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Abstract. In this work, a system combining two advanced oxidation processes, namely electro-

Fenton (EF) in which the hydroxyl radical 
●
OH is generated by reactions on the cathode and anodic 

oxidation (AO) in which 
●
OH is produced directly on the anode, was studied to evaluate the 

treatment of methylene blue (MB) dye in aqueous solution. This electrochemical system was 

equipped with a commercial carbon felt cathode and lead dioxide-coated titanium (Ti/PbO2) anode. 

The effects of operating parameters such as pH, applied current (I), electrolysis time (t), catalyst 

concentration ([Fe
2+

]) and initial MB concentration (C0) on MB removal efficiency were 

investigated through monitoring MB concentration. The optimal process was achieved at the 

condition of [Fe
2+

] = 0.1 mM; pH 3.0; [Na2SO4] = 0.05 M; i = 2.5 mA.cm
-2

 and after 60 min of 

electrolysis, where 92.19 % of MB was removed. This performance was much higher than that of 

single EF system using carbon felt cathode and Pt anode (73.77 %) or single AO system using Ti 

cathode and Ti/PbO2 anode (58.04 %), which were also tested under optimal conditions. These 

experimental results have demonstrated that the combination of EF and AO is a prospective method 

for the destruction of persistent dyes. 

Keywords: Combination, anodic oxidation, electro-Fenton, methylene blue removal, Ti/PbO2, color removal, 

textile wastewater. 

Classification numbers: 3.3.3, 3.4.2, 3.7.3 

1. INTRODUCTION 
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Organic dyes, widely used in the textile industry, are currently of great concern because of their 

environmental sustainability and negative impacts on ecosystems and human health. In aqueous 

media, even at small concentrations (below 1 ppm), they are highly visible and prevent sunlight - an 

essential component in maintaining normal biological activities - from penetrating into the water, 

which poses harm to virtually all aquatic organisms [1]. It is estimated that more than 7 x 10
5
 tons of 

dye-stuffs are produced annually on a global scale, particularly 12 % of that volume is discharged 

into receiving waters during manufacturing and coloration processes [2]. Methylene blue (MB) is 

among the cationic dyes, its first synthesis was as early as the late 19
th
 century [3]. Like other 

persistent dyes, MB is very complex in structure and designed to possess high values of fastness 

under any exposure conditions, so its removal is a difficult challenge [2]. Although MB is not 

considered an extremely hazardous substance, its exposure to humans can cause eyes burn, 

vomiting, heart rate increase, diarrhea, shock, cyanosis, jaundice, quadriplegia, and tissue necrosis 

[4]. Moreover, its degradation mediators can also be fatal as they are carcinogenic and mutagenic 

agents [5]. Thus, it is very important to treat dyeing waste before discharging into water bodies. So 

far, many methods have been studied for removing colourants such as photolytic degradation [6], 

adsorption [5], biodegradation [7], oxidation [8], electro-coagulation [9], membrane filtration [10], 

and electrolysis, etc. However, these methods still have common limitations, which are the 

generation of secondary pollution or incomplete elimination of pollutants [11]. Therefore, it is 

necessary to study a more efficient approach to organic dyes treatment. 

Among the organic dye processing technologies that have been investigated recently, electro-

advanced oxidation processes (EAOPs) have emerged as an efficient, non-selective and 

environmentally friendly way to mineralize persistent organic pollutants such as dyes. The principle 

of EAOPs is to generate electrochemically in situ hydroxyl radical 
●
OH with very high standard 

redox potential (E° (OH
●
/H2O) = 2.80V/SHE), which can promote the complete degradation of 

targeted contaminants into CO2, H2O and inorganic ions or acids [12]. One of the most popular 

EAOPs is electro-Fenton (e-Fenton), where a sufficient 
●
OH concentration is obtained based on the 

reaction between Fenton’s reagent and iron salt (Eq. 1). 

