
 
 
Vietnam Journal of Science and Technology 59 (6) (2021) 772-785 

doi:10.15625/2525-2518/59/6/15953 

 

FREE VIBRATION ANALYSIS OF CRACKED KIRCHHOFF-LOVE 

PLATE USING THE EXTENDED RADIAL POINT 

INTERPOLATION METHOD  

Vay Siu Lo
*
, Nha Thanh Nguyen, Minh Ngoc Nguyen, Thien Tich Truong

*
 

Department of Engineering Mechanics, Faculty of Applied Science, Ho Chi Minh City 

University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10,                                           

Ho Chi Minh City, Viet Nam 

Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District,                            

Ho Chi Minh City, Viet Nam 

*
Emails: losiuvay@hcmut.edu.vn, tttruong@hcmut.edu.vn 

Received: 22 March 2021; Accepted for publication: 20 October 2021 

Abstract. For plate bending problems, using a plate theory to model thin plate structures is less 

computationally expensive than 3D modelling. The Kirchhoff-Love plate theory is appropriate 

for analysing thin plate structures. If the membrane deformation is ignored in the Kirchhoff-

Love plate, each node has only one degree of freedom – the deflection. For that reason, the 

components of the displacement field are calculated only in terms of deflection. This directly 

reduces the computational cost. However, the Kirchhoff-Love plate requires C
1
 continuity and 

thus leading to complicated mathematical computation in the conventional Finite Element 

Method (FEM). For this reason, the alternative meshfree method - the Radial Point Interpolation 

Method (RPIM) is employed in this study. The shape function of the RPIM is formulated from 

the radial basis and the polynomial basis, so the requirement to calculate the second-order 

derivative in Kirchhoff-Love theory is easily done. Hence, using the RPIM to model Kirchhoff-

Love plate is much easier than FEM. Besides, the analysis of cracked structures is important 

because it is related to the lifetime of the structures. Therefore, this paper uses the extended 

radial point interpolation method (XRPIM) to investigate the free vibration of the cracked 

Kirchhoff-Love plate. The numerical results from this study are compared with those of other 

researchers to verify the accuracy of the method. 

Keywords: fracture, free vibration, Kirchhoff-Love plate, RPIM, XRPIM. 
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1. INTRODUCTION 

Thin plate structures are common in practice, so analysis of thin plate is necessary. 

Furthermore, less number of degree of freedoms (DOFs) is needed in a plate formulation 

compared to a 3D solid model. Hence, the computational cost is reduced. Besides, fracture 

analysis is also an important task because it is related to the lifetime of the structures. However, 

the number of researches on cracked plate is still limited, especially, thin plate using Kirchhoff-
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Love theory. Therefore, more investigations on the modelling of cracked thin plates are 

necessary.  

In fracture analysis, a powerful method to model crack discontinuity without remeshing is 

the eXtened Finite Element Method (XFEM), which was previously proposed [1] and has been 

widely used. In the XFEM formulation, the discontinuity (jump) in displacement fields and the 

singularity in stress fields are described using the enrichment functions. The XFEM has been 

developed for solving thick plates using Reissner-Mindlin theory [2,3,4] and thin plates using 

Kirchhoff-Love theory [5]. However, in the analysis of Kirchhoff-Love plate, it is necessary to 

construct a higher-order shape function for the requirement of the second-order derivatives in the  

Kirchhoff-Love theory [6]. Therefore, it brings computational difficulties. 

The Radial Point Interpolation Method (RPIM) [7, 8] is easier to apply the Kirchhoff-Love 

theory than FEM. In the same manner of formulating XFEM, Nguyen et al. introduced XPRIM 

by combining RPIM and enrichment functions [9, 10, 11], they used this method for 2D fracture 

analysis. Nevertheless, to the best of our knowledge, fracture analysis in the Kirchhoff-Love 

plate using XRPIM has not yet been reported. In the scope of this study, only the free vibration 

behavior of cracked plate is investigated. This paper analyzes the free vibration behavior of thin 

plates with through-thickness crack. The method used for computing is the XRPIM and using 

Kirchhoff-Love plate theory for modeling thin plate behavior. The validity of the proposed 

method is examined through various numerical examples, demonstrating the accuracy of the 

approach. 

