
 
 
Vietnam Journal of Science and Technology 59 (1) (2021) 120-134 

doi:10.15625/2525-2518/59/1/15261 

 

NUMERICAL CALCULATION OF STATICALLY ADMISSIBLE 

SLIP-LINE FIELD FOR COMPRESSION OF A THREE-LAYER 

SYMMETRIC STRIP BETWEEN RIGID PLATES 

Nguyen Manh Thanh
1, *

, Nguyen Trung  Kien
2
, Sergei Alexandrov

3
 

1
Institute of Mechanics, Vietnam Academy of Science and Technology, No.264 Doi Can Street, 

Ba Dinh District, Ha Noi, Viet Nam   

2
University of Communications and Transport, No.3 Cau Giay Street, Lang Thuong ward,                

Dong Da District, Ha Noi, Viet Nam  

 
3
Institute for Problems in Mechanics, Russian Academy of Sciences, Prospekt Vernadskogo,                 

101-1, Moscow 119526, Russia  

*
Email: manhthanh2012209@gmail.com 

Received: 10 July 2020; Accepted for publication: 27 December 2020  

Abstract. This paper presents a method to build up statically admissible slip-line field and, as a 

result, the field of statically admissible stresses of plane-strain compression of a three-layer 

symmetric strip consisting of two different rigid perfectly plastic materials between rough, 

parallel, rigid plates The case is considered when the shear yield stress of the inner layer is 

greater than that of the outer layer. Under the conditions of sticking regime at bi-material 

interfaces and sliding occurs at rigid surfaces with maximum friction, the appropriate 

singularities on the boundary between the two materials have been assumed, then a standard 

numerical slip-line technique is supplemented with iterative procedure to calculate characteristic 

and stress fields that satisfy simultaneously the stress boundary conditions as well as the regime 

of sticking on the bi-material interfaces. The correctness of this admissible slip-line field model 

is confirmed by comparison with an analytical solution. It is shown that the singularities built at 

the end points of the line of separation of the materials are necessary to ensure the sticking 

regime on the interface of the strip layers. 

Keywords: piece-wise homogeneous materials, rigid perfectly plastic materials, maximum friction surface, 

method of characteristics. 

Classification numbers: 2.9.4, 5.4.5, 5.9.3. 

1. INTRODUCTION 

The problem of plane-strain compression of a strip between two parallel, rigid plates has a 

special position in plasticity theory. Starting from Prandtl-Nadai solution for rigid perfectly 

plastic material [1, 2], various analytical solutions, extended or generalized, for a strip of single 

material or piece-wise homogeneous materials have been given [3 - 6]. However, the 

corresponding numerical solutions have only been implemented for a strip of single rigid 
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perfectly plastic material, among which it is necessary to mention the solutions in [7-8] for stress 

and velocity and the solution for the distribution of the strain rate intensity factor along 

maximum friction surfaces [9]. These solutions were based on the theory of characteristics - also 

known as method of characteristics - due to the equations governing plastic flow in plane strain 

are hyperbolic and the characteristics for the stresses and the velocities coincide, furthermore, 

they coincide with the slip-lines for which the general theory is presented in [2, 10]. 

According to the analysis presented in [2, 8], a common to the problems of plane-strain 

compression of a strip between two parallel rigid plates is the presence of so-called rigid regions 

in the vicinity of overhanging parts, as well as in the center of the strip, where the elastic and 

plastic strains are of the same order, negligible compared to the plastic flow strains. The line of 

separation between rigid and plastic regions, which must be a slip line [8, 10], is not known in 

advance, moreover, their position often depends on the velocity boundary conditions. As a 

result, there are insufficient stress boundary conditions to define the slip-line field uniquely and 

thus the problem under consideration is not statically determined (Fig. 1a). The general approach 

to such problems must be a process of trial and error: a trial positions of rigid-plastic boundary 

are assumed, then associated slip-line fields, satisfying stress boundary conditions (also known 

as statically admissible slip-line fields) and corresponding velocity distribution are computed. 

Thus, uniqueness is obtained by choosing among statically admissible slip-line fields the one 

that also satisfies the velocity boundary conditions (Fig. 1b). 

