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Abstract. In the paper, the forced transverse vibration of fractional viscoelastic Euler-Bernoulli 

is studied. Based on the fractional relationship of stress and strain, the partial differential 

equation describing transverse vibration of Euler-Bernoulli viscoelastic beam is considered. The 

Riemann-Liouville fractional derivative of the order 0 1   and 0 1   is used. Using the 

Ritz-Galerkin method, the fractional partial derivative equation describing the vibration of the 

beam is transformed into a system of differential equations containing fractional derivatives. The 

dynamic response of a simply supported fractional viscoelastic beam to a harmonic concentrated 

force is calculated in detail. The forced vibration solution of the beam is determined using the 

harmonic balancing method. The solution to the vibration equations is determined analytically, 

while dynamic responses are calculated numerically. The effects of fractional–order parameters 

on the vibration amplitude-time curves are investigated. From the calculation results, we can see 

that the lower the  parameter is, the larger the vibration amplitude. This is consistent with our 

logic thinking. A comparison between the approximately analytical solution and the numerical 

one shows a good agreement, and the correctness of the obtained results is therefore verified. 

Keywords: Vibration, fractional beam, fractional differential equation, dynamic response. 

Classification numbers:  5.4.2, 5.5.2. 

1. INTRODUCTION 

Fractional-order calculus has almost the same long history as the traditional integer-order 

calculus, and it was presented more than 300 years ago [1 - 4]. Fractional-order system has a 

great influence on the things in nature which could be seen, touched, and controlled. Fractional-

order calculus is slowly developed because it had no obviously practical application for a long 

time due to the relatively low calculation level in early time. In recent years, fractional-order 

calculus was paid more and more attention from researchers in different fields and became an 

international hot research topic. Fractional-order calculus has been studied extensively in the 

fields of material science, robot dynamics, electrochemistry, viscoelastic theory, automatic 

control theory, fluid mechanics, and so forth.  
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A differential equation is called the fractional differential equation if it includes at least one 

no integer order derivative in the expression. Ordinary differential equations involving fractional 

differential operators of Riemann-Liouville’s type or of Caputor’s type are known to have many 

potential applications in mathematical modeling, in areas like mechanics and in the life sciences 

[5 - 9]. 

Works on system dynamics with fractional-order derivative may be divided into several 

groups, one of which is the qualitative analysis of the number and stability of solutions. For 

example, Machado and Galhano [10] analyzed statistical dynamics of many micromechanical 

masses and found the existence of both integer and fractional properties in the global dynamics. 

Li et al. [11] studied a range of stable parameters of the simplified Mathieu-type equation with 

fractional-order derivative. Wang and Hu [12] as well as Wang and Du [13] investigated a linear 

single degree-of-freedom oscillator with fractional-order derivative and found some important 

phenomena.   

Due to the complexity of fractional-order derivatives, numerical investigation on the 

complicated nonlinear dynamics phenomena such as bifurcation, chaos and synchronization 

becomes another interesting research topic in the dynamical system with fractional-order 

derivative. Atanackovic and Stankovic [14] proposed a modified numerical procedure to solve 

fractional-order differential equations, and the test on several examples verified the efficiency of 

the method. Cao et al. [15] simulated the fractional-order Duffing equation and investigated the 

effect of the fractional order on system dynamics using phase diagram, bifurcation diagram and 

Poincare map. Sheu et al. [16] solved the fractional damped Duffing equation by turning it into a 

set of fractional integral equations. Wu et al. [17], Chen and Chen [18] and Lu [19] studied the 

synchronization in fractional-order nonlinear systems.  

The investigation by analytical way was also important in dynamical system, and there 

were some important works on analytical investigation on dynamical system with the fractional-

order derivative. Wahi and Chatterjee [20] studied an oscillator with fractional-order derivative 

and time-delay. Padovan and Sawicki [21], Borowiec et al. [22], Huang and Jin [23] also 

investigated differential fractional-order system and presented important results using an 

analytical approach. Using the averaging method, Shen et al. studied resonance of Duffing 

oscillator [24] and of Van der Pol oscillator [25] with fractional-order derivatives. Khang and 

Chien [26] studied the subharmonic resonance of Duffing oscillator with fractional-order 

derivatives. Using the asymptotic methods in the theory of nonlinear oscillations, Khang et al. 

[27, 28] have studied the resonance oscillations in third order systems involving fractional-order 

derivative and have received some new effects. 

