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Abstract. There are many experiments on solidification (i.e. freezing) of water droplets on the 

cold plate but the numerical investigation of its freezing process is very little. So, to provide an 

understanding of that, we present a numerical method and its results to describe the solidification 

process of water droplets on a cold plate at different wetting angles (o) in the range of 30o - 155o. 

The Navier-Stokes and energy equations are used and solved by an axisymmetric front-

tracking/finite difference technique. The distinct phases are separated by the interfaces 

represented by connected elements. So, there is a three-junction point among three phases: solid, 

liquid, and gas. The water droplets are assumed as a spherical cap and placed on the cold plate 

which is kept at a subfreezing temperature. At the end of solidification, we obtain a small 

protrusion shape at the top of the frozen water droplet and its height is also higher than that of 

the initial water droplet. That is explained by the increase in volume upon freezing because of 

the difference in densities of water and ice. The frozen water droplets are also compared with the 

corresponding experimental ones reported in the literature. 
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1. INTRODUCTION 

The solidification of water droplets can find in nature and industrial processes such as the 

freezing water droplets on wind turbines, aircraft, air conditioning, fridge and any cooling types 

of equipment [1 - 4]. It may cause serious hazards as reducing the performance of machines or 

decreasing their lifetime. Providing energy to remove the ice on the surface is one of the good 

ideas but it seems to be expensive and influences the performance of machines, too. Using 

chemical compounds is another choice but it may cause bad effects on the environment. 

Therefore, deep understandings of the freezing process would be a significant task for 

researchers to find the solution to avoid the damage as well as enhance the efficiency of 
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machines. The spreading and solidification process of water drop was investigated at different 

contact angles (i.e. wetting angels) (o) by Huang et al. [5] as well as by Pan et al. [6] in the 

range of 76o - 155o and 77o - 145o, respectively. In the same work [6], Pan et al.   also studied the 

solidification of water droplet on an inclined surface (φ = 30o). The freezing process of a water 

droplet was monitored on different cold concave surfaces with radii (R) in the range of 10 mm – 

25 mm and R = ꚙ [7] as well as on spherical surfaces with radii (R) ranging from 15 mm to 30 

mm. In this study, we only consider the solidification of a water droplet on a cold flat surface. 

Numerically, Shetabivash et al. [9] presented a multi-level-set approach to simulate the 

solidification process of water droplet on a flat surface. In another research, Vahab et al. [10] 

used the level-set approach and the moment of fluid method to consider the solidification of a 

water droplet on a substrate in order to apply to aircraft icing. Ajaev and Davis [11] applied the 

boundary integral method [12] to simulate the solidification process of droplet. However, these 

researches did not consider the solidification of a water droplet at different wetting angles (o). 

To fill this gap, we represent a front-tracking method [13] to numerically simulate the freezing 

process of water droplets on a horizontal plate. 

2. NUMERICAL MODEL AND METHOD 

The problem? is described in .  

 
Figure 1. Computational domain of the freezing process of a water droplet on a cold plate at growth                

angle (ε) and wetting angle (o). 

The shape of the water droplet is assumed to have a spherical cap. Because of the symmetry 

of the droplet, we only simulated a half of the droplet which is placed on a cold plate (To) in a 

computational domain W×H. The interfaces separate three phases: solid, liquid, and gas. Thus, 

there are three interfaces, namely solid-liquid, solid-gas and liquid-gas. Accordingly, there is the 

presence of a three-junction point. We use the Navier-Stokes and energy equations to solve the 

problem, and the front-tracking method [14] is used to represent the phase boundaries. The 

liquid and gas in this study are supposed to be incompressible, immiscible and Newtonian. In 
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each phase, density ρ, viscosity µ, heat capacity Cp and thermal conductivity k are constant, the 

Navier-Stokes and continuity equations are: 
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here, u is the velocity vector, p is the pressure, σ and κ are the interfacial tension coefficient and 

twice mean curvature, respectively. The Dirac delta function is denoted by δ, x is the position 

vector, subscript f expresses the interface, n is the unit normal vector, force f is used to apply the 

non-slip condition on the solid interface [15 - 18], g is the gravitational acceleration, Lh is the 

latent heat of fusion, q  is thermal flux at the solid-liquid interface, subscripts s and l represent 

solid and liquid, respectively.  