2. METHODOLOGY 

2.1. Kirchhoff-Love plate theory 

Kirchhoff-Love plate theory is used for thin plate problems. The main assumption in this 

theory is that the cross-section of the plate before and after deformation remains perpendicular to 

the plate mid surface. Therefore, the shear strain components  13 23,   are zeros [12]. In this 

study, only one DOF is used, the deflection of the mid surface w . The displacement field of the 

plate is defined as follows  
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1 2
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From Equation (1) the pseudo-strain is obtained as  
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The relationship between pseudo-strain and pseudo-stress is 

 1 2 12

T

p p M M M  D  (3) 

for isotropic homogeneous material, D  is defined as  
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where  E is Young’s modulus, t is the thickness of the plate and   is Poisson ratio. 

In discrete form, the deflection of an arbitrary point  1 2,x xx  on the mid surface is 

approximated as  

   
n

h

I I

I

w w x x  (5) 

where 
I  is RPIM shape functions. 

According to the formulation of free vibration in [13], the dynamic equation (without 

damping) is 

0 Mw Kw  (6) 

The stiffness matrix is computed as 

T

A

dA K B DB  (7) 

where B  is the column vector containing second order partial derivatives of the shape functions, 

at I-th node 
IB  is a vector including three components 

 ,11 ,22 ,122
T

I I I I    B  (8) 

The mass matrix is computed as 

T

A

dA M N mN  (9) 

where N  is the column vector containing three components as below 
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and m  is the inertia matrix 
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  is the density. 

Equation (6) is now rewritten in the eigenvalue equation form [14] to obtain the solution for 

the eigenvalue ( ) and eigenvector ( w ). 
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 2 0 K M w  (12) 

2.2. XRPIM 

First, a brief explanation of RPIM is presented. The RPIM function 
I  in this study 

includes radial basis functions and polynomial basis functions. To avoid the influence of shape 

parameters, quartic function is used as the radial basis function [15], quartic function is defined 

as follows 

 
2 3 4
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s s s
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l l l
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     
 (13) 

where   is the shape parameter, 
sl  is the length scale parameter and r is the distance between 

point x and 
Ix  and defined as 

   
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 (14) 

The RPIM shape function is defined by 
I I A I BR S p S    , where 

Ip  denotes the 

polynomial function, 
AS  and 

BS  are the constant matrices. Details on calculation of RPIM 

shape functions are referred to [8]. The requirement of second-order derivatives in Kirchhoff-

Love plate theory is therefore easy to obtain, particularly 
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 (15) 

Meanwhile, the conventional Finite Element Method (FEM) needs to construct higher-

order functions [16] to satisfy the requirement for second-order derivatives of the shape 

functions. 

The extended RPIM is based on RPIM with some additional treatments for discontinuity 

problems. By including enrichment functions, the deflection is now computed as 
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where H is the Heaviside function of point x and jH  is the Heaviside function of node j-th, the 

Heaviside function is defined as 
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 f x  is the sign distance function. 

The tip enrichment function is defined as follows [12] 
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Equation (16) contains three sets of node. The first one W is the set containing all node in 

the computational domain. The second one 
sW  is the set containing the nodes in the support 

domain split by the crack. And 
tW  is the set containing the nodes in the support domain that 

contains the crack tip. 

The B matrix after applying enrichment function to the Kirchhoff-Love theory is defined as 
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And N matrix after applying enrichment functions is defined as below 
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3. RESULTS AND DISCUSSION 

3.1. Simply supported plate with a central crack 

 

Figure 1. Geometries of a square plate and a rectangular plate containing a central crack. 