Fe
2+

 + H2O2  Fe
3+

 + OH
●
+ OH

-
    (k = 63 L.mol

-1
.s

-1
)   (1) 

O2 + 2H
+
 + 2e   H2O2                       (2)                                         

Fe
3+

 + e
- 
 Fe

2+
                                   (3)                                       

This process is an upgraded version of the classic Fenton because H2O2 is automatically 

produced by 2 electron reduction of O2 from compressed air (Eq. 2) at the cathode and Fe
2+

 is 

continuously regenerated by the cathodic reduction of Fe
3+

 (Eq. 3). Hence, it consumes less amount 

of reagent, generates less amount of ferric sludge but has higher efficiency compared to the classic 

version [13]. The contaminant degradation efficiency relies on the amount of generated hydroxyl 

radicals, so highly depends on the nature of cathode materials. In general, the high stability, 

conductivity and overpotential for hydrogen evolution reaction (HER), low catalytic activity for 

H2O2 decomposition are required for cathode materials [14]. Therefore, the non-toxic, and 

inexpensive carbonaceous materials such as activated carbon fiber, carbon felt (CF), carbon sponge, 

reticulated vitreous carbon, etc. were widely used as the cathode for EF process [15]. Furthermore, 

along with the role of such a cathode, if the EF system uses an anode capable of catalyzing in situ 
●
OH generation, then the amount of 

●
OH will be significantly increased, thus improve the rate of 

contaminant degradation, thereby reducing treatment time and energy consumption [16]. Indeed, 
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non-active anodes with high overvoltage for oxygen evolution reaction (OER) such as PbO2, SnO2, 

boron-doped diamond (BDD), Ti/Pt, Ti/PbO2, etc. can electrocatalyze the generation of 
●
OH (Eq. 4) 

and physisorb it on the surface [17]. This phenomenon occurring at the anode is called anodic 

oxidation (AO) and recent studies have shown that AO alone can effectively destroy different dyes, 

such as acid green 50 [18], alphazurine A [19], Alizarin Red S [20] and MB [21]. 

  H2O  →  (OH
●
)ads + H

+
 + e

-   
            (4) 

The combination of EF-AO processes in an electrolyser has been studied by some research 

groups, such as: Vasconcelos et al. [22] used reticulated vitreous carbon as cathode and BDD as 

anode of a filter-press flow cell for degradation of Reactive Black 5 dye; Wang et al. [23] studied 

the degradation of perfluorooctanoic acid by the combination of EF-AO in an system using FeMn-

doped carbon cathode and BDD anode; Tian et al. [24] synthesized Ti-PbO2 material to fabricate the 

anode and used the graphite felt-polytetrafluoroethylene/carbon black gas diffusion cathode in the 

EF-AO system to decompose Rhodamine B. However, the combination of AO using Ti/PbO2 anode 

and EF using CF cathode to degrade MB dye has not been reported. 

The objective of this paper is to study the degradation of MB by the combination of AO using 

commercial Ti/PbO2 anode and EF using CF cathode (these materials are inexpensive and easy to 

apply to larger electrochemical systems), specifically investigating the influence of several factors, 

such as pH, current intensity, catalyst concentration, MB concentration on the MB removal 

efficiency. The performance of 3 processes: EF, AO and the combination of EF-AO was also 

evaluated to find the best method to remove MB. 

2. MATERIALS AND METHODS 

2.1. Materials 

Carbon felt was supplied by A Johnson Matthey Co., Germany; Ti/PbO2 was purchased from 

Baoji Qixin Titanium Co., Ltd., China and Pt mesh was provided by Shaanxi Elade New Marerial 

Technology Co. Ltd., China. MB of analytical grade (C16H18ClN3S, Sigma Aldrich NY, USA) was 

used without further purification. Iron (II) sulphateheptahydrate (99.5 %, Merck) acted as a catalyst, 

while sodium sulphate (99 %, Merck) was used as a supporting electrolyte. To change the pH of the 

solution, we chose sulfuric acid (98 %, Merck). The ultrapure water obtained from a Millipore Milli-

Q system with resistivity >18 MΩ.cm was used to prepare all solutions. 

2.2. Electrochemical systems 

The electrochemical degradation experiments of MB were carried out in a batch mode with a 

rectangular Plexiglass reactor (21 mm (width) × 150 mm (length) × 180 mm (height)). Rectangular 

electrodes having a dimension of 100 mm × 150 mm were vertically fixed on a perforated Plexiglas 

plate placed 20 mm from the bottom of the cell. The distance between the electrodes was 1 cm. 

Mixing in the reactor was accomplished by circulating water through the cell in a continuous mode 

by means of a pump operating at a constant speed of 1000 mL.min
-1

 (Figure 1). The Plexiglass 

circulation tank had a dimension of 120 mm (width) × 150 mm (length) × 70 mm (height). In all 
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experiments, a total volume of 1.0 L of contaminated water was used. The working volume of the 

electrolytic cell was 540 mL, while 460 mL was required for the recirculation tank. 

