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Abstract. This paper proposes a controller design method to stabilize a class of nonlinear, non-

autonomous second-order systems in finite time. This method is developed based on exact-

linearization and Pontryagin’s minimum time principle. It is shown that the system can be 

stabilized in a finite time of which the upper bound can be chosen according to the initial states 

of the system. Simulation results are given to validate the theoretical analysis. 
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1. INTRODUCTION 

In recent years, there has been increasing research interest in designing finite/fixed-time 

stabilization (FTS) laws for second-order control-affine systems with a single control input, i.e., 

the autonomous system modeled by 

 ( ) ( ) x f x h x u  (1) 

where 1 2( , ) Tx x x  is the state vector, (0) 0f  and 0 is the origin. Several notable works on 

this avenue include [1 - 6]. 

The problem of designing FTS laws has theoretical significance because of two reasons. 

First, a FTS control law can drive the states to the origin in a finite-time. Second, FTS is crucial 

for designing sliding mode controllers, since the states of the system must be driven to the 

sliding surface in a finite time [7 - 9]. In the literature, almost all existing solutions to the FTS 

problem hinge on the Lyapunov stability theory [6]. The common approach is to find a 

continuously differentiable, positive definite function ( )V x  so that there is at least a state-

feedback controller ( )u x  making 

  ( ) ( ) ( )
 

  
 

dV V dx V
f x h x u x

dt x dt x
 (2) 

satisfies 
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0  if  0

0  if  

  
 

 

t TdV
t Tdt

 (3) 

where T  is a finite strictly positive number. The value T  is also referred to as the stabilizing 

time of system (1) under the FTS controller ( )u x  due to Krasovski-LaSalle invariance principle, 

it must held that ( ) 0x t  for t T . The aforementioned approaches, however, share the same 

issue of finding a suitable Lyapunov candidate function. Until now, there is still no complete 

solution for constructing such a function 

In this paper, we propose a novel approach to the FTS problem that does not invoke the 

Lyapunov stability theory. The theoretical foundation of the proposed approach is based on the 

minimum time optimal control theory in Pontryagin’s maximum principle [10] and a suitable 

exact-linearization approach from differential geometry [11 - 13]. The proposed approach gives 

a simple approach to stabilize a class of autonomous, nonlinear second-order system in a finite 

time T . An explicit formula for the switching time and the stabilizing time T , which can be 

used as guidelines for performance design is also given. It is noted that minimum time control 

has been studied for second-order linear systems in [10, 14, 15]. The authors of [16] studied 

minimum-time control of second-order systems with a partly unknown nonlinear dynamic. 

In the preliminary work of this paper, the [17], a minimum time controller was designed for 

autonomous, nonlinear second-order systems in strict feedback form, which appears to be 

structurally more simple than the terminal sliding mode controller presented in [18] also for 

second-order autonomous systems in feedback form. In this paper, the results of [17] will be 

enlarged to non-autonomous systems and additionally give a formula to determine the precise 

switching- and stabilizing time. In fact, we are not aware of any other work considering 

minimum time principle for stabilizing non-autonomous, nonlinear systems in finite time. 

2. MAIN RESULTS 

In this paper, we consider a non-autonomous, nonlinear second-order system with the 

following feedback structure 

 1 1 1 2

2 2 1 2

( , )

( , , )

 


 

x f x t x
x f x x t u

 (4) 

or in a compact form 

 ( , ) x f x t hu  (5) 

where 

 1 1 1 2

2 2

( , )
,  ( , )

( , )

   
    
   

x f x t x
x f x t

x f x t
 and 

0

1

 
  
 

h . 

Furthermore, we assume here that 1 1( , )f x t  are smooth and 1(0, ) 0,   f t t . The finite time 

stabilization for this system (4) will be carried out here in two steps: 

– First, the system (4) will be linearized exactly by using a state feedback controller (also 

called the feedback linearization or feedback linearization). 