                   
                                (a)                                                                                  (b) 

Figure 1. Locations of the rigid and plastic areas in the compressed single strip.  

This laborious process becomes even more complicated in the case of the compression of a 

multi-layer strip, when the field of statically admissible stresses must simultaneously satisfy the 

boundary conditions and the conditions of sticking regime at bi-material interfaces. In the 

present paper, as a first step to the development of a numerical method for calculating the stress 

and velocity fields in plane-strain flow of piece-wise homogeneous materials, the method of 

characteristics is used in the conjunction with the finite difference method to calculate statically 

admissible characteristic and stress fields for the problem formulated in [6], in the case of a 

three-layer symmetric strip, but without using simplified assumptions accepted in this paper. 

2. BOUNDARY VALUE PROBLEM AND CONSTITUTIVE EQUATIONS 

Consider a three-layer symmetric strip consisting of two different rigid perfectly plastic 

materials compressed between two parallel, rough, rigid plates. The thickness and width of the 

strip are 2H and 2L, respectively. Denoting the inner and outer layers by the numbers 1 and 2, 

respectively, in parentheses, then, the shear yield stress and thickness of the outer layers will be 
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denoted by k
(2)

 and H
(2)

 respectively, and for the middle layer, by k
(1) 

and 2H
(1)

. In addition, H = 

H
(1)

 + H
(2)

. The plates are moving toward each other with speed U. A schematic diagram of the 

process and the Cartesian coordinate system (x, y) chosen are shown in Fig. 2. The maximum 

friction law occurs at y = ±H. The end surfaces of overhanging parts of the strip are traction free. 

 

Figure 2. Configuration of the problem. 

Let σx
(i)

, σy
(i)

, τxy
(i)   

and vx
(i)

, vy
(i)

 be the stress tensors and the velocity components 

respectively within the i-th layer (i = 1, 2). Because of symmetry, it is sufficient to consider the 

domain 0 ≤ x ≤ L and 0 ≤ y ≤ H. In each layer where plastic flow occurs, the stress components 

satisfy the equilibrium equations and the plane-strain yield criterion while the velocity 

components are determined by the incompressibility and isotropy conditions. Since these 

systems are hyperbolic, there are two distinct characteristic directions at a point, denoted by α 

and β respectively. Substituting: 

  
   

    
   

                                 
   

                (1) 

here          
   

    
   

     and       is the anti-clockwise angular rotation of the α-line from 

the x-axis in the i-th layer. It is known that the yield criterion is automatically satisfied by the 

stresses expressed in (1). Then, equations for α-lines and β-lines within each layer are 

  

  
                   

  

  
           . (2) 

The α-line and β-line are regarded as right-handed curvilinear axes of reference, denoted by 

sα and sβ respectively. Then, following [2, 10] in transforming from Cartesian coordinates (x, y) 

to the characteristic coordinates (sα , sβ), with vα and vβ being the components of the velocity 

vector along the characteristics, the equilibrium and velocity equations take the forms: 

                            on an α-line (3) 

                           on a β-line (4) 

   
   

    
                along an α-line (5) 

   
       

   
             along a β-line (6) 

while the following boundary conditions hold (Fig. 2): 

      
 

 
           

   
    

   
      at   y = 0 (7) 

                    
   

           at   y = H (8) 
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Due to the condition of sticking, the both normal and tangent velocity components as well 

as the normal and shear stress are continuous across bi-material interfaces. This leads to: 

                                         (9) 

                             (10) 

  
   

          
   

             
   

          
   

        (11) 

  
   

          
   

             
   

          
   

        (12) 

So, in each layer there are six equations (3), (4), (5), (6) and (2) for determining six 

unknowns   
       

       
   

    
   

 and the Cartesian coordinates x, y of an nodal points of the 

computational grid created by slip-line families   and  . To calculate the unknowns on bi-

material interface y = H
(1)

, four conditions of continuity (9), (10), (11) and (12) must be added to 

the group of the mentioned equations. Regarding the task of determining the field of statically 

admissible stresses, it was enough to use six equations (2), (3), (4), (9), (10) for the points at the 

interface of two materials and four equations (2), (3), (4) for remaining points of the strip.   