The anode and cathode materials used in the case of AO-EF combination were Ti/PbO2 and 

CF, in the case of AO alone were Ti/PbO2 and Pt mesh, in the case of EF alone were Pt mesh and 

CF, respectively. The solution was continuously aerated 30 min before and during the electrolysis 

(at about 1 L.min
-1

) to ensure a constant supply of oxygen diffusing into the solution throughout the 

experiment for producing H2O2 from reaction (2). Before the electrolysis initiation, an amount of 

ferric ion catalyst was introduced into the solution. Sulfuric acid was required for pH adjustment 

(around pH 3.0). The anode and cathode were connected to the positive and negative outlets of a DC 

power supply, respectively (model VSP4030, B&K Precision, CA, US). The current was kept 

constant during the tests.  

 

 

(a) 
 

  (b) 

Figure 1. Scheme (a) and real image (b) of e-Fenton combined with anodic oxidation Ti/PbO2                                

system on lab scale. 

2.3. Experimental procedure 

The influence of the main factors (pH, current applied, Fe
2+

 catalyst concentration, MB 

concentration) on the MB removal efficiency was investigated to find out suitable conditions for the 

AO-EF process. During these tests, the MB concentrations were monitored to examine the 

performance of the AO-EF system. Because the dye concentration in textile wastewater is usually in 

the range of 50 - 250 mg.L
-1 

[25], synthetic MB solutions of 50 mg.L
-1

 were used in most of the 

experiments (except for the study on the effect of MB concentration on MB removal efficiency) to 

minimize external factors affecting the results. The effect of pH value was investigated in the range 

of 2 - 6. The current intensities ranged from 0.1 to 0.5 A (current densities from 0.67 mA.cm
-2

 to 

3.33 mA.cm
-2

). The treatment time up to 60 min was tested. Likewise, the effects of MB 
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concentration (20, 30, 40, 50, 60 mg.L
-1

) and Fe
2+

 concentration (0.05, 0.1, 0.2, 0.5 mM) were 

investigated.  

The performance of MB removal using the AO-EF process was then compared with that 

of the AO and EF processes alone at the same applied current density. The optimal pH value 

and Fe
2+

 concentration found above were used for the AO-EF process. For single AO and EF 

processes, the optimal conditions were determined in previous works by the same authors, 

namely [Fe
2+

] = 0.1 mM, pH 3.0 for the EF process [26] and pH 3.0 for the AO process [27]. In 

these tests, MB concentrations were determined at different time points, ranging from 0 to 60 

min. All experiments were repeated 3 times and reported values are the mean of experimental 

data. 

1.1 Analytical methods and apparatus 

The pH of the solution was measured with a Hanna HI 991001 pH-meter. According to Wang 

et al. [28], the products of MB degradation by AOPs are: Cl
–
, NO3

–
, SO4

2–
, HSO3

-
, non-toxic lower 

molecular weight intermediates and very small amounts of benzothiazole, phenol, so in this work, 

MB removal was evaluated instead of mineralization. MB removal efficiency was then determined 

from Eq. (4) 

 

where: C and C0 are MB concentration at time t and initial time, respectively (mg.L
-1

); A andAo are 

the absorbance value of solutions at time t and initial time, respectively. 

MB concentration was analyzed by absorbance measurement at λ = 664 nm using UV-VIS 

spectrophotometer (Labomed UVS-2700, USA). 

3. RESULTS AND DISCUSSION 

3.1. The effect of some factors on the treatment efficiency of the AO-EF process 

3.1.1. Effect of pH  

In the EF process, the H
+
 concentration influences the amount of H2O2 formed (by reaction 

(2)), which then controls the generation of OH
●
 radicals. The removal of MB by the AO process is 

favored at acidic pH (~ 3.0) [21]. Hence, pH is one of the most important factors affecting the AO-

EF process. High pH will reduce the concentration of Fe
2+

 catalyst due to the formation of Fe(OH)3 

precipitate, while too low pH will lead to H2O2 decomposition [23] and in both cases, the efficiency 

of the EF process is drastically reduced. Therefore, to clarify the influence of pH on MB decay 

efficiency, we only changed the initial pH of the solution in the range of 2 - 6 and other parameters 

were kept constant: I = 0.3 A, [Fe
2+

] = 0.1 mM, t = 60 min, MB concentration C0 = 50 mg.L
-1

. 