– And then, the obtained LTI will be time optimal controlled with a state feedback controller in 

the sense of minimizing the following free end time cost-function: 
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0

min!  
T

J dt T  (6) 

It is obviously that with this time optimal control problem, the transient time T , which is also 
the stabilizing time, has to be finite. 

2.1 Exact linearization by state feedback control 

Consider the change of variables 1 1 2 1 1 2,  ( , )  z x z f x t x  or i.e. 

 1 1

2 1 1 2

( , )
( , )

   
        

z x
z m x t
z f x t x

 (7) 

which is clearly invertible, since the fact that 

 
11 1

2 2 1 1

1 0
det det 1 0,        ( , )

1 ( , )

x zm
x x m z t

x z f z tx
      

                   
. (8) 

Then the system (4) can be rewritten as 

 
1 2

2 ( , )




 

z z
z r x t u  (9) 

where 

  1 1
1 1 2 2

1

( , ) ( , ) ( , )
 

   
 

f f
r x t f x t x f x t

t x
. (10) 

Hence, by using the time varying state-feedback controller 

 ( , ) v r x t u   or  ( , ) u v r x t  

the original system (5) becomes 

 2 0 1 0

0 0 1

     
         
     

z
z z v Az bv

v
 where 

0 1 0
,  

0 0 1

   
    
   

A b  (11) 

which is linear and time-invariant in the whole state space z . 

2.2 Time optimal control 

We come to the next task, i.e. to the finite time stabilization of the LTI system (11). From 

literatures, there are many methods available for solving this task associated with Lyapunov’s 

theory [1 - 7]. However, belonging to the purpose that the stabilization time T  could be 

adjusted flexibility, the usage of principle of minimum time optimal control appears to be 

preferred [10, 14, 15, 17]. Therefore, we will use this principle for carrying out the second task. 

Based on the time optimal control principle for any starting point 0z  to the fixed endpoint 

0Tz  we obtain the state feedback time optimal controller for LTI system (11) as follows [17]: 

 1 1

sgn ( )  if  0

( ) sgn( )  if  ( ) 0 and 0

0  otherwise

 



 


  


z z

z

k z
v z k z z z  (12) 
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where 

 1 2 2

1
( )

2
  z z z z z

k
 (13) 

and 0k  is arbitrarily chosen. The time optimal controller (12) is quite the same state feedback 

controller given previously in [17] for autonomous systems. It is also shown furthermore in 

[10,17] that the bigger k  is chosen, the faster stabilizing will be. Moreover, within (12) it is 

realizable that each optimal trajectory ends at the origin and could have maximum one switching 

point on the curve (13). It means that this curve contains all switching points of the control input 

v  and/or end part of all optimal trajectories starting outside it. Therefore, from now onwards, 

we refer to the curve (13) as the “switching-curve”. 

Coming back to the original state space x  we have the finite time optimal controller: 

 

 
1 1

sgn ( ) ( , )   if  ( , ) 0

( ) sgn( ) ( , )  if  ( , ) 0 and 0

0  otherwise

 



  


   



x x

x

k x r x t x t

u x k x r x t x t x  (14) 

with the switching-curve (13) as follows: 

    1 1 1 2 1 1 2

1
( , ) ( , ) ( , ) ( , )

2
     x zx t m z t x f x t x f x t x

k
. (15) 

 

 

 

 

 

 

 

 

Figure 1. Control scheme for finite time stabilizing the non-autonomous nonlinear systems. 

Figure 1 exhibits completely the structure of the proposed finite time stabilization control 

for second order non-autonomous nonlinear systems, where the transient time T  is flexibility 

adjustable by choosing the control parameter k . 

2.3 Determination of stabilizing time 

In this subsection, we will give an explicit formula for determining the stabilizing time. 