The use of fractional relations of stress and strain to calculate vibration of continuous 

systems is rather limited. Based on the stress-strain constitutive relation of the beam material 

proposed by Bagley and Torvik [29], Freundlich has studied the dynamic response of a simply 

supported viscoelastic beam of a fractional derivative type subjected to a moving force load [30, 

31]. Paola et al. studied the establishment of the equations of motion of Euler-Bernoulli beams 

[32]. Pirotta et al. [33] investigated the establishment of the vibration equation of the 

Timoshenko beam by generalizing the vibration equation of the Euler-Bernoulli beam.  

Using the fractional relation of stress and strain, the governing vibration equation of the 

fractional Euler-Bernoulli beam is established in this paper. Then the dynamic response of a 

simply supported fractional beam is calculated. This study is organized in four sections. In 

Section 2, an analytical formulation for the transverse vibration of a fractional viscoelastic 

Euler-Bernoulli beam is presented. In Section 3, the dynamic response of a simply supported 
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fractional viscoelastic beam subjected to a harmonic concentrated force is calculated in detail. 

Section 4 includes some concluding remarks of the study. 

2. ANALYTICAL FORMULATION 

Let us consider the model of an Euler-Bernoulli beam of the length l and the flexural 

rigidity EI as shown in Figure 1, where w(x, t) is the dynamic deflection, and p(x, t) is the 

distributed force. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The governing equation of motion and boundary conditions of a thin beam has been derived by 

considering an element of the beam as shown in Fig. 2. Assuming the deformation to be small 

enough such that the shear deformation is much smaller than w(x,t), a summation of forces in 

the x direction yields  

 

2

2
( , ) 0

w Q
A Q Q dx p x t dx

xt


 
     


  (1) 

Next, the moments acting on the element dx about the y-axis are summed. This yields 

 0
2 2

y

y y

M Q dx dx
M M dx Q dx Q

x x

  
       

  
  (2) 

In Eqs. (1) and (2) yM is the bending moment, Q is the shear force, r is the mass of a volume 

unit, and A is the cross-sectional area assumed to be constant. 
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Figure 1. Beam model. 
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Figure 2. Forces in an element of the beam. 
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Simplifying Eq. (1) yields 

 

2

2
( , )

w Q
A p x t

xt


 
 


  (3) 

Since dx is assumed to be very small, 
2( )dx is assumed to be almost zero, so that Eq. (2) yields  

 0
yM

Q
x


 


       

yM
Q

x





  (4) 

For the Euler-Bernoulli beam, the fractional constitutive law of the viscoelastic material has 

the following form [5] 

 ( , ) ( , ) ( , ), 0 1xx t xx t xxx t E D x t ED x t 

           (5) 

where a  the fractional-order, am  the endogenous damping parameter, E the elastic modulus, 

xxs  the stress, and xxe  the strain. 

In Eq. (5) 
t

D a
is the Riemann-Liouville derivative that is defined by the following form [1-4] 

     

         

( )
1

( )

( ) 1
( ) ( ) ( )

( )

tn n n
n

t n n n

a

d d x t d
D x t t x d

dt dt n dt


 


  



 
 

 

 
   

  


 

        (6) 

Another choice is the Caputo definition  

               

11
( ) ( ) ( )

( )

x n
C n

a t n

a

d
D x t t x d

n q d

   


   
   
   


   

     (7)  

In both cases ( 1) .n na- < <  

In the Eq. (6) and Eq. (7), ( )n q   is called Gamma function, and is defined by the                   

following form  

                                           

1

0

( ) x tx t e dt



    . 

From [10] the axial strain ( , , )x z t  which is related to bending deformation ( , )w x t , is     

rewritten as  

 

2

2
( , , )xx

w
x z t z

x



 


  (8) 

Substituting Eq. (8) into Eq. (5) yields  

 

2 2 2

2 2 2

( , )
( , ) ( , )xx t t t

w w x t
x t ED z Ez D Ez D w x t

x x x

  

     
     

                
 (9) 
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From mechanics of materials, the beam sustains a bending moment ( , )M x t which is related to 

the beam deflection, or bending deformation, ( , )w x t , by  

 y xx

A

M z dA    (10) 

Substituting Eq. (9) into Eq. (10) yields  

 

2
2

2
( , )y tM E D w x t z dA

x






       (11)  

The cross-sectional area moment of inertia about the y-axis is defined by the formula  

 I =
2

A

z dA   (12) 

Substituting Eq. (12) into Eq. (11) yields  

 

2

2
( , )y tM EI D w x t

x






    
  (13) 

Substituting Eq. (13) into Eq. (4) yields  

 

3

3
( , )tQ EI D w x t

x






    
  (14) 

Substituting Eq. (14) into Eq. (3) yields  

 

4

4
[ ( , )]tEI D w x t

x








2

2
( , )

w
A p x t

t



 


  (15) 

It is assumed that the external damping is described by a fractional derivative and has the 

following form 

 C

d w
F A

dt



 
    (16) 

In which A is the cross-sectional area of the beam, and bm is the external fractional damping 

parameter.  