3. COMPATIBILITY OF VELOCITY COMPONENTS AT THE END POINTS OF             

BI-MATERIAL INTERFACE 

In order to create a numerical scheme for developing a statically admissible stress field in a 

compressed strip, it is necessary to clarify the kinematic conditions at rigid-plastic boundaries, 

regardless of whether the strip under consideration is single or multi-layer.  

Consider, for example, the general structure of the slip-line field found in [8]. The material 

at the edge of the strip to the left of the α-line AC1, which is also a rigid-plastic boundary, move 

outward as a rigid body. The rigid area at the center of the strip is moved down with the rigid 

plate, losing material to the plastic region to the left of the rigid-plastic boundary, α-line FK. 

Since the first of these regions contains the symmetric line  y = 0, its velocity component vy is 

equal to zero, and the incompressibility condition dictates that its component     is equal to 

        , here          . Similarly, the components of the velocity    and    for a rigid region 

in the center of the strip that contains the symmetric line  x = 0  will be zero and       , 

respectively (Fig. 3). Therefore, the velocity components   
    

  of the rigid regions along rigid-

plastic boundaries are 

          
                      

                 along FK (13) 

            
                       

              along AC1 (14) 

 

Figure 3. General structure of the slip-line field in compressed single strip. 
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Using (5), (7) and taking into account that the normal velocity component    must be 

continuity across rigid-plastic boundary, the velocity components of the plastic region along the 

rigid-plastic boundary FK are determined as 

          √                                 along FK (15) 

Now, for the case of the strip shown in Fig. 2, the structure of the slip-line field will 

change. The slip-lines of the same family (  or  ) obviously intersect the line y = H
(1)

 at 

different angles     and     , for which relation (10) is satisfied, as shown in Fig. 4 for a rigid-

plastic boundary passing piece-wise smoothly through the points F, G, K. For the inner layer, 

due to the presence of the condition (7), relations (15) remain valid, while for the outer layer, 

only the second equality from (15)  is satisfied. Thus 

  
   

              along the α-line FG (16) 

  
   

    (√          )         
   

              along the α-line GK (17) 

Using these just obtained  kinematic relations and also the continuity conditions (11) and 

(12), the following fact was proved 

   (  
   

   
   

)        at the point G (18) 

where   
   

 and   
   

 are the values of the functions      and      respectively at G, the 

intersection of the rigid-plastic boundary FK with the line of separation between the two 

materials. Comparing (10) and (18) shows that 

  
   

    
   

           if                (19) 

This conclusion means that the rigid-plastic boundary must always cross the line of 

separation of the two materials at an angle of      . This seems unrealistic and, moreover, it 

will lead to obvious contradictions when we change the input parameters                    in 

such a way that the ratio              approaches asymptotically to 1, while the ratio       
      approaches zero. In this way, we will approach the model of single-layer strip compressed 

between rough, parallel, rigid plates but with a zero shear stress at the friction surfaces. The 

same situation also occurs at the points of intersection between the line y = H
(1)

  and the rigid-

plastic boundary at the outer edges of the strip. Thus, there are incompatibilities of the velocity 

components at the intersection of the boundaries under consideration. 

In order to escape the absurd situation presented above, an assumption of the existence of a 

singularity at the end intersection points on the line of separation of the materials is proposed in 

the following section.  

                  

Figure 4.   A piece-wise smooth boundary between rigid and plastic region.                                                   
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4. CONFIGURATION OF AN ASSUMED FIELD OF THE CHARACTERISTICS    

4.1. General description 

The configuration of an assumed field of the slip-lines and Cartesian coordinates (x, y) for a 

three-layer symmetric strip, with slip-lines ADP and FGK being rigid-plastic boundaries, are 

symbolically illustrated in Fig. 5. The point A is a singularity through which pass all α-lines 

within an angle   
between the two straight slip-lines AA1, AD. The β-line through A is 

degenerated into point A. Thus, the β-line DA1 is circular arc with it center in point A. The value 

of the angle  , created by the segment AD with the x-axis (i.e      
   

   
   

), is also assumed 

and will be determined from the overall solution of the problem. Within the inner layer, the 

segment DP is assumed to be a straight line and form with x-axis of an angle equal to      . 

