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Abstract. This work studies the vibration of sandwich beams reinforced with carbon nanotubes 

(CNTs) under moving point loads. The cores of the beams are homogeneous while their two 

sides are made of carbon nanotube reinforced composites. The effective properties of two face 

sheets are estimated through a micromechanical model. A uniform distribution (UD) and four 

different types of functionally graded (FG) distributions, namely FG-X, FG- , FG-V, FG-O, are 

considered. Based on a third-order shear deformation theory, a finite element formulation is 

derived and used to investigate the vibration characteristics of the beams. The effects of carbon 

nanotube volume fraction, carbon nanotube distribution pattern and moving load velocity on 

beam vibration behavior are investigated and highlighted. The influence of layer thickness and 

span-to-height ratio on beam vibration is also examined and discussed. 

Keywords: Sandwich beam; carbon nanotube reinforcement, third-order shear deformation theory; moving 

load; vibration analysis. 

Classification numbers: 2.9.4, 5.4.2, 5.4.5. 

1. INTRODUCTION 

Carbon nanotubes (CNTs) with high strength, high stiffness, high aspect ratio and low 

density are excellent reinforcement for composite materials. The analysis of functionally graded 

carbon nanotube-reinforced composite (FG-CNTRC) beams has drawn considerable attention 

from researchers in recent years. Ke et al. [1, 2] investigated the nonlinear free vibration and 

dynamic stability of FG nano beams reinforced by single-walled carbon nanotubes (SWCNTs) 

using Timoshenko theory. Their results show that an increase in CNT volume fraction leads to 

higher natural frequencies for both uniformly distributed CNT (UD-CNT) and FG-CNTRC 

beams. Yas and Heshmati [3] studied free and forced vibrations of an FG nanocomposite beam 

reinforced by randomly straight SWCNTs under a moving load. Free vibration and buckling 

analysis of FG-CNTRC Timoshenko beams resting on an elastic foundation are also described 

by Yas and Samadi [4]. Shen and Xiang [5] presented the nonlinear bending and the thermal 
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postbuckling analyses of CNTRC beams. The obtained results show that the CNT volume 

fraction has a significant influence on the load-deflection curves of the beam. Based on 

Timoshenko beam theory, Ansari et al. [6] studied forced vibration of nanocomposite beams 

reinforced by SWCNTs. The third-order shear deformation theory was adopted by Lin and 

Xiang [7] in determining vibration frequencies of UD- and FG-CNTRC beams with various 

boundary conditions. Nejati and Eslampanah [8] employed the two dimensional (2D) elasticity 

theory to obtain buckling loads and natural frequencies of cantilever FG-CNTRC beams under 

axial load. Based on the first-order shear deformation beam theory and von Kármán nonlinearity, 

Wu et al. [9] investigated nonlinear vibration of imperfect shear deformable FG-CNTRC beams. 

Nonlinear free vibration and post-buckling of FG-CNTRC beams resting on nonlinear 

foundation were studied by Shafiei and Setoodeh [10]. Recently, Mohseni and Shakouri [11] 

investigated the free vibration and buckling of FG-CNTRC beams with variable thickness 

resting on elastic foundations.  

Using FG-CNTRCs as facing composition in sandwich constructions to increase strength 

and stiffness, Wu and Kitipornchai [12] investigated free vibration and elastic buckling of 

sandwich beams with FG-CNTRC face sheets, giving a detail on the effects of CNT volume 

fraction, core-to-face sheet thickness ratio, slenderness ratio, and end supports on the free 

vibration and buckling behavior of sandwich beams. Ebrahimi and Farzamand Nia [13] proposed 

a higher-order shear deformation beam theory for free vibration analysis of FG-CNTRC 

sandwich beams in thermal environment. The effects of carbon nanotube volume fractions, 

slenderness ratio and core-to-face sheet thickness ratio on the vibration of the sandwich beams 

have been examined.   