As can be seen from Figure 2, pH greatly affected the MB removal efficiency, and the peak of 

the treatment was obtained at pH 3.0 with a maximum efficiency of 84.21 %. These results can be 

explained as follows: the MB removal efficiency will depend on the amount of OH
●
 produced by the 
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Fenton reaction (Eq. 1) and by the AO process (Eq. 4). When the pH was decreased from 6 to 3, the 

concentration of H
+
 ions increased, leading to an increase in the amount of H2O2 produced by the 

reduction of O2 on the cathode (Eq. 2), and thus, a growth in the quantity of OH
●
 radicals generated 

by Eq (1). A low-pH medium also avoided the formation of amorphous Fe(OH)3 precipitate which 

reduced MB removal efficiency because it was less reactive than Fe
2+

 and could partially cover the 

cathode surface, inhibiting there generation of the catalyst at this electrode (Eq. (3)) [29]. Moreover, 

when the pH value was above 5, oxidants that were weaker and more selective than the OH
● 

radical 

such as ferryl ions (e.g., FeO
2+

) could also be formed according to Eq. (5) [30]. In addition, H
+
 in the 

acid solution could inhibit the reaction of oxygen evolution at the anode and the decomposition of 

OH
● 

radical, which improved the MB removal efficiency by the AO process [21]. So, the lower the 

pH value, the higher the MB removal efficiency.   

 

Figure 2. Effect of pH on the MB removal under experimental conditions: Na2SO4= 0.05 mol L
-1

; T = 25 C°; 

[Fe
2+

] = 0.1 mmol L
-1

; I = 0.3 A, C0 = 50 mg.L
-1

 

Fe
2+

 + H2O2    Fe(IV) (e.g., FeO
2+

) + H2O                    (5) 

However, when the pH was decreased from 3 to 2, the MB removal efficiency did not increase 

but decreased, possibly because at very acidic pH, below pH 3.0, a reaction can occur between H
+
 

and electrogenerated H2O2 to form an oxonium ion (H3O2
+
) (Eq. 6) that impeded the reactivity with 

Fe
2+

, making less OH
●
 to be produced [31]. Also, the low pH could lead to in situ decomposition of 

H2O2 (Eq. (7)) and thus, a significant decrease in the concentration of H2O2 in the medium [31]. 

H2O2 + H
+
 → H3O2

+
                                 (6) 

H2O2 + 2H
+ 

+ 2e
−
 → 2H2O                         (7) 

Therefore, the optimal pH for this process is 3.0 and this pH will be used for all subsequent 

experiments. This result is similar to the case of MB decomposition by EF alone using stainless steel 

mesh electrodes [32] and by AO alone using SnO2 electrode [21]. 

3.1.2. Effect of applied current and electrolysis time 



 
 
 

615 

In electrochemical processes in general, EF and AO in particular, the applied current intensity 

plays a significant role in the oxidation efficiency of the degradation process. The experiment was 

conducted with different currents: 0.1 A; 0.2 A; 0.3 A; 0.4 A; 0.5 A, while other parameters were 

kept constant: pH = 3.0, T = 25 °C (room temperature), C0 = 50 mg.L
-1

, [Fe
2+

] = 0.1 mM. 

Figure 3 demonstrated that the MB decomposition rate was accelerated as the value of applied 

current and electrolysis time increased. Specifically, after 60 min of electrolysis, when the applied 

current was changed from 0.1 A to 0.5 A, the MB removal efficiency increased from 77.77 % to 

97.09 %. At I = 0.1 A, when the electrolysis time was increased from 10 min to 60 min, the MB 

decomposition efficiency increased from 14.10 % to 77.77 %. A similar trend was observed for 

other currents (0.2 A - 0.5 A). This result can be explained by Faraday's law: the volume of 

substance released/deposited at the electrodes is directly proportional to the current and electrolysis 

time, thus the longer the electrolysis time or the higher the current, the more H2O2 was produced at 

the cathode (Eq. 2) and the faster the Fe
2+ 

catalyst was regenerated (Eq. 3), as a result, the more OH
●
 

radicals was created by the Fenton reaction (Eq. 1), at the same time, the more (OH
●
)ads is generated 

at the anode (Eq. 4) [31], leading to an increase in the MB decomposition efficiency.  

 

Figure 3. The influence of applied current on MB removal under experimental conditions:                                        

Na2SO4 0.05 mol L
-1

; T = 25 °C; [Fe
2+

] = 0.1 mmol L
-1

; pH 3.0, C0 = 50 mg.L
-1

. 