According to [8], the segment A1F is not an α-line but an envelope of α-lines. In addition to the 

singular point A, there are also singularities at points G, D. 

 

Figure 5.  General structure of of an assumed slip-line field.   

Suppose that G and D are the singular points for the inner layer. This implies the existence 

of an angle       
   

 such that in the interval {     
   

 ;      
   

} the β-line that passes G is a 

degenerate characteristic and all α-lines of the inner layer converging in G form a centered fan. 

The notations G(H) and G(K) used for the start and end points of a degenerate β-line, 

respectively, means that the α-lines originating from these points will intersect the x-axis at 

points H and K, respectively. Obviously, these two points have the same Cartesian coordinates 

as point G. The same is true for the singularity at point D, where the degenerate β-line passes 

through points D(P) and D(Q). The angles between α-lines D(P)P, D(Q)Q and the x-axis at the 

points D(P), D(Q) will be noted by      
   

and      
   

 respectively, where      
   

       

according to the assumption given above. An another configuration with a curved segment DP 

can be considered but, for the task of constructing an statically admissible stresse field, the 

numerical scheme remains unchanged. Therefore, in the next presentation, we will consider only 

the case described in figure 5. 

4.2. Necessary conditions on rigid-plastic boundaries 

4.2.1. Kinematic condition at the point G 

Regarding the angles      
   

 and      
   

 mentioned above, it should be emphasized that the 
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value of angle      
   

 can be calculated immediately using the expression (10), while the value of 

angle      
   

 can only be determined at the end of the construction of slip-line field, when the 

outer α-line reaches the position of the rigid-plastic boundary FGK. 

Since the α-lines FG and G(K)K form the boundary between the plastic and rigid zones by 

assumption, the kinematic conditions (16) for segment FG and (17) for segment G(K)K must be 

satisfied. In particular, at the point G for the outer layer, (17) take the form: 

  | 
   

        
   

 (20) 

At the same time, the continuity conditions of the normal and tangent velocity components  

at bi-material interface y = H
(1)

 require that at the point G(H) be satisfied: 

  | 
   

      |          
   

       |           
   

 (21) 

or, taking into account (20), after simple conversions: 

       
   

      |    
   

     (     
   

    
   

)       |    
   

     (     
   

    
   

) (22) 

Obviously, in addition to the location of the point G, the position and shape of the α-line 

passing the points G(K), I, K also depend on the angle      
   

 at point G(K) and the stress data 

obtained on the α-line G(H)H. Based on formulas (17) and the boundary condition (7), the 

velocity components   
   

,   
   

 in the regions HIK and G(H)G(К)IH (i.e GHI) can be calculated 

using the numerical procedure proposed in [2]. The velocity values   |    
   

 and   |    
   

 obtained 

at point G(H) must satisfy the condition (22). The task now is as follows:   

Find the position  of  the point G on the two-material interface and such a value of the 

angle       
   

 so that the conditions (22) and  (x(K) = L) are simultaneously satisfied. 

Next, the suitable stress boundary conditions should be set on the rigid-plastic boundary 

ADP. Since the angles      and      on AD and D(P)P  are already known by assumption, it is 

necessary to determine only the distributions of       and      on these segments. 

4.2.2 Condition for the stresses on the line ADP 

Using equation (3) for point D, equation (4) for the points D(P), D(Q) and taking into 

account the continuity conditions (9), (10) at the point D(Q), the relation between the constants 

on AD and D(P)D(Q)  is determined as 

            
   

         
   

     (           ) (23) 

here        
   

 is the constant in (10) for α-line AD and              
   

  is the constant in (11) for 

degenerate β-line D(P)D(Q). The expression of the function   (           ) is 

 (           )    [                 
   

                        
   

] (24) 

Thus, the value of       and      at the points D(P) and D, respectively, are  

      
   

      (
 

 
)    (           )        

   
 (25) 
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 (26) 

Since the values of the angles      and      are constant on the segments D(P)P and AD, 

respectively, the values of       and       are also constant on these segments. 