The influence of material gradation on the vibration of beams carrying a moving load has 

been investigated in recent years [14, 15]. It has been shown that the variation of material 

properties in spatial directions has a significant influence on both free and forced vibrations of 

the beams. This topic is further explored in the present work by studying vibration of FG 

sandwich beams reinforced by CNTs. The core of the sandwich beams is homogeneous while its 

two face sheets are a FG-CNT reinforced material. The effective properties of the two face 

sheets are determined by an extended rule of mixture. Five types of CNT distribution, namely 

UD, FG-X, FG- , FG-V, FG-O, are considered. A third-order shear deformation finite element 

formulation is derived and employed to compute natural frequencies and investigate dynamic 

response of the beams. A parametric study is carried out to highlight the effects of carbon 

nanotube volume fraction, the type of carbon nanotube distribution, the beam geometry and 

moving load velocity on dynamic behavior of the sandwich beams.  

2. FG-CNTRC SANDWICH BEAM 

Figure 1 shows a sandwich beam with FG-CNTRC face sheets subjected to a concentrated 

load 0F , moving from the left end to the right end of the beam at a constant speed v. In the 

figure, the Cartesian coordinate system (x,z) is chosen such that the x-axis lies on the beam mid-

plane. The beam consists of three layers, a homogeneous core and two face sheets of CNTRC 

material. Denoting 0 1 2 3, , ,
2 2

h h
h h h h    are the vertical coordinates of the bottom surface, two 

interfaces between the layers, and the top surface. Five types of distribution of CNTs in the 

beam cross-section, as shown in Figure 2 and given in Table 1, namely the UD, FG-X, FG-

, FG-V, FG-O, are considered.  
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Figure 1. Geometry and coordinate system of FG-CNTRC sandwich beams under moving load 

 

 

 

 

 

 

 

Figure 2. Cross-section of sandwich beam with five types of CNT distribution 

Table 1. Volume fraction CNTV of CNTs in face sheets of sandwich beam 

Distribution type Bottom face sheet 
0 1( )h z h   Top face sheet 

2 3( )h z h   

UD 
*

CNTV  
*

CNTV  

FG-X 
*0 1

1 0

| 2 |
2 CNT

h h z
V

h h

 


 *2 3

3 2

| 2 |
2 CNT

h h z
V

h h

 


 

FG-  
*0

1 0

2 CNT

z h
V

h h




 *3

3 2

2 CNT

h z
V

h h




 

FG-V 
*1

1 0

2 CNT

h z
V

h h




 *2

3 2

2 CNT

z h
V

h h




 

FG-O 
*0 1

1 0

| 2 |
2 1 CNT

z h h
V

h h

  
 

 
 

*2 3

3 2

| 2 |
2 1 CNT

z h h
V

h h

  
 

 
 

In Table 1, *

CNTV is the total CNT volume fraction in face sheets and it is the same for the 

five types of the CNT distribution; *

CNTV defined by 
   

*

/ /

CN
CNT CNT m CNT m

CN CN

w
V

w w   


 
, 

FG-CNTRC 

Homogeneous 

FG-CNTRC 

x 

z 
F0 v 

 

 

 

z 

y 
h 

h0 = -h/2 

h1 

h2 

h3 = h/2 

b 

FG - X 

 

Homogeneous 

 

FG - V 

 

Homogeneous 

 

FG - Ʌ  

 

Homogeneous 

 

FG - O 

 

Homogeneous 

 

UD

0 

Homogeneous 
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where 
CNw is the mass fraction of nanotube, CNT and m are the densities of carbon nanotube 

and matrix, respectively. 

The material properties of CNTRC layers are determined according to an extended rule of 

mixture as [12] 

 
32

11 1 11

22 22 12 12

; ;CNT CNT CNT
CNT CNT C

m m m
m mNm T

V V V V
E V E V E

E E E G G G


       (1) 

In Eq. (1), 11 22,CNT CNTE E and 12

CNTG are Young’s moduli and shear modulus, respectively, of 

the CNT; ,m mE G and  1m CNTV V   are Young’s modulus, shear modulus and volume fraction 

of matrix phase, respectively; 
1 2 3, ,    are the CNT efficiency parameters. 

The Poisson’s ratio of the FG-CNTRC face sheets are determined as 

 
12

12 12 21 22

11

; ;CNT

CN mT

mV V E
E


       (2) 

where 12 ,CNT m   are Poisson’s ratio of the CNT and matrix, respectively.  