In this example, two cases of central cracked plate are investigated: a square plate and a 

rectangular plate. The geometries of two cases are shown in Figure 1. The material properties in 

this example is Poisson’s ratio 0.3  . The non-dimensional frequency parameters are 

computed as 
2a t D    and used for comparisons, where  3 212 1D Et   . In the first 

case, the ratio of thickness to length 0.001t a   is used. The plate is discretized into a set of 

50 50  nodes. The boundary condition is simply supported in four sides of the square plate 

(SSSS). Various c a  ratios are considered in this case. Table 1 presents the first five non-

dimensional frequencies obtained by other researchers and obtained in this study. The results 

from XRPIM are in good agreement with other methods. Figure 2 shows the mode shape of five 
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vibration modes corresponding to the value in Table 1. It is observed that the mode shape of the 

intact plate is quite similar to the mode shape of the crack plate, except for mode 5. Besides, the 

crack is not clearly observed in this problem. 

Similar to the previous case, a ratio of 0.001t a   is used to analyze rectangular plate. In 

this case, the plate is discretized into a set of 80 40  nodes (80 for the long side). The boundary 

condition is SSSS. Various c a  ratios are considered. Table 2 shows the first five non-

dimensional frequencies obtained by different methods. The results obtained in this study show 

good agreement compared with other researchers. The mode shapes of corresponding vibration 

modes are illustrated in Figure 3. In this case, the crack is clearly observed in mode 4 and mode 5. 

Based on the non-dimensional frequencies in Table 1 and Table 2, one can see that the free 

vibration frequency decreases when the crack length increases. It means that the plate structure 

is weaken when the crack length increases, as expected. 

Table 1. Non-dimensional frequency   of a simply supported square plate with a central crack. 

c/a Ref. Results Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

0.0 

Analytical [17] 19.739 49.348 49.348 78.957 98.696 

DDM [18] 19.740 49.350 49.350 78.960 98.700 

XFEM [19] 19.739 49.348 49.348 78.955 98.698 

This study 19.741 49.310 49.310 79.015 98.374 

0.2 

Analytical [17] 19.305 49.170 49.328 78.957 93.959 

DDM [18] 19.380 49.160 49.310 78.810 94.690 

XFEM [19] 19.305 49.181 49.324 78.945 93.893 

This study 19.407 49.261 49.322 79.004 94.906 

0.4 

Analytical [17] 18.279 46.624 49.032 78.602 85.510 

DDM [18] 18.440 46.440 49.040 78.390 86.710 

XFEM [19] 18.278 46.635 49.032 78.600 85.450 

This study 18.461 47.332 49.040 78.777 86.747 

0.5 

Analytical [17] 17.706 43.031 48.697 77.733 82.155 

DDM [18] 17.850 42.820 48.720 77.440 83.010 

XFEM [19] 17.707 43.042 48.685 77.710 82.108 

This study 17.898 44.789 48.731 78.243 83.192 

0.6 

Analytical [17] 17.193 37.978 48.223 75.581 79.588 

DDM [18] 17.330 37.750 48.260 75.230 80.320 

XFEM [19] 17.180 37.987 48.214 75.579 79.556 

This study 17.349 39.396 48.288 76.346 80.357 

0.8 

Analytical [17] 16.403 27.773 47.256 65.732 76.371 

DDM [18] 16.470 27.430 47.270 65.190 76.600 

XFEM [19] 16.406 27.753 47.201 65.715 76.351 

This study 16.506 28.823 47.285 67.195 76.761 
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Figure 2. Mode shapes of five lowest modes of a square plate containing a central crack. 