Also in Figure 3 it can be seen that, during the first 40 min of electrolysis, the MB removal rate 

increased very rapidly then slowed down for all applied intensities. This effect was due to the fact 

that the operating parameters remained constant throughout the entire test period; the production of 

OH
●
 was constant [33, 34]. However, most of the MB molecules were mineralized in the first 40 

min, so the ratio between organics and radicals got lower after 40 min, meaning that OH
●
 started to 

participate in the wasting reactions (8 -10) [35], so the MB removal rate slowed down. 

OH
●
 + OH

●
 → H2O2                                (8) 

OH
●
 + H2O2 → H2O + HO2

●
                    (9) 

OH
●
 + HO2

●
→ H2O + O2                       (10) 
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Thus, for high MB removal performance, the current between the two electrodes must be 0.3 A 

or the current density should be 2.5 mA.cm
-2

. 

3.1.3. Effect of ferrous ion concentration 

The amount of Fe
2+ 

catalyst is also a main factor affecting the oxidation efficiency of the AO-

EF process. The effect of Fe
2+ 

concentration on the oxidation of 50 mg.L
-1

 MB was investigated 

under the following conditions: pH 3.0, applied current intensity of 0.3 A and Fe
2+

 concentration 

from 0.05 to 1 mmol.L
-1

. 

It is clear from Figure 4 that the best MB removal efficiency (92.19 %) was achieved when the 

Fe
2+

 concentration was 0.1 mmol.L
-1

. A slight decrease in pollutants was followed by an increase in 

the amount of catalyst, from 0.05 mmol.L
-1

 to 0.1 mmol.L
-1

. This is reasonable because according to 

the law of mass action, the more Fe
2+

 content, the more 
●
OH radicals were produced, which 

increased the rate of reaction in Eq. (1). However, when the Fe
2+ 

concentration exceeded 0.1mmol.L
-

1
, it led to a decrease in MB removal performance. This could be due to the reaction between the 

excess ferrous ion and the 
●
OH radicals (Eq. (11) and (12)) that consumed the Fenton reagent, 

leading to a decrease in MB removal efficiency. In addition, the produced Fe
3+

 could also react with 

H2O2 (Eq. (13) and (14)) resulting in reduced MB removal [36]. 

 

Figure 4. The effect of Fe
2+

 concentration on MB removal under experimental conditions: [Na2SO4] = 

0.05 mol.L
-1

; T = 25 °C; pH = 3.0; I = 0.3 A, C0 = 50 mg.L
-1

 

Fe
2+

 + HO
●
 → Fe

3+
 + OH

−
    (11) 

Fe
2+

 + 
●
OH  Fe

3+
 +  HO

-     
(12) 

Fe
3+

 + H2O2 Fe−OOH
2+    

(13) 

Fe−OOH
2+
 Fe

2+
 + HO2

●    
(14) 

Furthermore, using a high amount of catalyst is not economically viable because it produces a 

large amount of ferric oxide sludge, resulting in additional costs for another sludge separation and 

disposal process [37]. Therefore, the optimal catalyst concentration for this experiment is               

0.1 mmol.L
-1

. 
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3.1.4. Effect of MB concentration 

The removal of MB from aqueous solutions at different concentrations is illustrated in Figure 

5. The obtained results indicate an inverse trend between MB concentration and MB removal 

efficiency. Indeed, when the MB concentration was increased from 20 mg.L
-1 

to 60 mg.L
-1

, the 

treatment rate decreased from the highest (99.50 %) to the lowest (75.80 %), in contrast to the 

upward trend of the absolute amount of contaminants eliminated, from 19.9 mg.L
-1

 to 45.48 mg.L
-1

. 

This fact may be due to the presence of a large amount of organics (MB and its degradation by-

products) in the electrolyte solution at high MB concentration, while the same amount of •OH was 

generated by reactions (1) and (4) in these tests, so according to the law of mass action, the rate of 

MB removal was reduced. Moreover, at high MB concentrations, dimer molecules could be formed 

in sequential reactions of dye molecules. These dimers were difficult to break down, so the MB 

removal efficiency was reduced as observed above [32]. This result is consistent with the research 

results by Loloei and Rezaee [32] on MB decolorization by EF process using stainless steel mesh 

electrodes. 