          The effective elastic and shear moduli of the kth layer are calculated as follows [12] 

 
   ( ) ( )11

12

12 21

(2) (2)

; ( 1,3)
1

;

k k

c c

E
E z G z G k

E E G G

 
  



 

 (3) 

in which ,c cE G are the elastic and shear moduli of the core material. The effective mass density 

of the kth layer is defined as 

 ( ) (2)(z) ( 1,3);k CNT m c

mCNTV V k         (4) 

where c is mass density of the core material. 

3. MATHEMATICAL FORMULATION 

The Shi's third-order shear deformation theory [16] is adopted herewith to formulate the 

governing equations for the beam. This theory is derived from an elasticity formulation, rather 

than displacement hypothesis, which gives better results than the first-order and other simple 

higher order shear deformation theories. The displacements of a point in the beam in the x and z 

directions, ( ), ,u x z t and  , , ,w x z t respectively, are given by 

 3

0 0, 0, 02

5
( , , ) ( , ) (5 ) ( ); ( , , ) ( , )

4 3
x x

z z
u x z t u x t w w w x z t w x t

h
        (5) 

where  0 ,u x t and  0 ,w x t are, respectively, the displacements in the x and z directions of a 

point on the x-axis;  is the cross-sectional rotation, and t is the time variable. In Eq. (5) and 

hereafter, the subscript comma is used to indicate the derivative with respect to the variable that 

follows. 

By using the transverse shear rotation
0 , defined as 0 0,xw   [17], the axial and transverse 

displacements in Eq. (5) can be rewritten as follows 
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 3

0 0 0, 0 02

5 5
( , , ) ( , ) ; ( , , ) ( , )

4 3
x

z
u x z t u x t z w w x z t w x t

h
 

 
     

 
 (6) 

Eq. (6) gives the axial strain 
xx and shear strains 

xz in the forms 

 3
2

0, 0, 0, 0, 02 2

5 5 1 1
; 5

4 3 4
xx x x xx x xz

z
u z w z

h h
    

   
        

   
 (7) 

 The normal and shear stresses are given by linear elastic constitutive law as 

 
( ) ( ) ( ) ( )( ) ; ( ) ( 1,2,3)k k k k

xx xx xz xzE z G z k         (8) 

Using Eqs. (7) and (8) one can write the strain energy in the form 

 

2

2

11 0, 12 0, 0, 0, 22 0, 0, 34 0, 0,2

0

2 2

44 0, 0, 0, 66 0, 11 22 44 02 4 2 4

0

1 5 5 10
2

2 4 4 3

10 5 25 1 1 1
25

3 4 9 1

1
( )

6

2

2

L

x x x xx x xx x x

x x x

L

xx xx xz xz

A

x x

U

A

d

u A u w A w A u
h

A w A B B B dx
h h h

x

h

Ad

  



  





 



    
        

   

   
         

   







 

  (9) 

where A = bh is the cross-section area;
11 12 66, ,...A A A and 

11 22 44, ,B B B are the beam rigidities, 

defined as 

   

  

      

3

0

1

1

2 3 4 6

11 12 22 34 44 66

3
( ) 2 3 4 6

1

/2 3
2 4 ( ) 2 4

11 22 44

1/2

, , , , , ( ) 1, , , , ,

1, , , , , ;

, , ( ) 1, , 1, ,

k

k

k

k

h

h

h

k

k h

hh

k

kh h

A A A A A A b E z z z z z z dz

b E z z z z z z dz

B B B b G z z z dz b G z z z dz













 



 

 

 (10) 

The kinetic energy of the beam resulted from Eq. (5) has the form 

 
 

 

ef 2

2

0 0, 22 0 0,

34 0 44 0 0 0, 66

2

0

2 2

11 0 0 12 0

0

2

02 2 4 0

(
1

2
)

5 5

4 4

10 10 5 25

3 3 4

1
2

2

9

L

x

A

x

x

L

z w

w w I w

T u dAdx

I u I u

u dI I w I
h h

x
h

 

   



   
     

   

 
   

 


  








 

 

  (11) 

where the over dot denotes the derivative with respect to time variable; 
11 12 66, ,...I I I are the mass 

moments, defined as 
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   

 

3

0

1

2 3 4 6

11 12 22 34 44 66

3
( ) 2 3 4 6

1

, , , , , ( ) 1, , , , ,

( ) 1, , , , , (k 1,2,3)
k

k

h

h

h

k

k h

I I I I I I b z z z z z z dz

b z z z z z z dz










 



 

 (12) 

The potential of the moving load (V) is simply given by 

 
   0 0

0

,

L

V F w x t x vt dx    (13) 

where  .  is the Dirac delta function, and x is the abscissa, measured from the left end of the 

beam. 