Equation (15) is then shown in the following form 

                               

2 4

2 4
( , ) ( , )t

w d w
A EI D w x t A p x t

x x dt




  
   

 
     

  (17) 

The beam vibration equation (17) can be rewritten as  

 

2 4

2 4
( , )

w d w d w
A EI A p x t

t dt x dt

 

  
   

  
   

  
  (18) 

Using the Ritz-Galerkin method, the transverse deflection of the beam can be described in 

the following form 

 
1

( , ) ( ) ( )i i

i

w x t W x q t




   (19) 

where ( )iW x  are the eigenfunctions and ( )iq t  are the modal coordinates [34]. 
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From Eq. (19) the corresponding derivatives are evaluated bellow 

                          

4
( )

0
4

( ) [ ( )]IV

i t i

i

d

x
W x D q t

w

dt










 
 

 
  (20)  

                          
0

( ) ( )1
[ ( )]

(1 ) ( )

t
i i

t i

d q t q td
D q t d

dt dt t




 


 
 

       (21) 

 
0 0

0

( )1

(1 )

( )
( ) ( )

( )

i
i i

i

i

i

td q td tw
W x W

q
x

dt

d
d

dtd tt



  


 

 

 


 


     (22) 

                           

2

2
0

( ) ( )i i

i

w
W x q t

t








  (23)  

Substituting Eqs. (20), (21), (22) and (23) into Eq. (18) yields   

  ( )

0

( ) [ ( )] ( ) ( ) ( ) [ ( )] ( , )IV

i t i i i i t i

i

EI W x D q t AW x q t A W x D q t p x t 

    




     (24) 

Multiplying Eq. (24) by ( )kW x  yields   

    

( )

0

( ) ( , ) ( )
( ) [ ( )] [ ( )] ( ) ( ) 

(
 

)

IV

i k
i t i t i i k

i i

W x p x t W xEI
q t D q t D q t W x W x

A W x A

 

  
 





 
   

 
  (25) 

Next, integrating over x from 0 to l, and using the orthogonality property of eigenfunctions, after 

some mathematical transformations, the differential equations of the k-th mode of the modal 

coordinates are obtained 

 
2 0

2

0

( , ) ( )
( ) [ ( )] [ ( )]

( )

l

k

k k t k t k l

k

p x t W x dx
q t D q t D q t

A W x dx

 

   


  



 (26) 

Using the notations   

 0

2

0

( , ) ( )
( )

( )

l

k

k l

k

p x t W x dx
h t

A W x dx




  (27) 

It follows from Eq. (26) that  

 
2( ) [ ( )] [ ( )] ( ), 1,2,...k k t k t k kq t D q t D q t h t k 

           (28)                                                    

3. DYNAMIC RESPONSE OF A SIMPLY SUPPORTED FRACTIONAL 

VISCOELASTIC BEAM TO A HARMONIC CONCENTRATED FORCE 

       Transverse vibration of Bernoulli-Euler homogeneous isotropic fractional simply supported 

beam to a harmonic concentrated is investigated in this section (Fig. 3). The eigenfunctions of 

the simply supported beam have the following form [34]  
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       ( ) sin( / )kW x k x l      (29) 

Using the Delta-Dirac function the distributed force ( , )p x t has following form   

 0( , ) cos ( )p x t F t x a    (30) 

Substituting Eq. (29) and Eq. (30) into Eq. (26) and doing some mathematical transformations, 

we get a system of equations  

 
2( ) [ ( )] [ ( )] cos , 1,2,3,...k k t k t k kq t D q t D q t b t k 

         (31) 

where: 02 sin( / )
k

F k a l
b

Al




 ,        

 

Fig. 3. The beam under harmonic concentrated force. 

       The analytical solution of each k-th equation in Eqs. (31) is assumed as  

                                 ( ) sin( )k k kq t A t      (32) 

Using the relations [28] 

        

[cos ] cos( )
2

[sin ] sin( )
2

t

t

D t t

D t t

 

 





    

   

    (33)   

we have the corresponding derivatives  

 

[ ( )] sin( )
2

[ ( )] sin( )
2

t k k k

t k k k

D q t A t

D q t A t

 

 







    

    

      (34) 

From Eq. (32) we have  

  
2( ) sin( )k k kq t A t         (35) 

Substitution of Eqs. (32), (34) and (35) into Eq. (31) we get the equation 

                       

2 2sin( ) sin( )
2

sin( ) cos
2

k k k k k

k k k

A t A t

A t b t










   


 

        

      

