170 Å
2
 

Number of rotatable bonds  ≤ 10 

CACO-2 membrane permeability ≥ 100 

Solubility in water (logS) -5/0.5 

Others No toxic and reactive fragments 

There are many in silico tools available today that can be used to build compound databases 

with drug-like properties. These are the features based on empirical principles. A typical 

example is the Lipinski’s Rule of Five [99] which states that a compound is considered non-

drug-like if there are more than 5 given hydrogen bonds, more than 10 received hydrogen bonds, 

a molecular mass greater than 500 and the hydrophilic index was greater than 5. This principle 

was recently revised using the pharmacokinetic data in rats [100]. Many of the relevant rules 

have also been changed and the new "Rule of Three" [101] proposition defines fragments 
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properties with an average molecular mass ≤ 300 Da, Clog P value ≤, quantity hydrogen bonding 

for ≤ 3, the number of hydrogen bonds received ≤ 3. Recently, the Pfizer rule “Rule of 3/75” has 

described that compounds with Clog P ≤ 3 and surface polarization area (TPSA ) > 75 are highly 

resistant to in vivo tests [102]. Table 6 provides information on database of compounds 

containing drug-like properties that comply with the "Rule of Three" and "Rule of Five" rules. 

Table 6. Example of databases containing compounds with drug-like properties that comply with the    

rules of "Rule of Three" and "Rule of Five". 

Database of compound Rule Website 

Vitas-M Allium Library 3 http://www.vitasmlab.com/ 

TimTec Fragment-Based Library 3 and 5 http://www.timtec.net/ 

ChemBridge Fragment Library 3 http://www.chembridge.com/ 

Lifechemicals General Fragments 

Library 
3 http://www.lifechemicals.com/ 

ASINEX's BioFragments 3 http://www.asinex.com/ 

Enamine Fragment Library 3 http://www.enamine.net/ 

Keyorganics BIONET Fragment 

Library 
3 http://www.keyorganics.co.uk/ 

Maybridge Ro3 Library 3 http://www.maybridge.com/ 

Maybridge Screening Collection 5 http://www.maybridge.com/ 

OTAVA Fragment Library 3 http://www.otavachemicals.com/ 

Prestwick Fragment Library 3 http://www.prestwickchemical.com/ 

ChemDiv Fragment-Based Library 3 http://us.chemdiv.com/ 

Along with the screening method using traditional physical and chemical parameters, today 

there are many additional options available. For example, when preparing the database for a 

virtual screening process, it is necessary to remove compounds that contain undesired active 

groups or substituents that could interfere with and produce erroneous results [103 - 108]. 

Compounds are less potent if they contain factors such as hydantoin, nitro, alkyl, aniline and 

carbazide, which are involved in toxic metabolites. Besides, groups such as aldehydes and 

epoxide can be considered unsuitable for electrophoresis, the thiol group is considered to be 

oxidizing agents. 

The screening process may be affected by high energy levels or unrealistic configurations 

of the compound. Some configuration building methods do not provide the lowest energy level 

for shaping and ranking spatial configurations, which in turn leads to configurations with high 

energy levels. If these configurations are not removed, it will lead to erroneous results in 

docking. 

Compound databases are often distributed free of charge by commercial companies or 

research institutes. These include drugs, carbohydrates, synthetic compounds, natural 

compounds, etc. (Table 7) [109 - 116]. ZINC [109] is a free online database with the capacity of 

up to 13 million compounds in the current version with information on biological activity 
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(molecular weight, ClogP and number of rotational bonds). Other database files such as drug-

like compounds, potency and fragments have also been introduced. 

Table 7.  Example of compound databases distributed by commercial companies and research                

institutes worldwide. 

Database Type 
No. of 

compounds 
Website 

ZINC Free 13 million http://zinc.docking.org 

ChemDB Free 5 million http://cdb.ics.uci.edu 

eMolecules Commercial 7 million http://www.emolecules.com 

ChemSpider Free 26 million http://www.chemspider.com 

PubChem Free 30 million http://pubchem.ncbi.nlm.nih.gov 

ChemBank Free 1.2 million http://chembank.broadinstitute.org 

DrugBank Free 

4,800 drugs; 

2,500 biological 

targets 

http://www.drugbank.ca 

NCI Open 

Database 
Free 265,000 http://cactus.nci.nih.gov/ncidb2.2/ 

Chimiothequè 

Nationale 
Commercial 48,370 

http://chimiotheque-

nationale.enscm.fr/?lang=fr 

 

Drug Discovery 

Center 

Collection 

Commercial 340,000 http://www.drugdiscovery.uc.edu/ 

ChEMBL Free 1 million 
http://www.ebi.ac.uk/chembldb/index.p

hp 

WOMBAT Commercial 263,000 http://www.sunsetmolecular.com 

ChemBridge Commercial 700,000 http://www.chembridge.com 

Specs Commercial 240,000 http://www.specs.net 

CoCoCo Free 7 million http://cococo.unimore.it/tiki-index.php 

Asinex Commercial 550,000 http://www.asinex.com 

Enamine Commercial 1.7 million http://www.enammine.net 

Maybridge Commercial 56,000 http://www.maybridge.com 

ChemDiv Commercial 1.5 million http://www.chemdiv.com 

ACD Commercial 3.9 million 
http://accelrys.com/products/databases/s

ourcing/avaible-chemicalsdirectory.html 

MDDR Commercial 150,000 
http://accelerys.com/products/databases/

bioactivity/mddr.html 
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Table 8 presents some of the commercial databases provided by other distributors [92]. 