4. FG-CNTRC SANDWICH BEAM ELEMENT 

Consider a two-node beam element with length l. The element vector of nodal 

displacements (d) contains eight components as 

  
T

u w d d d d  (14) 

where 

      01 02 01 0 1 02 0 2 01 02; ;
T T T

u w x xu u w w w w     d d d  (15) 

are, respectively, the vectors of values for 0 0,u w and 0 at nodes 1 and 2. In the above equations 

and hereafter, a superscript ‘T’ denotes the transpose of a vector or a matrix. 

Linear functions are used to interpolate the axial displacement 0u  and transverse shear 

rotation 0 ,  while cubic Hermite polynomials are used for the transverse displacement 0w  as 

 
0 0 0; ;wuu w   Nd Hd Nd  (16) 

where  1 2N NN and  1 2 3 4H H H HH are the matrices of the linear and Hermite shape 

functions. 

Using the above interpolations, one can write the strain energy in Eq. (9) in the form 

 
wi

1

2
th uu uw u w

n
T

w w

e

U          k k k k kk d kd k  (17) 

where ne is the total number of elements, and k is the element stiffness matrix. 

In the above equation, , ,...,uu uw k k k are the element stiffness matrices stemming from 

the axial, bending, shear deformations and their couplings with the following expressions 
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, 11 , , 12 , , 12 , , 34 ,2

0 0 0 0

, 22 , , 22 , , 44 ,2

0 0

, 22 , , 44 , ,2 4

1 1
; ; 5 ;

4 3

1 1
; 5 ;

4 3

1 1 1
25

16 12 9

l l l l

T T T T

uu x x uw x xx u x x x x

l l

T T T

ww xx xx w xx x xx x

T T

x x x x

A dx A dx A A dx
h

A dx A A dx
h

A A
h h







 
     

 

 
    

 

  

   

 

k N N k N H k N N N N

k H H k H N H N

k N N N N N 66 , 11 22 442 4

0

1 1 1

16 2

l

T T

x xA B B B dx
h h

  
    

   
 N N N

 

Similarly, the kinetic energy of the beam in Eq. (11) can be rewritten as 

 
wi

1

2
th uu uw u ww

ne
T

wT        d d m m m m m mm m  (19) 

where m is the element mass matrix. 

The expressions for the sub-matrices in the above equation are as follows 

 

 

11 12 , 12 342

0 0 0

11 , 22 , , 22 , 442

0 0

22 44 662 4

0

1 1
; ; 5 ;

4 3

1 1
; 5 ;

4 3

1 1 1
25

16 2

l l l

T T T T

uu uw x u

l l

T T T T

ww x x w x x

l

T

I dx I dx I I dx
h

I I dx I I dx
h

I I I dx
h h







 
     

 

 
     

 

 
   

 

  

 



m N N m N H m N N N N

m H H H H m H N H N

m N N

 (20) 

The discrete equation of motion for the dynamic analysis of the beam can be written in the 

form 

 ex MD KD F  (21) 

where M and K are, respectively, the global mass and stiffness matrices, obtained by assembling 

the matrices m and k over the elements; D and D are, respectively, the vectors of nodal 

displacements and accelerations; 
ex

F is the vector of the nodal external force with the following 

form: 

 
ex ex ,

ne

F f  (22) 

 ex

0 1 0 2 0 3 0 4where 0 0 0 0
T

F H F H F H F Hf is the element nodal force vector. Except for 

the element under the load 
0F , the element nodal force vector 

ex
f is zero for all other elements, 

and the interpolation functions  1,...,4iH i  are evaluated at the current position of the force 
0F . 

The system of Eq. (21) can be solved by the Newmark method. The average acceleration method 

which ensures the numerically unconditional stability is adopted herein. 