Lemma: Let 0 ( , ) z  be the initial states of the LTI system (11). The state feedback 

controller (12) stabilizes this in finite time T  determined by 

 
22 2   


k

T
k

 (16) 

Time optimal controller in  space 

  

 

 Nonlinear non-
autonomous 

system 

Invertible 

assignment 

Linearization 

controller 

Time optimal 
controller in   

space 
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where 

  1 sgn       and 
1

2
sgn   

 
  

 k
. 

Proof: Consider the following three cases with the illustration in Fig. 2. 

 Case 1: 0z  is on the switching-curve (13). In this case, 0,  sgn     and thus 

 
2 1

0
2 2


    

 
    

 
k

k
. 

The optimal control signal 

 sgn ,  [0, ]      v k k t T . 

does not change its sign. The optimal trajectory can be calculated as follows: 

 

( )
0

0 0

2

2

1 1 0
( )

0 1 0 1 1




 
  



 

 

      
        

     

  
  
  

 
t t

At A t

k

t t
z t e z e bvd k d

t t

kt

 

Since the endpoint 0Tz  we have 

 0      


 


    kT T
k k

 

and this is consistent with (16). 

 Case 2: 0z  lies over the switching-curve (see Fig. 2): 

 
1

0
2

   
k

. 

In this case we have 

 1    and 21

2

1
0

2
       k k . 

The optimal input given by 

 1

1

  for  0
( )

    for  

  
 

 

k t t
v t

k t t T
 

changes its sign one time as illustrated in Figure 2. Hence the first part of the optimal trajectory 

is given by: 

 
2 2
2

1

1 1

2 2
( )

( )   for 0
 



 
     
 

  

k k
z t

z t t t
kt

, 

On the switching-curve AOB (Fig. 2), i.e. when 1t t , we have 

 
2

2 2 2
1 2 2 1 2 12

1 1 1
,  0      ( ) ( )

2 2 2 2
z z z z t z t

k k k k


        

which deduces 
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2

1

1

2
   



k
t

k
. 

Then, together with the result from Case 1 for 1  t t T , the total stabilizing time is 

 

2

2 1
1

1

2
2

( )
   

  

kz t
T t

k k
 

and this is consistent with (16). 

 Case 3: 0z  lies under the switching-curve AOB. In this case we have 

 1     and 21

2

1
0

2
         k k . 

The optimal input 

 1

1

  for  0
( )

    for  

 
 

  

k t t
v t

k t t T
 

changes its sign one time as illustrated in Figure 2. Hence 

 
2 2
2

1

1 1

2 2
( )

( )   for 0
 



 
    

 
 

k k
z t

z t t t
kt

, 

and on the switching-curve AOB, i.e. when 1t t , we have similarly to Case 2: 

 

2 2

2 1
1 1

1 1

2 2
2

( )
      

k kz t
t T t

k k k

            

      

which is consistent with (16).  ■ 

 

 

 

 

Figure 2. For the proof of Lemma 1. 

Based on Lemma 1, we can prove the main result of this paper. 

Theorem: The state-feedback controller (14) stabilizes the nonlinear non-autonomous system 

(5) from any initial state 0x  to the origin in finite time T  determined in (16). 

Proof: Since the state-feedback controller (12) stabilizes the LTI system (11) in finite time T , 

we have 1 1( ) ( ) 0 z T z T . Substituting back to (8) we obtain: 

 

 
 

  

O 

A 

B  
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 

1

2 1 1 1

( ) 0
( )

( ) ( ), (0, )

   
       

z T
x T

z T f z T T f T
. 