With T - temperature, k – thermal conductivity, Cp – heat capacity, the energy equation is: 
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The dimensionless parameters are important in our study. They give us a general vision 

about their impacts. The dimensionless parameters used are:   
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here, Pr, St, Bo, We are Prandtl number, Stefan number, Bond number, Weber number, θo – 

initial dimensionless temperature, ρsl, ρgl – density ratios, μsl, μgl – viscosity ratios, ksl, kgl – 

thermal conductivity ratios, Cpsl, Cpgl – heat capacity ratios. The non-dimensional time is τ = t/τc. 

Here, τc = ρlCplR
2/kl is reference time, R = [3Vo/(4π)]1/3- equivalent radius, Vo – initial volume of 

the water droplet. 

In this study, the front-tracking technique with the finite difference scheme, previously 

presented in some works [13, 19], is applied, where the interfacesinclude the points xf connected 

to each other, and each point moves with the velocity Vn which is interpolated from the nearest 

grid points: 

 
1

x x V
n n

f f n t+ = +      (7) 

with the time evolution, t and t + t correspond to steps n and n + 1. Thanks to the points xf, we 

can compute the interfacial tension forces acting on the interfaces and hence build the indicator 

functions to identify the properties of the phase. To determine the distinct phases, we use two 

indicator functions I1 and I2 reconstructed from the positions of the interfaces. The value of each 

indicator function is 1 in a fluid and 0 in another one. The subscripts s, l, and g are for solid, 
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liquid, and gas, respectively. Thus, the properties of the phases at every position in the 

computational domain are given as [20, 21]: 

 ( ) ( )1 1 2 21 1s l gI I I I    = + − + −      (8) 

 ( ) ( )1 1 2 21 1s l gI I I I    = + − + −      (9) 

More details about our method can be found in some previous works [13, 19]. 

3. RESULTS AND DISCUSSION 

3.1. Water droplet at a wetting angle o =78o 

Figure 2 shows the time evolution of the freezing water droplet at a wetting angle o = 78o 

placed on a cold plate. With R = 1.41 mm (Di = 2.82 mm [6]), the parameters inlude Pr = 7, St = 

0.1, Bo = 0.27, We = 0.005, θo = 1, ρsl = 0.9, ρgl = 0.05, μsl = 1, μgl = 0.05, ksl = 4, kgl = 0.05, Cpsl = 

0.5, and Cpgl = 0.2. At time  = 0 (Figure 2a), the water droplet is assumed to have a spherical 

cap. The whole droplet is in the liquid state and its density has got the highest value. At  = 0.26 

(Figure 2b), the distinct regions (solid and liquid) are established with the appearance of a 

freezing interface between them. The density difference between ice and water can be seen in 

Figure 2b, where the density in the region under the freezing interface is smaller than that above 

 

 

Figure 2. The time evolution of ice during the freezing process of a water droplet at o =78o. (a)-(c) 

correspond to  =0,  =0.26 and  =0.72 with the density field (ρ), and the velocity vectors normalized by 

Uc=R/tc. (d) Comparison in the shape of the frozen droplet between the numerical simulation (right) and 

the experiment of Pan et al. [6] (left). In (d), the inset in the top-left corner shows the initial water droplet 

on the cold plate in the experiment. 
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the freezing interface, which reflects a property of water (the density of ice is smaller than that 

of water). Besides, a velocity field is presented in Figure 2b. Over time, at  = 0.72 (Figure 2c), 

the region of the solid state of the water droplet is increased, this is in contrast to the decrease of 

the region of the fluid state of the water droplet. Similarly, the distinct regions of the water 

droplet, density field, velocity field can be seen in Figure 2c. Finally, at  = 1.243 (Figure 2d), 

the solidification process of the water droplet is almost finished. The protrusion of the frozen 

water droplet’s top appeared; this feature can be explained by the volume expansion. We 

compare our study with the experiment of Pan et al. [6] at a wetting angle o = 78o. In Figure 2d, 

our study is in the right frame and the experiment of Pan et al. [6] is in the left frame. As 

reported by Pan et al. [6], the water droplet was initially a part of a sphere (see the inset in the 

top-left corner of the left frame in Figure 2d) because of surface tension acting on the water-gas 

interface, and it became a frozen water droplet with an apex at the droplet top as shown in the 

left frame (Figure 2d). As can be seen in Figure 2d, our numerical model agrees well with the 

experiment of Pan et al. [6]. 