5. NUMERICAL RESULTS AND DISCUSSION 

A FG-CNTRC sandwich beam with simply supported ends is considered in the numerical 

investigation in this section. Poly-methyl methacrylate (PMMA) with material properties as 
32.5GPa, 1190 kg/ m , 0.3m m mE      is chosen for the matrix phase; the armchair (10,10) 

SWCNTs with 

(18) 
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11 5.6466TPa,CNTE  3

22 127.08TPa, 1.9445TPa, 1400kg/m ,CNT CNT CNTE G    and 

0.175CNT  are selected as reinforcements. The CNT efficiency parameters i  are determined 

by matching Young's moduli 11 22,E E and shear modulus 12G  of CNTRCs obtained from the rule 

of mixture given by Han and Elliott [18]. For example    1 2 3, , 0.137,1.022,0.715     for 

* 0.12;CNTV     1 2 3, , 0.142,1.626,1.138     for * 0.17;CNTV     1 2 3, , 0.141,1.585,1.109     

for * 0.28.CNTV   Titanium alloy (Ti-6Al-4V) with 3113.8GPa, 4430 kg/m , 0.342c c cE      is 

chosen as the core material of the sandwich beam. The total thickness of the sandwich beam is 

0.01 m. The ratio of homogeneous core thickness to face sheet thickness is defined by /c fh h . 

The fundamental frequency parameter is defined as 

 
110 110/ ,L I A   (23) 

where
110A and 

110I are the values of 
11A and 

11I of a homogeneous beam made from pure core 

material, and   is the fundamental frequency. A uniform increment time step /200t T   with 

T as the total time necessary for the load crossing the beam, is used for the Newmark 

procedure. For the convenience of discussion, the following dynamic magnification factor
dD  is 

introduced 

  /2,
max ,d

st

w L t
D

w

 
  

 
 (24) 

where 3

0 /48 c

stw L F E I  is the static deflection of a pure Ti-6Al-4V beam under the load 

0 100 kN,F  acting at the mid-span.
 

5.1. Formulation verification 

Before investigating the vibration characteristics of the beam, the accuracy of the finite 

element model is firstly confirmed.  

Table 2. Comparison of frequency parameter of sandwich beams with / 8,c fh h  L/h=20 

Distribution Source * 0.12CNTV   
* 0.17CNTV   

* 0.28CNTV   

FG-V 
Wu and Kitipornchai [12] 0.1453 0.1588 0.1825 

Present 0.1406 0.1545 0.1790 

UD 
Wu and Kitipornchai [12] 0.1432 0.1560 0.1785 

Present 0.1384 0.1517 0.1749 

Table 3. Comparison of frequency parameter of sandwich beams with L/h=20, 
* 0.17CNTV   

Distribution Source / 8c fh h   / 6c fh h   / 4c fh h   

FG-V 
Wu and Kitipornchai [12] 0.1588 0.1642 0.1743 

Present 0.1545 0.1608 0.1720 

UD 
Wu and Kitipornchai [12] 0.1560 0.1599 0.1668 

Present 0.1517 0.1563 0.1643 
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Table 4. Comparison of frequency parameter of sandwich beams with * 0.17, / 8CNT c fh hV    

Distribution Source L/h=10 L/h=20 L/h=30 

FG-V 
Wu and Kitipornchai [12] 0.3124 0.1588 0.1062 

Present 0.3119 0.1580 0.1056 

UD 
Wu and Kitipornchai [12] 0.3070 0.1560 0.1043 

Present 0.2995 0.1517 0.1014 

Tables 2-4 compare the fundamental frequency parameter of the FG-CNTRC sandwich 

beam with the results of Wu and Kitipornchai [12], where the differential quadrature method has 

been employed. The frequency parameter is received for sandwich beam with two types of CNT 

distribution named as FG-V and UD. Very good agreement between the frequency parameter of 

the present work with that reported in [12] is obtained from Tables 2-4, regardless of the total 

CNT volume fraction *

CNTV , ratio /c fh h and aspect ratio L/h, noting that a Timoshenko beam 

theory is used to formulate governing equations in [12]. 