Table 2. Non-dimensional frequency   of a simply supported rectangular plate with a central crack. 

c/a Ref. Results Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

0.2 

XCS-DSG3 [20] 45.241 78.721 125.899 162.895 197.403 

XFEM [19] 45.724 78.790 125.679 163.533 197.274 

This study 46.330 78.884 126.244 164.935 197.240 

0.4 

XCS-DSG3 [20] 38.215 76.525 124.472 110.668 190.693 

XFEM [19] 38.576 76.793 124.099 109.488 191.101 

This study 39.328 77.155 124.316 116.282 192.972 

0.5 

XCS-DSG3 [20] 34.781 74.091 124.281 82.471 172.227 

XFEM [19] 35.257 74.575 124.036 82.667 173.490 

This study 35.783 74.987 124.161 86.239 177.492 

0.6 

XCS-DSG3 [20] 32.305 71.656 123.531 65.932 147.312 

XFEM [19] 32.476 71.809 123.350 64.707 145.595 

This study 32.898 72.280 123.598 66.978 150.069 

0.8 

XCS-DSG3 [20] 28.670 66.574 119.701 44.74 102.067 

XFEM [19] 28.750 66.629 119.424 43.858 100.114 

This study 29.050 67.055 119.759 44.997 102.790 

 

Figure 3. Mode shapes of five lowest modes of a rectangular plate containing a central crack. 
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3.2. Simply supported plate containing a side crack 

The geometry of the two cases in this example is shown in Figure 4. The material 

properties in this example is Poisson’s ratio 0.3  . The non-dimensional frequency parameter 

  is also used for comparison with other studies. In the case of square plate, the ratio of 

thickness to length 0.001t a   is used. The plate is discretized into a set of 50 50  nodes. The 

boundary condition is SSSS. Various c a  ratios are considered. Table 3 presents the first five 

non-dimensional frequencies, the results from XRPIM agree well with other methods. Figure 5 

shows the mode shape of five vibration modes. Mode 1 is similar to the square plate with a 

central crack, while other modes are different. In this example, the crack is clearly observed. 

In the second case, a ratio of 0.001t a   is used, the plate is discretized into 80 40  nodes 

and the boundary condition is SSSS. Various c a  ratios are considered. Table 4 shows the first 

five non-dimensional frequencies, the results in this study show good agreement compared with 

other researchers. The mode shapes of corresponding vibration modes are illustrated in Figure 6. 

 

Figure 4. Geometry of square plate and rectangular plate with a side crack. 

Table 3. Non-dimensional frequency parameter   of a simply supported square plate with a side crack. 

c/a Ref. Results Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

0.2 

XCS-DSG3 [20] 19.679 49.229 49.353 78.851 98.133 

Ritz method [21] 19.700 49.190 49.330 78.780 97.880 

This study 19.718 49.217 49.357 79.103 97.894 

0.4 

XCS-DSG3 [20] 19.175 47.774 48.305 71.571 92.451 

Ritz method [21] 19.200 47.800 48.240 71.270 92.230 

This study 19.259 48.228 48.298 72.955 92.749 

0.5 

XFEM [19] 18.646 44.213 47.916 65.789 88.063 

Ritz method [21] 18.650 43.420 47.920 64.400 88.080 

This study 18.706 44.594 47.942 65.452 88.895 

0.6 

XFEM [19] 17.956 37.693 47.862 63.282 83.753 

Ritz method [21] 17.960 36.450 47.860 62.240 83.780 

This study 18.050 37.628 47.849 62.401 84.397 

0.8 

XCS-DSG3 [20] 16.616 25.245 47.464 60.705 77.469 

XFEM [19] 16.662 26.226 47.446 61.774 77.378 

This study 16.732 25.706 47.433 61.039 77.752 
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Figure 5. Mode shapes of five lowest modes of a square plate with a side crack. 

Similar to the first example, it is observed that the free vibration frequency decreases when 

the crack length increases. It means that the plate structure is weaken when the crack length 

increases, as expected. 