    (36) 

a 

F = F0 cos (t)                  

x 

w 

l 
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Using trigonometric formulas 

 
1 2 1 2 1 2

1 2 1 2 1 2

sin( ) sin .cos cos .sin

cos( ) cos .cos sin .sin

x x x x x x

x x x x x x

  

 
    (37) 

we have 

  

sin( ) sin( ).cos cos( ).sin
2 2 2

sin( ) sin( ).cos cos( ).sin
2 2 2

cos cos( ) cos( ).cos sin( ).sin

k k k

k k k

k k k k k k

t t t

t t t

t t t t

  
  

  
  

     

        

        

          

    (38) 

Substituting Eqs. (38) into Eq. (36) yields  

  

2 2 2sin( ) cos .sin( ) sin .cos( )
2 2

cos .sin( ) sin .cos( )
2 2

sin sin( ) co

 

o

9

s

3

c s( )

k k k k k k k k

k k k k

k k k k k k

A t A t A t

A t A t

b t b t

 

 

 

 

 
      

 
   

   

           

       

     

  

By equating the coefficients of the sin and cos of the right and left sides of Eq. (39) we get the 

equations  

 

2 2

2

( cos cos ) sin
2 2

( sin sin ) cos
2 2

k k k k

k k k k

A b

A b

 

 

 

 

 
   

 
   

     

   

    (40) 

Squaring the two sides of Eq. (40) and adding them together, we obtain 

 
2 2 2 2 2( cos cos ) ( sin sin )

2 2 2 2

k
k

k k

b
A

   

   

   
     



        

    (41)  

From Eq. (41) and Eq. (42), we get the formulas to calculate the phase angles   

2 2

2 2 2 2 2

cos cos
2 2sin

( cos cos ) ( sin sin )
2 2 2 2

k

k

k k

 

 

   

   

 
  


   

     

    



        

(42)  

2

2 2 2 2 2

sin sin
2 2cos

( cos cos ) ( sin sin )
2 2 2 2

k

k

k k

 

 

   

   

 
  


   

     

  



        

(43) 

The solution of Eq. (31) has the following form 

 ( ) sin( ) cos .sin sin .cosk k k k k k kq t A t A t A t           (44) 
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Using Eq. (19), the steady-state response of the beam has the form  

     
1

( , ) sin( )sin
N

k k

k

k x
w x t A t

l






     (45) 

It should be noted that in the sum of (45) the sin( / )x l term has a dominant preponderance. So 

if we make N large, the sum (45) doesn't change much. Usually, one chooses N = 3 or N = 5. 

Parameters of the examined beam are chosen as follows: l = 20 m;  = 7600 kg/m
3
; A = 0.002 

m
2
;  E = 2.110

11
 N/m

2
 ; I = 3.95310

-6
 m

4
; zmax = 0.077 m; zM = max/I z ; a = 5 m; F = F0 

cos(t) with F0 = 100 N;   = 10 1/s, N=5. In which I ( 4m ) is the inertial moment of sectional 

area of the beam, zM is the bending moment. 

Some calculation results by analytical method are shown in Figures 4-6. In Figures 4, 5 and 

6 are plotted the transverse vibrations of beam at cross section x = 10 m with  = 0.85; = 0.9; 

= 0.3 and different coefficients . 

 

Figure 4. Transvere vibrations of beam at cross section x = 10 m,  = 0. 

 

Figure 5. Transvere vibration of beam at cross section x = 10 m,  = 0.2 
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Figure 6. Transvere vibration of beam at cross section x = 10 m,  = 0.4. 

       In Figure 7 is the deflection of the beam at time t = 0.8 s, while in Figure 8 is the graph of 

the beam's stress at time t = 0.8 s, in which the solid line is the result calculated by the analytical 

method, the dashed line is the result calculated by the numerical method [35, 36]. We see that 

the results calculated using numerical method are consistent with those calculated using 

analytical method. 

 

Figure 7. Dynamic deflection of the beam at time t = 0.8 s. 

 

Figure 8. The stress of the beam at time t = 0.8 s.  
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4. CONCLUSIONS 

Fractional derivatives have been used to describe the behavior of viscoelastic materials. In 

this paper, the vibration equations of the fractional viscoelastic Euler-Bernoulli beam are 

presented. Using the Ritz-Galerkin method, the fractional partial derivative equation describing 

the beam motion is transformed into a system of differential equations containing fractional 

derivatives. 

As an applicable example, bending vibrations of a simply supported fractional viscoelastic 

beam were studied and calculated. Using the analytical method, the bending vibrations of the 

beam were calculated in detail. Some results calculated by the analytical method were compared 

with those calculated by the numerical method. The results calculated by the two methods agree 

quite well. 
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