5.2. Natural frequencies 

Table 5 lists fundamental frequency parameter of FG-CNTRC sandwich beam for five 

different types of CNT distribution. As seen from the Table, the frequency parameter   

increases with increasing the total CNTs volume fraction * ,CNTV especially   more significantly 

increases for a smaller /c fh h  ratio.   

Table 5. The fundamental frequency parameter of sandwich beam for different /c fh h and  L/h ratios 

L/h Type 

/ 8c fh h   / 6c fh h   / 4c fh h   

*

CNTV  
*

CNTV  
*

CNTV  

0.12 0.17 0.28 0.12 0.17 0.28 0.12 0.17 0.28 

30 

UD 0.0924 0.1013 0.1169 0.0937 0.1045 0.1230 0.0963 0.1098 0.1326 

FG-X 0.0925 0.1014 0.1170 0.0938 0.1046 0.1231 0.0965 0.1101 0.1329 

FG-O 0.0924 0.1013 0.1169 0.0936 0.1044 0.1228 0.0961 0.1096 0.1322 

FG-V 0.0939 0.1033 0.1197 0.0960 0.1074 0.1271 0.1003 0.1150 0.1395 

FG-   0.0910 0.0993 0.1045 0.0914 0.1014 0.1187 0.0921 0.1045 0.1253 

20 

UD 0.1384 0.1516 0.1749 0.1403 0.1563 0.1838 0.1441 0.1643 0.1982 

FG-X 0.1384 0.1517 0.1750 0.1404 0.1565 0.1841 0.1444 0.1647 0.1987 

FG-O 0.1383 0.1515 0.1748 0.1402 0.1561 0.1836 0.1438 0.1639 0.1976 

FG-V 0.1406 0.1545 0.1790 0.1437 0.1608 0.1900 0.1501 0.1720 0.2085 

FG-   0.1362 0.1487 0.1707 0.1368 0.1517 0.1775 0.1379 0.1517 0.1873 

10 

UD 0.2736 0.2994 0.3443 0.2774 0.3085 0.3616 0.2850 0.3242 0.3891 

FG-X 0.2737 0.2995 0.3445 0.2777 0.3089 0.3621 0.2856 0.3250 0.3903 

FG-O 0.2735 0.2992 0.3440 0.2771 0.3082 0.3611 0.2844 0.3234 0.3880 

FG-V 0.2779 0.3051 0.3523 0.2841 0.3173 0.3736 0.2968 0.3392 0.4091 

FG-   0.2692 0.2935 0.3360 0.2705 0.2995 0.3492 0.2727 0.3084 0.3680 

5 

UD 0.5243 0.5708 0.6500 0.5318 0.5878 0.6806 0.5465 0.6165 0.7282 

FG-X 0.5246 0.5712 0.6506 0.5324 0.5886 0.6818 0.5478 0.6183 0.7308 

FG-O 0.5240 0.5704 0.6495 0.5313 0.5871 0.6795 0.5451 0.6146 0.7256 
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FG-V 0.5325 0.5816 0.6650 0.5445 0.6042 0.7027 0.5686 0.6442 0.7640 

FG-   0.5160 0.5597 0.6347 0.5188 0.5709 0.6577 0.5233 0.5871 0.6899 

Of the five types of the CNT distribution, the FG-V sandwich beam has the highest 

frequency, while the FG- sandwich beam gives the smallest result. It is easy to see that the 

results obtained for beam with UD, FG-X, FG-O distributions are very close together. Moreover, 

the decrease of the ratio /c fh h leads to the increase in the frequency parameter, especially at 

smaller values of the aspect ratio L/h. This is because the sandwich beam gets higher stiffness 

corresponding to a smaller ratio / .c fh h  Besides, the influence of the aspect ratio L/h on the 

frequency parameter  is also seen in the Table 5, where the frequency parameter increases with 

decreasing aspect ratio L/h. 

5.3. Forced vibration 

Figure 3 shows the time histories for dimensionless mid-span deflection of the sandwich 

beam for three types of CNT distribution, namely FG-V, UD and FG- .  The figure is plotted 

with an aspect ratio / 20L h  , a total CNTs volume fraction * 0.17,CNTV  two values of the ratio 

/ 4, / 8c f c fh h h h   and two values of the moving load velocity, v = 20 m/s,  v = 100 m/s.  