Hence, with 
1(0, ) 0,   f t t  we come finally to ( ) 0x T . ■ 

Remark 1: The formula (16) shows that  the stabilizing time T  for non-autonomous nonlinear 

systems can be made smaller by increasing k . ■ 

Remark 2: Consider a more general class of non-autonomous, nonlinear systems given as 

 1 1 1 2

2 2

( , ) ( , )

( , ) ( )

 


 

x f x t g x t
x f x t h u

 (17) 

where 1 1( , )f x t  is smooth with 1(0, ) 0,   f t t , 2( , )g x t  is smooth and invertible in an open 

region containing the origin, 

 
2

2
2

( , )
( , )





g

g x t
D x t

x
 

satisfies 20,  , gD x t  and ( )h u  is invertible. Under these assumptions, the corresponding 

transformation ( , )z m x t  for system (17) is defined by 

 1

1 1 2

( , )
( , ) ( , )

 
    

x
z m x t

f x t g x t
 

is invertible with its inverse 

 
 

11
1

2 1 1

( , )
( ( ),




 
    

z
x m z t

g z f z t t
. 

Then the following controller 

  1 1
1 1 2 2

2 1 2

( , )
( )   with  ( , ) ( , ) ( , ) ( , )

( , )g

v r x t f f g g
h u r x t f x t g x t f x t

D x t t x t x

    
     

   
 (18) 

will linearize exactly the nonlinear non-autonomous system (17). The time optimal controller is 

designed as: 

 

2

1 2

1
2

sgn ( ) ( , )
  if ( ) 0

( , )

( ) 0   if 0

sgn ( ) ( , )
  if ( ) 0,  0

( , )








 


  
 

 


x
x

g

x
x

g

k x r x t
x

D x t

h u x x
k x r x t

x x
D x t

 (19) 

which stabilizes (17) in finite time, where 

  1 1 1 2 1 1 2

1
( , ) ( , ) ( , ) ( , ) ( , )

2
    x x t x f x t g x t f x t g x t

k
. ■ 

3. SIMULATION RESULTS 
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3.1 Simulation 1 

To illustrate the proposed FTS controller design method, consider the following system: 

 

2 3
1 21

2
2 21

  


 
t

x t x x

x e x x u
 (20) 

Comparing with system (5), we have 

 
2 3

21
2

21

( , )
 

  
 
t

t x x
f x t

e x x
 and 

0
( )

1

 
  
 

h x  

It is clearly, that this non-autonomous nonlinear can not be stabilized by applying any 

conventional methods related to Lyapunov’s theory, because ( , )f x t  is not bounded in t . 

The corresponding designed FTS controller for system (20) can be written as in (14) and 

(15) as follows: 

 
 

 

2 3 2 3
1 2 21 1

3 2 2 2 3 2
2 21 1 1 1

1
( )

2

( , ) 2 3

    

   

x

t

x x t x x t x x
k

r x t tx t x t x x e x x
 

Figure 3 depicts the simulated states of the system with 3.5k  and 0 (3 , 5)  Tx , 

obtained with simulation program FTS1.m (see Appendix). By using the formula (16), we obtain 

the switching time and the finite time stabilizing time of the closed-loop system as 1 1.8326t s  

and 2.2367T s . Thus, the simulation result exhibited in Fig. 3 is consistent with our analysis. 

 

Figure 3. Simulation 1 - States 1x  (solid) and 2x  (dashed) vs time. 

3.2 Simulation 2 

Next, we consider the following system to illustrate the Remark 2: 

 
2 3

1 21

2 2
2 1 2

exp( ) tan( )

cos( )

  


 

x t x x

x t t x x u
. (21) 
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For the system (21), it is observed that 2 2( , ) tan( )g x t x  is invertible for 2 2x . Due the 

component 2exp( )t  in 1 1( , )f x t , which increase very fast with time, it is completely unable to 

stabilize the system (21) asymptotically. Indeed, FTS controller should be designed to stabilize 

the state to the origin in finite time, so that the effect of 2 3
1exp( )t x  is eliminated after the 

stabilizing time. The FTS controller is designed as in (19), with 

 

 

 2 2 2

2 3 2 3
1 2 21 1

2 2
1 23 2 3

21 1 1 2
2

1
( ) exp( ) tan( ) exp( ) tan( )

2

cos( )
( , ) 2 3 tan( )

cos ( )

    