Table 4. Non-dimensional frequency   of a simply supported rectangular plate with a side crack. 

c/a Ref. Results Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

0.2 

Analytical [17] 48.953 77.871 126.578 167.092 194.036 

DDM [18] 48.050 78.080 126.900 167.200 194.700 

This study 49.032 78.060 126.912 167.168 195.234 

0.4 

Analytical [17] 44.512 73.282 124.456 100.078 173.754 

DDM [18] 45.400 73.820 124.500 104.700 173.700 

This study 44.823 73.464 124.609 103.214 173.624 

0.5 

Analytical [17] 40.367 72.788 123.419 73.627 168.573 

Ritz method [21] 40.350 72.780 123.400 73.630 168.900 

This study 40.761 72.831 123.720 76.132 170.320 

0.6 

XCS-DSG3 [20] 35.773 72.456 121.531 57.714 142.139 

DDM [18] 37.440 72.620 121.000 59.310 145.800 

This study  36.554 72.646 121.650 58.921 145.120 

0.8 

DDM [18] 30.500 68.820 120.300 40.020 95.790 

XFEM [19] 29.874 68.173 120.157 41.078 96.537 

This study 30.110 68.499 120.397 40.126 96.166 

 

Figure 6. Mode shapes of five lowest modes of a rectangular plate with a side crack. 



 
 
Free vibration analysis of cracked Kirchhoff-Love plate using the extended radial point …  

 

781 

3.3. Square plate with a oblique crack 

In this example, square plates with a central oblique crack and a side oblique crack are 

investigated. The geometry is shown in Figure 7.  

 

Figure 7. Geometry of square plate with a central oblique crack and a side oblique crack. 

Table 5. Non-dimensional frequency   of a simply supported square plate with a central oblique crack. 

 c/a Ref. Results Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

15 

0.2 

XCS-DSG3 [20] 19.278 49.177 49.378 78.930 94.376 

Ritz method [21] 19.330 49.180 49.320 78.790 94.390 

This study 19.427 49.253 49.320 78.893 95.285 

0.4 

XCS-DSG3 [20] 18.224 46.157 48.995 77.446 87.229 

Ritz method [21] 18.270 46.600 49.000 77.590 87.040 

This study 18.571 48.059 49.074 78.035 88.770 

0.6 

XCS-DSG3 [20] 17.061 37.604 48.049 73.622 82.312 

Ritz method [21] 17.100 37.960 48.060 74.030 82.190 

This study 17.524 44.575 48.275 75.373 84.072 

30 

0.2 

XCS-DSG3 [20] 19.338 49.132 49.372 78.703 95.459 

Ritz method [21] 19.320 49.170 49.320 78.490 94.860 

This study 19.417 49.264 49.317 78.714 95.593 

0.4 

XCS-DSG3 [20] 18.257 46.307 48.947 76.359 89.866 

Ritz method [21] 18.230 46.520 48.920 76.140 89.460 

This study 18.508 47.685 48.994 76.983 90.393 

0.6 

XCS-DSG3 [20] 17.034 38.391 47.842 72.539 85.347 

Ritz method [21] 16.930 37.870 47.700 72.290 84.700 

This study 17.321 44.666 47.867 73.553 87.789 

45 

0.2 

XCS-DSG3 [20] 19.262 49.056 49.335 78.511 95.172 

Ritz method [21] 19.320 49.170 49.320 78.350 95.120 

This study 19.373 49.242 49.313 78.574 95.375 

0.4 

XCS-DSG3 [20] 18.396 46.626 48.949 76.364 91.287 

Ritz method [21] 18.210 46.480 48.890 75.560 90.570 

This study 18.404 47.348 48.943 76.233 90.956 

0.6 

XCS-DSG3 [20] 16.916 37.318 47.564 71.953 83.596 

Ritz method [21] 16.840 37.850 47.510 71.600 84.580 

This study 17.159 41.492 47.740 72.545 89.890 
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Figure 8. Mode shapes of five lowest modes of a square plate containing a central oblique crack. 