 

Figure 3. Time histories for dimensionless mid-span transverse displacement for different types of                  

CNT distribution (L/h = 20,
* 0.17CNTV   ) 
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The difference of three types of CNT distribution is clearly seen from the figure, especially 

for the smaller values of /c fh h (Figure 3a, c). The mid-span deflection of the sandwich beams 

corresponding to the distribution FG-V of CNT is the smallest, while that of the sandwich beam 

with FG- type distribution is the highest. For both values of the /c fh h  ratio, the mid-span 

deflection increases with increasing moving load velocity. In addition, the sandwich beam is 

subjected to more vibration cycles when it is under load with lower moving velocities. This can 

be explained by the lower ratio of the moving load speed to the critical speed as in case of the 

isotropic beams [19]. As can be observed from Figure 3, the mid-span deflection of the FG-V 

beam insignificantly increases when increasing the /c fh h  ratio, regardless of the moving 

velocity. 

Table 6. Dynamic magnification factors for L/h = 20 and at different moving load velocities and  

/c fh h ratios 

v (m/s) Type / 8c fh h   / 6c fh h   / 4c fh h   

*

CNTV  
*

CNTV  
*

CNTV  

0.12 0.17 0.28 0.12 0.17 0.28 0.12 0.17 0.28 

20 UD  1.1778 0.9509 0.7275 1.1925 0.9419 0.6827 1.2102 0.9284 0.6216 

FG-X 1.1766 0.9496 0.7264 1.1900 0.9401 0.6808 1.2040 0.9241 0.6177 

FG-O 1.1790 0.9522 0.7284 1.1949 0.9436 0.6846 1.2162 0.9327 0.6256 

FG-V 1.1367 0.9198 0.6929 1.1285 0.8958 0.6345 1.0993 0.8492 0.5669 

FG-  1.2213 0.9969 0.7643 1.2622 0.9916 0.7363 1.3396 1.0171 0.7070 

50 UD  1.2070 0.9905 0.7892 1.2138 0.9913 0.7506 1.2162 0.9907 0.6965 

FG-X 1.2055 0.9898 0.7882 1.2107 0.9897 0.7487 1.2089 0.9868 0.6925 

FG-O 1.2085 0.9912 0.7901 1.2167 0.9928 0.7523 1.2234 0.9946 0.7005 

FG-V 1.1558 0.9649 0.7564 1.1357 0.9502 0.7036 1.1327 0.9173 0.6247 

FG-  1.2621 1.0164 0.8239 1.3010 1.0335 0.8019 1.3753 1.0703 0.7810 

100 UD  1.7810 1.4380 1.0152 1.8025 1.3967 0.9341 1.8286 1.3357 0.8311 

FG-X 1.7791 1.4361 1.0134 1.7987 1.3932 0.9311 1.8194 1.3278 0.8251 

FG-O 1.7828 1.4399 1.0168 1.8061 1.4002 0.9370 1.8378 1.3437 0.8370 

FG-V 1.7180 1.3743 0.9576 1.7053 1.3052 0.8587 1.6619 1.1938 0.7281 

FG-  1.8479 1.5068 1.0785 1.9093 1.4996 1.0211 2.0258 1.5083 0.9611 

Table 7.  Dynamic magnification factors for L/h = 5 and at different moving load velocities and 

/c fh h ratios 

v (m/s) Type / 8c fh h   / 6c fh h   / 4c fh h   

*

CNTV  
*

CNTV  
*

CNTV  

0.12 0.17 0.28 0.12 0.17 0.28 0.12 0.17 0.28 

20 UD  1.2313 1.0400 0.8053 1.2506 1.0266 0.7675 1.2844 1.0090 0.7259 

FG-X 1.2297 1.0384 0.8036 1.2479 1.0239 0.7647 1.2775 1.0024 0.7205 

FG-O 1.2328 1.0416 0.8068 1.2533 1.0295 0.7700 1.2911 1.0159 0.7313 
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FG-V 1.1933 1.0015 0.7680 1.1955 0.9721 0.7204 1.1842 0.9253 0.6593 