3.2. Water droplet at a wetting angle o = 124o 

Figure 3 illustrates the freezing process of the water droplet that possesses a wetting angle 

o = 124o with Pr = 7.5, St = 0.1, Bo = 0.18, We = 0.005, θo = 1, ρsl = 0.9, ρgl = 0.05, μsl =  1, μgl = 

0.05, ksl = 4, kgl = 0.05, Cpsl = 0.5, and Cpgl = 0.2 (initial volume Vo = 6 μl [5]). Similar to the 

previous case, we assume that the initial water droplet has a spherical cap. The cold plate is kept 

at subfreezing temperature Tc. At time  = 0 (Figure 3a), the normalized temperature θ has the 

highest value excepting the region near the cold plate. At  = 0.5 (Figure 3b), the interface 

 
Figure 3. The time evolution of the water droplet with o =124o freezing on the plate. (a)-(c) correspond to 

  = 0,   = 0.5 and   = 2.74 with the temperature field (θ) and the velocity vectors normalized by Uc= 

R/tc. (d) Comparison between the numerical simulation (right) and the experiment of Huang et al [5] (left). 

In (d), the inset in the top-left corner shows the initial water droplet on the cold plate in the experiment. 
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between ice and water moves from the bottom to the top of the water droplet. Along with the 

movement of the interface, over time, the normalized temperature around the water droplet 

decreases gradually because of the cooling effects of the cold plate. At  = 1.8 (Figure 3c), the 

region having the subfreezing temperature extends from the cold plate to the top of the domain. 

Finally, at  = 2.74 (Figure 3d), the solidification process of the water droplet is almost 

complete. Similar to the previous case, we can see a shape like a horn on top of the water 

droplet. This feature is induced by the volume expansion. This case is compared with the 

experiment of Huang et al. [5] at a wetting angle o =124o. In Figure 3d, our study is in the right 

frame and the experiment of Huang et al. [5] is in the left one. As reported by Huang and co-

workers [5], at the beginning of the freezing process, the water droplet has a spherical cap (see 

the inset in the top-left corner of the left frame in Figure 3d) due to the surface tension force. 

The droplet became a frozen one with an apex at the droplet top at the end of freezing, as shown 

in the left frame (Figure 3d). Figure 3d confirms that the computed frozen droplet and that 

reported in Huang et al. [5] match very well. 

3.3. Water droplet at a wetting angle o = 155o 

Figure 4 describes the solidification process with the time evolution of the freezing 

interface of the water droplet at a wetting angle o = 155o. The parameters include Pr = 7.5, St = 

0.1, Bo = 0.18, We = 0.005, θo = 1, ρsl = 0.9, ρgl = 0.05, μsl = 1, μgl = 0.05, ksl = 4, kgl = 0.05, 

Cpsl=0.5, and Cpgl=0.2 (initial volume Vo=6μl [5]). Firstly, at  =0 (Figure 4a), the initial droplet 

shape with normalized temperature θ is presented. The whole domain excepting the region near 

the cold plate has the highest temperature. Secondly, at  = 0.72 (Figure 4b) the freezing 

 

Figure 4. The time evolution of the ice layer of the water droplet with o = 155o. (a)-(c) correspond to  = 

0,  = 0.72 and   = 5.79 with the temperature field (θ), the velocity vectors normalized by Uc= R/tc. (d) 

Comparison between the numerical simulation (right) and the experiment Huang et al [5] (left). In (d), the 

inset in the top-left corner shows the initial water droplet on a cold plate in the experiment. 
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interface of the droplet moves from the bottom to the top. Along with the movement of the 

freezing interface, from the bottom of the drop to its top, the normalized temperature has got low 

to high temperatures, the solidification happens at the location where it’s temperature below the 

freezing temperature of water. Then, at  = 4.0 (Figure 4c), the normalized temperature expands 

from the bottom to the top of the domain, more and more area of the droplet is frozen. Hence, 

the liquid region of the droplet is decreased, this is in contrast to the increase in the solid region 

when time proceeds. Finally, at  = 5.79, as we can see from Figure 4d, the solidification of the 

water droplet is almost finished. A shape of the frozen droplet with a horn is formed. Similar to 

the previous case, we compare this case (at a wetting angle o = 155o) to the experiment of 

Huang et al. [5]. In Figure 4d, our study is shown in the right frame and the left one is the 

experiment of Huang et al. [5]. Like the previous cases (Figure 2d and Figure 3d), the water 

droplet with a spherical cap at the beginning of the freezing process (see the inset in the top-left 

corner of the left frame of Figure 4d) [5] became a frozen one with a conical top surface at the 

end of freezing (the left frame of Figure 4d). There is not much difference between the simulated 

and experimental droplets as shown in Figure 4d. 