Table 6. Non-dimensional frequency   of a simply supported square plate with a side oblique crack. 

 c/a Ref. Results Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

15 

0.2 

XCS-DSG3 [20] 19.666 49.117 49.378 78.656 98.704 

Ritz method [21] 19.680 49.040 49.340 78.500 98.360 

This study 19.683 49.066 49.400 78.690 98.220 

0.4 

XCS-DSG3 [20] 19.122 47.016 48.845 75.058 85.930 

Ritz method [21] 19.150 46.970 48.880 74.820 86.370 

This study 19.201 47.175 49.070 75.728 90.262 

0.6 

XCS-DSG3 [20] 17.748 40.816 45.690 59.006 76.083 

Ritz method [21] 17.790 40.540 45.610 58.760 76.030 

This study 17.887 41.658 45.723 59.468 76.336 

30 

0.2 

XCS-DSG3 [20] 19.641 49.117 49.379 78.848 98.406 

Ritz method [21] 19.640 49.030 49.350 78.690 98.030 

This study 19.656 49.035 49.422 78.898 97.911 

0.4 

XCS-DSG3 [20] 19.064 47.436 48.863 75.212 87.651 

Ritz method [21] 19.070 47.390 48.890 75.120 87.140 

This study 19.108 47.422 49.111 76.193 89.954 

0.6 

XCS-DSG3 [20] 17.729 39.266 46.292 60.717 77.834 

Ritz method [21] 17.780 39.990 46.380 60.770 77.660 

This study 17.839 41.298 46.291 61.241 78.039 

 

Figure 9. Mode shapes of five lowest mode of a square plate containing a side oblique crack. 
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Table 7. Non-dimensional frequency   of a simply supported square plate with a central crack. The c/a 

ratio is 0.6 and 45o  . 

Ref. Results Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

XCS-DSG3 [20] 16.916 37.318 47.564 71.953 83.596 

Ritz method [21] 16.840 37.850 47.510 71.600 84.580 

Not aligned 17.159 41.492 47.740 72.545 89.890 

Aligned 16.983 38.853 47.600 72.017 85.834 

      
(a)      (b) 

Figure 10. Node distribution. (a) Not aligned with the crack, (b) Aligned with the crack. 

The material properties in this example is Poisson’s ratio 0.3  . The non-dimensional 

frequency parameter   is also used for comparison with other studies. In the case of central 

oblique crack, the ratio of thickness to length 0.001t a   is used. The plate is discretized into a 

set of 50 50  nodes. The boundary condition is SSSS. Various c a  ratios are considered. Table 

5 presents the first five non-dimensional frequencies. Again, the results from XRPIM agree well 

with other methods. The mode shapes of 45o   are illustrated in Figure 8. 

In the side oblique crack case, the relationship between a  and b  is 0.25b a , a ratio of 

0.001t a   is used. In this case, the plate is discretized into a set of 50 50  nodes and the 

boundary condition is SSSS. Various c a  ratios are considered. Table 6 shows the first five non-

dimensional frequencies obtained by different methods. The results in this study show good 

agreement compared with other researchers. The mode shapes of 30o   are illustrated in 

Figure 9. 

A significant deviation of non-dimensional frequency in this study is observed when the 

angle   increases. The cause of this deviation can be explained by the node distribution. The 

obtained results were computed in a uniform distribution of node (not aligned with the crack). 

Now, consider the node distribution aligned with the crack, as shown in Figure 10. The non-

dimensional frequency of ratio c/a = 0.6 and 45o   are shown in Table 7. It is found that the 

results improve significantly when the node is distributed in alignment with the crack. 
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4. CONCLUSIONS 

In this study, the XRPIM is used to investigate the free vibration behavior of Kirchhoff-

Love plate. With the properties of RPIM formulation, the second derivative of shape functions in 

the Kirchhoff-Love plate theory is easily obtained. In the numerical example, a slight deviation 

is observed in the result of the oblique crack case. This is explained by the node distribution and 

can be corrected by using aligned-with-the-crack node distribution. However, the accuracy of 

the study is shown to be in good agreement with other researches. This is a promising method 

for analyzing thin plate structures, because of the low computational cost due to the use of only 

one DOF and simpler calculations for the Kirchhoff-Love plate compared with the Finite 

Element Method. 
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