FG-  1.2741 1.0839 0.8442 1.3166 1.0876 0.8097 1.3983 1.1137 0.8097 

50 UD  1.2683 1.0724 0.8245 1.2914 1.0514 0.7873 1.3255 1.0224 0.7336 

FG-X 1.2669 1.0707 0.8229 1.2886 1.0481 0.7842 1.3183 1.0171 0.7274 

FG-O 1.2697 1.0741 0.8259 1.2940 1.0546 0.7902 1.3325 1.0276 0.7400 

FG-V 1.2323 1.0292 0.7887 1.2339 0.9871 0.7350 1.2215 0.9464 0.6731 

FG-  1.3052 1.1180 0.8616 1.3514 1.1216 0.8438 1.4395 1.1408 0.8285 

100 UD  1.2662 1.1049 0.8656 1.2923 1.0982 0.8178 1.3409 1.0884 0.7540 

FG-X 1.2644 1.1035 0.8638 1.2903 1.0955 0.8145 1.3356 1.0817 0.7472 

FG-O 1.2679 1.1063 0.8673 1.2944 1.1009 0.8209 1.3462 1.0951 0.7607 

FG-V 1.2338 1.0697 0.8238 1.2467 1.0446 0.7590 1.2568 0.9959 0.6741 

FG-  1.3190 1.1416 0.9100 1.3599 1.1553 0.8830 1.4392 1.1908 0.8580 

 

Figure 4. Variation of dynamic magnification factor with type of CNT distribution (L/h=20) 

Tables 6-7 present the dynamic magnification factor 
dD of FG-CNTRC sandwich beam for 

five different types of CNT distribution and different moving load velocities. The aspect ratios 

L/h = 20 and L/h = 5 are respectively used in the computation in two tables. It is observed from 

the tables that the factor
dD decreases with increasing the total CNTs volume fraction 

* ,CNTV regardless of the CNT distribution. This decrease is observed more clearly when the 

moving load velocity is greater and the /c fh h  ratio is smaller. Similar to the frequency 

parameter, the factor
dD obtained for three types of CNT distribution, UD, FG-X and FG-O, are 
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quite close together, while the factors 
dD  received from FG-V and FG-  distributions are the 

smallest and highest, respectively.  

In the Figure 4, the relation between the dynamic magnification factor 
dD  and the moving 

load speed v is illustrated for FG-V, UD and FG- sandwich beams. Two values of the total 

CNTs volume fraction * 0.12,CNTV  * 0.28,CNTV   and two values of the ratio 

/ 4 and / 8c f c fh h h h  are chosen to plot the figure.  Once again, we can see that when *

CNTV  is 

higher and the /c fh h  ratio is smaller, the factor 
dD received from the beams corresponding to 

the three types of CNT distribution is markedly different. Moreover, for the beams with 
* 0.28,CNTV  the factor 

dD significantly increases with increasing the /c fh h ratio and this is 

clearly observed for all FG-V, UD and FG- sandwich beams. Especially, the dynamic 

magnification factor 
dD achieves the maximum value at a higher moving load speed for the 

beam having a lower /c fh h  ratio and higher * .CNTV  

6. CONCLUSIONS 

Vibration of FG-CNTRC sandwich beams under a moving load with five different types of 

CNT distribution has been presented. The sandwich beam consists of three layers, a 

homogeneous core and two face sheets of CNTRC materials. The effective properties of two 

CNTRC faces are determined by the extended rule of mixture. Based on the third-order shear 

deformation theory, a finite element formulation has been derived and employed to investigate 

vibration characteristics of the beam. The obtained numerical results show that CNT distribution 

has an important influence on the vibration behavior of the beam. An increase of the total 

volume fraction of CNTs leads to an increase in the frequency parameter and a decrease in the 

dynamic magnification factor, and the effect of CNT volume fraction is more significant for the 

beam with a smaller /c fh h  ratio. This study also shows that among the five types of the CNT 

distribution, the sandwich beam with FG-V type of CNT distribution has the lowest dynamic 

magnification factor while its fundamental frequency is the highest. Noting that although the 

numerical investigation presented here is only for simply supported beams, the formulation 

derived in the present work can also be used for FG-CNTRC sandwich beam analysis with other 

boundary conditions. 
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