3.4. Variations of freezing water droplets on a cold plate at different wetting angles 

Experimentally, Satunkin [22] studied the solidification of molten silicon and germanium 

droplets at a wetting angle of about 33o. For water droplets, Huang et al. [5] conducted 

experiments on their solidification at wetting angles in the range of 76o - 154.9o. In the work of 

Pan et al. [6], the wetting angle of water droplets was varied in the range of 77o - 145o. It is 

found that the wetting angle of a liquid droplet on a cold plate studied in the aforementioned 

works is in the range of 30o - 155o. To our knowledge, no further investigation on a water droplet 

 

Figure 5.Variations of freezing water droplets at different wetting angles by evolution time . (a) The 

shapes of the ice droplets after complete solidification process. (b) The evolution height of the droplets 

before and after solidification process, h is the height of the droplet, ho is the initial height of the droplet. 

(c) Proportion of the volume and the initial volume of the droplets with time. (d) The average freezing 

interface heights of the droplets ha with time. 
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at a wetting angle out of this range has been conducted so far. Accordingly, basing on our 

literature survey, we vary the wetting angle in the range of 30o - 155o to investigate the 

solidification process of water droplets. 

Figure 5 illustrates the effects of the wetting angles o in the range of 30o - 155o on the 

freezing process of a water droplet with the parameters Pr = 7.5, St = 0.1, Bo = 0.18, We = 

0.005, θo = 1, ρsl = 0.9, ρgl = 0.05, μsl = 1, μgl = 0.05, ksl = 4, kgl = 0.05, Cpsl = 0.5, and Cpgl = 0.2 

(initial volume Vo = 6 μl [5]). Figure 5a shows the shapes of the droplets after the complete 

solidification process, where  the height of the ice droplets increases with increasing the wetting 

angle. We can see the increasing heights of the droplets in Figure 5b. After finishing the freezing 

process, the evolution height, h - ho, of the droplet increases with increasing the wetting angle in 

the range of 30o - 90o. In contrast, further increasing the wetting angle from 90o to 155o causes 

the evolution height of the droplet to be decreased. Interestingly, the evolution heights of the 

droplets at wetting angles in the range of 90o - 155o all have got the negative values during the 

initial stage of the freezing process. This can be explained by the effect of the gravitational 

acceleration. As mentioned, the initial droplets were assumed to be spherical and have an initial 

volume Vo. The droplets having a great height and a small area of contact with the cold plate are 

more affected by gravity. Therefore, the height of the water droplet is pulled down during the 

initial stage of the freezing process, resulting in the negative value of h – ho as shown in Figure 

5b. Figure 5c presents the temporal variation of the ratio, in terms of %, of the volume V of the 

droplet to its initial volume Vo. It is clear that the volume of the droplet increases as the freezing 

process proceeds. After complete solidification process, the volume rises about 10 % as 

compared to the initial volume because of the volume expansion of the water drop upon 

freezing. In addition, the solidification time increases with an increase in the wetting angle in the 

range of 30o - 155o. This can be explained by the contact area of the droplet with the cold plate. 

The larger the contact area of the droplet, the faster the solidification. Figure 5d shows the 

variation with respect to time of the mean value of the freezing interface height of the droplet. 

The solidification process finished with the maximum average interface height at a wetting angle 

o = 155o. It indicates that decreasing the wetting angle will enhance the freezing process. 

4. CONCLUSIONS 

The numerical model was presented to simulate the freezing of water droplets on a cold 

plate under the influence of the wetting angles o. We consider the temporal evolution of the 

freezing process and compare with the experiments of Pan et al. [6] (o = 78o) and Huang et al. 

[5] (o = 124o and o = 155o). The results of the numerical simulations agree well with the 

experiments. The shape of the droplet after complete solidification process, the evolution height 

of the droplet, the percentage of the droplet volume compared to its initial volume, and the 

average freezing interface height were presented. After ending the solidification process, we can 

see the top of the droplets like a horn and that  can be explained by the volume expansion of the 

water droplet upon freezing. 
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