   

x

t t t

x x t x x t x x
k

t t x x
r x t te x e x e x x

x

 

Under the controllers designed as in (19) where k  is chosen as 0.2, 1, 5, respectively, and 

with the initial state: 

 0 ( 1 , 1)  Tx , i.e. 0 0( ,0) (  , ) ( 1 , 0.5574)    T Tz m x , 

we obtain the state trajectories 1 2( ),  ( )x t x t  of the corresponding closed-loop systems by using 

simulation program FTS2.m given in Appendix, which are depicted in Fig.4. The corresponding 

stabilizing time T  is determined from (16) as 3.1741  s , 1.5923  s  and 0.7967  s . Thus, it 

can be observed from Fig. 4 that the obtained simulation results coincide completely with 

Theorem, Remarks 1 and 2. 

 

Figure 4.  Trajectories of 1x  (solid) and 2x  (dashed) with different value k . 

4. CONCLUSIONS 

In this paper, a simple FTS controller design method based on exact linearization and 

Pontryagin’s minimum time principle has been proposed for a class of non-autonomous, 

nonlinear second-order systems. The stabilizing time of the controller was also explicitly given. 

Our future work will be extending this FTS controller design method for nonlinear, non-

autonomous, higher order systems, where the main challenge is determining the switching time 

of the optimal control input. 

Acknowledgements. This research is funded by Department of Automatic Control. 



 

 
Dang Van My, Trinh Hoang Minh, Vu Thi Thuy Nga, Nguyen Doan Phuoc 

 

258 

CRediT authorship contribution statement. Author 1: Methodology, Implementation, Draft writting. 

Author 2: Implementation, Draft writting. Author 3: Methodology. Author 4: Methodology. 

Declaration of competing interest. The authors declare that they have no known competing financial 

interests or personal relationships that could have appeared to influence the work reported in this paper. 

REFERENCES 

1. Bhat S. P. and Bernstein D. S. - Finite-time stability of continuous autonomous systems, 
SIAM Journal on Control and Optimization 38 (3) (2000) 751-766. 

2. Hong Y. - Finite-time stabilization and stabilizability of a class of controllable systems, 
Systems & control letters 46 (4) (2002) 231-236. 

3. Moulay E. and Perruquetti W. - Lyapunov-based approach for finite time stability and 
stabilization, Proceedings of the 44th IEEE Conference on Decision and Control, 2005, 
pp. 4742-4747. 

4. Polyakov A. - Nonlinear feedback design for fixed-time stabilization of linear control 
systems, IEEE Transactions on Automatic Control 57 (8) (2011) 2106-2110. 

5. Pal A. K., Kamal S., Nagar S. K., Bandyopadhyay B., and Fridman L. - Design of 
controllers with arbitrary convergence time, Automatica 112 (2020). 

6. Basin M. - Finite-and fixed-time convergent algorithms: Design and convergence time 
estimation, Annual Reviews in Control, 2019. 

7. Venkataraman S. T. and Gulati S. - Control of nonlinear systems using terminal sliding 
modes, Proc. of the American Control Conference (ACC), 1993, pp. 891-893. 

8. Levant A. - Higher-order sliding modes, differentiation and output-feedback control, 
International Journal of Control 76 (9-10) (2003) 924-941. 

9. Utkin V. - About second order sliding mode control, relative degree, finite-time 
convergence and disturbance rejection (2010), 11

th
 International Workshop on Variable 

Structure Systems (VSS), 2010, pp. 528-533 

10. Pontryagin L. S., Boltjanskij V. G., Gamkrelidze R. V., and Miscenko E. P. - 
Mathematische Theorie optimaler Prozesse, VEB Verlag Technik Berlin, 1964. 

11. Brockett R. W., Millman R. S., and Sussmann H. J. - Differential geometric control 
theory, Proceedings of the conference held at Michigan Technological University, June 
28-July 2, vol. 27, 1983. 