Using (25), (26) and the expression (1) for the component    
   

, the force acting in the x-

direction on the segments D(P)P and AD from the side of the plastic region is determined as 

           (
 

 
  )       (           )                     (         )      

   
 (27) 

Since the end surfaces of overhanging part of the strip are traction free, the equilibrium 

condition of the rigid portion ADPCB requires that force Fx must equal zero. That yield 

      
   

     
        (

 
 

  )       (           )                    

           
 (28) 

Thus, all stress boundary conditions have been defined on the rigid-plastic boundary ADP. 

5. NUMERICAL SOLUTION 

5.1. Numerical scheme 

Several numerical schemes based on the method of characteristics have been proposed to 

determine the stress and velocity distributions in plane-strain flow of rigid perfectly single 

plastic strip compressed between two parallel, rough, rigid plates [2, 7, 8]. In the present paper 

we adopt the classical scheme presented in [8], with appropriate modification, to solve the 

problem formulated in the section 2. 

Consider general structure of of the slip-line field shown in Fig. 5. Starting from base-line 

ADP, the stress distribution across a network of characteristics (slip-lines) can be uniquely 

defined by the systems (2), (3), (4) and the boundary conditions (7), (8). 

5.1.1. Construction of the slip-line field in the regions AA1D and DQP 

Since α-lines are straight in the regions AA1D and DQ1P while β-lines DA1 and PQ1 are 

circular arcs with their centers in the points A and D, respectively, the distribution of the 

quantities   and   is automatically determined by the values of these quantities on any of the 

circular slip lines, no numerical treatment is required in these regions [2, 10]. In fact, having the 

constant value       
   

 in (28), the constant        
   

 for β-line     is immediately calculated by 

using the value   
   

 in (26) and equation (4) for β-line       

       
   

                     
   

 (29) 

Thus, the distribution of      

   
  on β-line      is  

    

   
            

   
                   

   
 (30) 

Similarly, the distribution of            
   

 on degenerate β-line D(P)D(Q) is 
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   (           )           
   

 (31) 

It follow from (31), when      

   
 varies in the interval {      ;      

   
} on β-line P  , the 

distribution of       
   

 is 

     
   

            

   
   (           )            

   
 (32) 

Next, having the distribution of       
   

,      

   
 and the boundary conditions (7), the stress 

distribution and slip-line field in the region PQ1Q is defined by the numerical procedure 

described in [2] and, as a result, all necessary stress boundary conditions have been defined on 

the β-line     and the α-line DQ (i.e D(Q)Q). Now, the full set of known boundary conditions 

on the segments     and DQ can be rewritten by the following relations 

         

   
                  

   
                   

   
       on      (33) 

        
   

                 
   

                  
   

       on  DQ (34) 

here, all functions in (33) and (34) are considered to be given. Thus, instead of the rigid-plastic 

boundary ADP, the segments     and DQ become starting lines for the construction of slip-line 

field to the right of these segments. Since the boundary values for each layer of the strip were 

not given on the line y = H
(1)

, a special procedure taking into account the sticking regime must 

be established to determine the unknowns on this line. 

5.1.2.  Construction of the field in region surrounded by multi-segment line  DA1FGHQ  

Consider the segment DQ now divided into N smaller segments by nodal points. The next 

after point D is D1, given by the boundary values    
,    

   
,     

   
,    

   
 satisfying the conditions 

   

   
    

   
(   

)            

   
     

   
(   

)            

   
     

   
(   

) (35) 

Then the point D2 on the line y = H
(1)

 through which the β-line originating from D1 passes, 

and the point D3 on the segment DA1 through which the α-line originating from D2 passes, are 

determined by non-linear system of six equations (2), (3), (4), (9), (10) in finite-difference form 

for the six unknown denoted by the vector symbol   ̅   

 ̅    {                 }
     {   

   
      

   
      

      
      

   
      

   
}  (36) 

                  

                  

            (37) 

                 

   
           

   
     (38) 

          (
    

          

 
)       

                  (39) 

(   
   )    (

   

   
   

 
)      

   
             (40) 

                                   (41) 
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                              (42) 

As a rule, this non-linear system is solved by iterative gradient method. 