 

Figure 5. The effect of MB concentration on treatment efficiency under experimental conditions:                        

[Na2SO4] = 0.05 mol.L
-1

; T = 25 °C; [Fe
2+

] = 0.1 mmol.L
-1

; I = 0.3 A, pH 3.0. 

Also in Figure 5, it can be seen that the decrease in MB removal efficiency was non-linear; its 

rate is gradually raised with the increase of the MB initial concentration. For example, after 20 min 

of electrolysis, the MB removal efficiency decreased to 91.53 %, 83.04 %, 80.89 %, 74.06 % and 

51.63 % for the MB initial concentration of 20, 30, 40, 50 and 60 mg.L
-1

, respectively. This 

comportment could be explained as follows: the higer the MB initial concentration, the more by-

products were generated, leading to the consumption of •OH by these by-products and the reduction 

in MB removal efficiency. The adsorption of MB on the electrode surface also occured, but the 

effect of this phenomenon is weak (less than 12 % for 1 h) [38]. 
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3.2. Comparison of 3 processes: e-Fenton, anodic oxidation and e-Fenton combined with  

anodic oxidation 

To compare the performance of the AO-EF process with the AO and EF processes alone, 50 

mg.L
-1

 MB aqueous solutions were used for all three cases, the same current density (2.5 mA.cm
-2

) 

was applied between the two electrodes of the three systems. The other optimal conditions applied to 

the AO-EF and EF systems were [Fe
2+

] = 0.1 mM, pH 3.0, for the AO system was pH 3.0. The 

results were depicted in Figure 6. 

 

 

Figure 6. The MB removal performance of 3 processes: AO-EF, EF and AO under experimental conditions: 

pH 3.0, [Na2SO4] = 0.05 mol.L
-1

; T = 25 °C; Fe
2+

 = 0.1 mmol.L
-1

; i = 2.5 mA.cm
-2

, C0 = 50 mg.L
-1

 

The obtained results show that under the same conditions, the AO-EF process had the highest 

efficiency of 92.19 %, while the single EF and AO processes had lower treatment efficiency, 73.77 

% and 58.04 %, respectively. This result is reasonable because MB concentration and current 

density were the same in all three cases, so the case that produced more •OH radicals had higher MB 

removal efficiency. For the EF process, the •OH radicals were produced only by the Fenton reaction 

(Eq. (1)) between Fe
2+

 and H2O2 generated at the cathode (Eq. (2)). For the AO process, the •OH 

radicals were generated only by the oxidation of water at the anode (Eq. (4)). For the AO-EF 

process, the •OH radicals were generated by both the Fenton reaction and the water oxidation at the 

anode, then the amount of •OH radicals created is the most, so the MB removal efficiency is the 

highest.  

The MB removal efficiency by the AO-EF process in this study is also higher than that of the 

AO and EF processes in other studies. Indeed, Loloei and Rezaee removed MB from an aqueous 

solution of 60 mg.L
-1 

concentration by the EF process using stainless steel mesh electrodes, and the 

MB removal efficiency was achieved at about 85 % after 60 min at a current density of 4 mA.cm
-2

 

[32]. Baddouh et al. degraded MB in an aqueous solution of 50 mg.L
-1 

concentration by the AO 

process using SnO2 as anode, Pt as cathode and MB remove efficiency was achieved at about 55 % 

after 60 min when applying a current density of 30 mA.cm
-2

 [21]. 
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This result shows that the combination of EF and AO processes in the same reactor gives a 

much higher MB removal efficiency from aqueous solutions than either process alone. 

4. CONCLUSION 

This study is a proof that the combination of EF and AO processes is an effective method in 

removing MB from aqueous solution. The results obtained from experiments under various 

conditions demonstrate that pH, applied current, Fe
2+

 concentration and MB concentration have a 

great influence on MB removal efficiency. A single EF process or AO process could only remove 

73.77 % and 58.04 % of 50 mg.L
-1

 MB from the simulated solutions, which is a requirement for the 

set-up of 2 processes in 1 reactor. That could not only improve the treatment efficiency, but also 

reduce the operating cost. Indeed, it was found that under optimal conditions: pH 3.0, [Na2SO4] = 

0.05 M, [Fe
2+

] = 0.1 mM, i = 2.5 mA.cm
-2

, the AO-EF combination could remove 92.19 % MB after 

60 min of electrolysis. Therefore, this model is very prospectively effective if it can be applied to 

actual wastewater treatment of some textile plants in practice. 

Further studies are needed to understand the mechanism of MB degradation and identify the 

by-products. 
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