12. Isidori A. - Nonlinear control systems, Volume ii’, Springer-Verlag, New York, 1999. 

13. Charlet B., Lévine J., and Marino R. - On dynamic feedback linearization, Systems & 
Control Letters 13 (2) (1989) 143-151. 

14. Shen Z. and Andersson S. B. - Minimum time control of a second-order system, 49
th
 IEEE 

Conference on Decision and Control (CDC) (2010) 4819-4824. 

15. Shen Z., Huang P., and Andersson S. B. - Calculating switching times for the time optimal 
control of single-input, single-output second-order systems, Automatica 49 (5) (2013) 
1340-1347. 

16. Schwarzgruber T., Colaneri P., and del Re L. - Minimum-time control of a class of 
nonlinear systems with partly unknown dynamics and constrained input, IFAC 
Proceedings 46 (23) (2013) 211-216. 

17. Vu T. T. N. and Nguyen D. P. - Finite time stabilization via time minimum principle (in 
Vietnamese), J. of Science and Technology Thai Nguyen University 135 (5) (2015)             
213-218. 

18. Fenga Y., Yub X., and Man Z. - Non-singular terminal sliding mode control of rigid 
manipulators, Automatica 38 (2002) 2159-2167. 

 



 
 
Finite time stabilization of non-autonomous, nonlinear second-order systems based on … 
 

259 

APPENDIX: SIMULATION PROGRAMS 

FTS1.m 

% FTS for non-autonomous, non-linear system 

% dx(1)=f1+x(2), dx(2)=f2+u 

clc 

global k 

k=3.5; 

options = odeset('RelTol',1e-6,'AbsTol',1e-6); 

[t,x]=ode45(@Sys1,[0 3],[3 -5],options); 

plot(t,x(:,1),t,x(:,2)); legend('x1','x2'); 

This simulation program uses the following function named Sys1.m to declare simulated non-

autonomous, non-linear system dynamic. 

Sys1.m 

function dx=Sys1(t,x) 

    global k 

    f1=t^2*x(1)^3; 

df1t=2*t*x(1)^3; df1x=3*t^2*x(1)^2; 

    f2=exp(t)*x(1)^2*x(2); 

 r=df1t+df1x*(f1+x(2))+f2; 

    phi=x(1)+(f1+x(2))*abs(f1+x(2))/(2*k); 

    if phi~=0 

        v=-k*sign(phi); 

    elseif x(1)~=0 

        v=sign(x(1)); 

    else 

        v=0; 

    end 

    u=v-r; 

    dx=[f1+x(2);f2+u];    

end 

FTS2.m 

% FTS for non-autonomous, non-linear system 

clc 

global k 

% non-autonomous system with unbounded exponentially increasing dynamic  

% dx(1)=f1+g, dx(2)=f2+u 

k=1; 

options = odeset('RelTol',1e-6,'AbsTol',1e-6); 

[t,x]=ode45(@Sys2,[0 4],[-1 1],options); 

plot(t,x(:,1),t,x(:,2)); legend('x1','x2'); 

The simulation program FTS2.m above uses the function named Sys2.m to declare simulated 

non-autonomous, non-linear system dynamic as follows. 

Sys2.m 

function dx=Sys2(t,x) 

    global k 

    f1=exp(t^2)*x(1)^3; 

df1t=2*t*exp(t^2)*x(1)^3; df1x=3*exp(t^2)*x(1)^2; 
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    g=tan(x(2)); dgx=1/cos(x(2))^2; 

    f2=t*cos(t^2)*x(1)*x(2)^2; 

    r=df1t+df1x*(f1+g)+dgx*f2; 

    phi=x(1)+(f1+g)*abs(f1+g)/(2*k); 

    if phi~=0 

        v=-k*sign(phi); 

    elseif x(1)~=0 

        v=sign(x(1)); 

    else 

        v=0; 

    end 

    u=(v-r)/dgx; 

    dx=[f1+g;f2+u];    

end 

 

 

 

 