Now, starting from D2, all nodes on the β-line from D2 to E  as well as on the α-line from 

D2 to R  are defined by the numerical procedure proposed in [2]. Having all necessary stress 

boundary conditions on the segments D2E  and D2R and acting in a similar way, all the nodal 

points and, consequently, the slip-line field in the region surrounded by the segments D2E, ES, 

ST, TR and RD2 are determined. Next, the field in region A1A2S is defined by the solutions on 

A1S and the boundary condition (8). 

Thus, with the solutions obtained on the β-line SA2 and on the α-line ST, the segments SA2 

and ST now become starting lines for the construction of slip-line field for the plastic region to 

the right of these segments. In a similar way, the construction of the field continues to the α-line 

that passes through such a point H, located near and to the left of the point K on the x-axis. This 

α-line intersects the lines y = H
(1) 

 and  y = H  at points G and F, respectively. The segment FG is 

temporarily considered to be part of the rigid-plastic boundary. At this moment, it is not clear 

whether this temporarily viewed as a rigid-plastic boundary intersects with the x-axis at point K.  

5.1.3.  Construction of the field in the region GHK 

The process of finding the location of the point G and the value of the angle      
   

, which 

meet the requirements specified in paragraph 4.2.1, is carried out in two phases: first, it is 

necessary to define only the angle      
   

, which satisfies the condition (22), while the location of 

point G is preselected intuitively as described above.Then, the location of the point G is adjusted 

according to the iterative procedure so that coordinate x(K) approach to the value of L. 

First of all, one value for the angle       
   

 is chosen so that the following condition is met 

     
   

        
   

     (43) 

Consider the degenerate segment G(H)G(K), now divided into smaller segments by (M + 1) 

equally spaced nodal points, among which G(H) and G(K) are the first and last in order, 

respectively. So, these points have the same Cartesian coordinates, while the value of the angle 

     of two successive points is equal to       
   

      
   

   . Then, using the known values of 

     and      at G(H), the quantity      at the remaining points on G(H)G(K) is calculated 

according to (4). Using boundary condition (7) and the data just received on G(H)G(K) along 

with the one on the α-line G(H)H, the slip-line field in the region G(H)G(K)IKH is defined by 

the known procedure mentioned in [2].  

Next, starting from temporarily considered as rigid-plastic boundary G(K)K and taking into 

account the conditions (17), (7), the velocity components   
   

,   
   

 in the region G(H)G(К)IKH 

can be found using the equations (5), (6) in finite-difference form.  

Now, having the velocity solutions at the point G(H), one suitable iterative gradient method 

is used for the determination of the value of      
   

, which meet the condition (30). For this 

purpose, substituting      
   

 by symbol  , the condition (22) is rewritten in the form 

       |    
   

    (     
   

   
   

)     |    
   

    (     
   

   
   

)         
   

   (44) 
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According to the gradient method, the solution of the equation (44) will be the minimum 

point of the function       (    )
 
 when using the iterative procedure: 

                       
  (    )

‖        ‖
 (45) 

here  
  (    )

‖  (    )‖
  is the unit gradient vector of      at     ,      is the value of      

   
 chosen 

above,    is the value of the gradient step. In addition,      must satisfy the condition (43) for 

all values of n. Then, using the value of       
   

 which is the solution of (44), we will get the slip-

line field in region G(H)G(К)IKH that meets the condition (22). 

Thus, with preselected coordinate value x(G), the value x(K) is defined at the end of the 

first phase. Suppose that the relationship between the quantities x(G) and (x(K) - L)  is one-to-

one and is expressed by the function                      . Then, the coordinate 

value x(G) is determined by an iterative procedure similar to the procedure (45) described above. 

5.2. Numerical results and comparison 

Consider an analytic solution to the problem formulated in section 2, in which the boundary 

conditions at x = 0 and x = L are ignored, while all the equations and the boundary conditions at 

y = H as well as the conditions of sticking regime at y = H
(1)

 are satisfied [6]. Since this solution 

gives a good approximation to the solution for the problem under consideration, except near the 

ends and center of the strip, it is inferred that it is appropriate to be used to evaluate numerical 

results obtained here if the width of the strip is large enough compared to its thickness.  