Table 8. Database of small molecules provided by commercial distributors [92]. 

Company Database Website 

Asinex Antibacterials http://www.asinex.com 

SPECS Kinase-targeted Library http://www.specs.net/ 

Timtec 

GPCR Ligands 

http://www.timtec.net 

Kinase Modulators 

Protease Inhibitors 

Potassium Channels 

Modulators 

Nuclear Receptors 

Ligands 

ChemBridge 

Kinase-Biased Sets 

http://www.chembridge.com GPCR Library 

Channel-Biased Sets 

   

ChemDiv 
GPCRs 

http://www.chemdiv.com/main.phtml 
Kinases 

InterBioScreen 

Analgesics 

http://www.ibscreen.com 

Antibacterials 

Antidiabetics 

Cancerostatics 

regulators 

MayBridge  http://www.maybridge.com 

Key Organics 

Bionet 

http://www.keyorganics.ltd.uk 

Antimalarial Agents 

Active Compounds for 

Cancer Research 

Active Compounds for 

CNS Research 

Life Chemicals 

GPCR Library 

http://lifechemicals.emolecules.com/ Kinase Library 

Anticancer Library 
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5. INTRODUCTION TO DRUG-LIKENESS PARAMETERS IN DRUG DISCOVERY 

5.1. Lipinski’s Rule of Five 

Lipinski's Rule of Five helps distinguish between molecules that have a drug-like potential 

and those do not have potential as an oral drug [99, 100]. It predicts the drug-likeness of 

compounds based on whether or not they meet the following rules: a) molecular weight below 

500 Dalton; b) High lipophilicity (expressed as LogP less than 5); c) Less than 5 hydrogen bond 

donors; d) Less than 10 hydrogen bond acceptors; e) Molar refractivity should be between 40-

130. In which: 

LogP value (partition coefficient between octanol and water) represents the ratio at 

equilibrium of the concentration of a compound between two phases, an oil and a liquid phase. 

The LogP value plays an important role in assessing the absorption, transport, distribution of 

substances and drug interactions with receptors [117]. This is one of the basic parameters that 

can be used to evaluate whether or not a compound has the potential to develop into drug. Molar 

refractivity is a measure of the total polarizability of a mole of a molecule [118].  

In general, compounds that violate two or more criteria are predicted to be less likely to be 

developed as oral medications. Based on literature studies, several suggestions should be noted 

for drug development orientation such as: The higher the LogP value suggests that the more 

easily the compound disperses across the cell membrane and dissolves well in the lipid medium; 

Drug used orally, absorbed in the intestine should have a value of 1.35 ≤ LogP ≤ 1.8; Drugs 

targeting the central nervous system should have a value of LogP ~ 2; Most metal complexes 

with good permeability have LogP ≤ 6, the number of groups receiving hydrogen bonds 10 and 

the number of groups giving hydrogen bonds 5; Drugs used sublingually should have LogP ≥ 5 

[98 - 100, 119, 120]. 

5.2. Introduction to ADME 

Depending on the nature of the drug and the treatment goals, people may deliver drugs into 

the body in different ways. Either way, drugs eventually enter the bloodstream at varying 

degrees to where it takes effect. ADME (Absorption, Distribution, Metabolism, Excretion) 

meaning absorption, dispersion, metabolism, and excretion are drug interactions with the body 

through the influence of molecular biology 
121-123

. Determining these parameters is complicated 

because the body is a system equipped with a myriad of mechanisms to remove foreign entity 

that enters inside it during metabolism or excretion. The body uses a set of enzymes with 

metabolic functions (the most important in the cells are the family of hemoprotein cytochromes 

P450 which present in the liver), transporters, excretion, the cavity will absorb and then 
metabolize drugs, etc. 

5.2.1. Absorption 

Absorption is the entry of the drug into the general circulation of the body. In order to 

choose the appropriate way to introduce drugs into the body, it is necessary to base on the 

treatment purpose, properties of the drug, dosage form, and pathological state of the patient ... 

The route of drug delivery into the body greatly affects the absorption and effects of the drug. 

There are many ways to bring drugs into the body such as gastrointestinal tract, injection route, 

respiratory tract and skin [124]. 
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The biological barrier is the body's self-defense mechanism from the penetration of toxins 

as well as exogenous substances. Drugs are identified as exogenous substances, thus, biological 

barriers significantly prevent the penetration of the drug to the desired destination. Many drugs 

are effective in laboratory studies (in vitro) but have failed in animal or human trials, mostly due 

to the inability to penetrate the biological barrier of the body to reach the target [125]. From the 

perspective of the organs in the body, their biological barrier is the outermost layer of epithelial 

cells of the organs and the endothelial barrier (the compartment between the capillaries and 

endothelial cells). From a cellular perspective, the biological barrier of a cell is the cell 

membrane separating the intracellular and extracellular environment (the cell membrane) [125, 

126]. 

Cell membranes (biofilms) are composed of plaques, consisting of lipid layers with two 

molecular rows, considered as soft structure, which is a dense liquid. In the lipid layer, there are 

membrane-transported albumin and lipoprotein particles, the two sides of the membrane together 

containing polar groups. The membrane is characterized by a rapid change in structure, albumin 

molecules are floating in the membrane, the spatial structure is also so altered that the membrane 

can form channels for small molecules, water-soluble substances, and ions to pass through to 

enter the cell. The membrane's barrier function is also capable of creating frameworks for 

receptor molecules or enzymes to attach to on its face or inside. 

5.2.2. Distribution 

Once absorbed, the drug enters the bloodstream to be transported to its target of action. In 

the blood, drugs can exist in two forms: free form and protein-associated form of plasma. Some 

drugs may be partially decomposed in the bloodstream [121, 126]. 

5.2.3. Metabolism 

Metabolism is the process of transforming drugs in the body under the effect of enzymes. 

Through metabolism, the majority of drugs are often reduced, lost effect or toxicity [127]. Some 

drugs still retain the same pharmacological effect, some drugs only work after being 

metabolized. Therefore, metabolism is the body's detoxification process for drugs. 

 

Figure 4. Stage of drug metabolism by enzyme CYP in the liver [128]. 

The liver is the most important organ in drug metabolism. In addition, drug metabolism can 

also occur in other organizations such as kidneys, intestines, lungs, blood... Oral medications 

must undergo initial metabolism in the liver before entering the circulatory system of 
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distribution in the body. This initial process of metabolism is often so strong that the drug loses 

its effectiveness and sometimes it is necessary to turn it into an intravenous drug to ensure its 

activity. 

Most of the drug metabolism reactions in the body, especially in the liver involve the 

participation of many different enzymes. Among them, cytochrome P450 (CYP) is an enzyme 

that plays a major role in drug metabolism [129]. Cytochrome P450 performs drug metabolism 

in 3 ways: oxidation, hydrolysis, hydroxylation (step 1), then the enzyme 

glucuronosyltransferase (UDP-GT) will attach glucuronic acid to the drug (step 2). Glucuronic 

acid group contains more OH and COOH so it is easily filtered and eliminated by the kidneys 

(Figure 4). 

For example, aspirin, after being hydrolyzed by CYP in the liver, is converted to Salicylic 

acid and subsequently, a glucuronic acid group is added to the UDP-GT to go to the next process 

(Figure 5). The result of this metabolism by CYP leads to a new salicylic acid being practically 

the active compounds, so aspirin is also known as a pro-drug (precursor). 

 

Figure 5. Metabolism of aspirin by CYP in the liver [128]. 

A precursor is a drug or compound that, after administration, is converted (in the body) into 

a drug with pharmacological activity. Inactivated precursors are pharmacologically inactive 

drugs that are converted into an active form in the body. Instead of using the drug directly, a 

corresponding precursor can be used to improve the way the drug is absorbed, distributed, 

metabolized, and excreted (ADME). The precursor is often designed to improve bioavailability 

when the drug itself is poorly absorbed from the gastrointestinal tract. A precursor that can be 

used to improve how a drug selectively interacts with cells or processes which are not its 

intended targets. This helps reduce drug side effects or unwanted effects, especially important in 

treatments such as chemotherapy, that can cause serious and unwanted side effects. 
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5.2.4. Excretion 

Drug elimination is the process that leads to a decrease in drug concentration in the body. 

Drugs are excreted from the body mainly through the kidneys. In addition, they can also be 

eliminated through other routes such as gastrointestinal tract, respiratory tract, skin, sweat, breast 

milk or tears [130]. 

Some drugs can be eliminated at the same time in different ways, but normally each drug 

has its main elimination pathway depending on the nature and its chemical structure, on dosage 

form and administration route, etc. 

6. CONCLUDING REMARKS 

In this review, we have briefly introduced the concept of computer-aided drug design which 

is a new research trend worldwide in recent years. The virtual screening method has provided 

itself as an effective and important method for drug discovery process through two main 

strategies including SBVS and LBVS approaches. In addition, an overview of current databases 

of small molecules and information on drug-likeness parameters also presented. In conclusion, 

we suggest that VS methods play a pivotal role in drug discovery research and there are obvious 

opportunities to utilize this computational screening technology in the future.  
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