It should be noted that in numerical scheme presented above, the solutions for each layer 

are first calculated for nodes at bi-material interface, then they are separately used as boundary 

conditions for calculating solutions inside each layer by already known numerical method used 

for solving the problem of compressing a single layer strip. Therefore, the solution for nodes 

inside each layer will depend mainly on the solution for that layer on the segment DG. For this 

reason, we only need to compare the numerical results and analytical solution on this segment. 

The calculations were performed for strips with the ratios         ⁄  in the range of {1.1→ 

7.9}, L/H in the range of {8 →14},         ⁄  in the range of {0.8→ 2.5} and an angle   in the 

range of {-0.77 → -0.3}. Without loss of generality, it is assumed that  H = 1.5 and         in 
all calculations. 

The volume of calculations mainly falls on the solution of the nonlinear system of 
equations (37) – (42) for nodes at bi-material interface DG by the iterative method. The criterion 

for stopping the iterative process is: ‖ ̅        ̅   ‖          |  
         

   |        
    . The actual calculation process shows that the number of iterations n  for nodes on segment 
DG ranges from 50 ÷ 70 depending on factors such as input parameters {k

(i)
, H

(i)
} and the choice 

of the initial approximation vector  ̅    for each node on this segment. Such a fairly large 
number of iterations shows that the algorithm set up in computation program is not yet optimal, 
but in return, convergence is guaranteed when the input parameters change over a wide range. 

Figure 6 shows the three slip-line field configurations corresponding to three set of 
calculation parameters in which the results for quantities x(G),   

   ,      
    and      

    are described. 

In all cases, the number of nodes (N + 1) on the segment DQ are equal to 26. The pink lines 
represent the family of α-lines, while the β-line family is shown in blue.  The slip-line field in 
region ADA1 was calculated in the classical way and therefore is not displayed in the figures.  
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Figure 6.  Slip-line fields calculated for strips of different set of calculation parameters. 

Next, for each of the two sets of input parameters, when the angle θ takes values equal to -
0.4, -0.5, -0.6, and -0.7, respectively, the normal and shear stress distributions on the segment 
DG for the numerical results and analytical solutions are compared on the four graphs. Figure 7 

shows the first case with ratios:         ⁄  = 2,         ⁄  = 1.5. The second case, with ratios: 

        ⁄  = 0.875,         ⁄  = 3, is shown in Fig. 8. The ratio L/H = 9.33 for both cases. On the 
vertical axis of the plots are dimensionless values of stresses  

  ̅ 
   

    
   

    ⁄    ̅ 
   

    
   

    ⁄         ̅ 
   

    
   

      ,    ̅  
   

     
   

      

Comparison of these graphs leads to the following remarks: 

a)  When the variable x lies in the distances greater than 2H from the edge of the plate, 

the numerical and analytical values vary in the same way (their derivatives are equal) 

and they differ from each other only by constants called the constants of the statically 

admissible field under consideration. 

b)  The mentioned above constants vary depending on the value of the angle θ, so θ is the 

determining parameter of the configuration of an assumed slip-line field. 

In the area near the edge of the strip, the solutions will naturally be highly influenced by the 

stress boundary conditions at the surface  x = 0. Since the exact boundary conditions for σx
(i)

, τxy
(i)

 

at x = 0 have been replaced by only one approximate relation ∫     
 

 
   in [6], then  

noticeable discrepancies at different values of θ between the numerical and analytical solutions 

in region  x < 2H  are inevitable. 
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Interestingly, for x > 2H and regardless of θ, there was an almost complete similarity of 

numerical and analytical results for the quantities τxy
(i)

. This is due to the characteristic behavior 

of σx
(i)

 noted in remark a) and the fact that in the mentioned range, the shear stress becomes 

independent of the change in x. In fact, consider an α-line that intersects the segments AF and 

DG at points A’ and D’, respectively and check the equilibrium condition in the x-direction for 

the region A’FGD’. Then, it follows from remark a) that the resulting forces in the x-direction on 

the segments A’D’ and FG for the analytical and numerical models become equal to each other 

as soon as the point D’ falls into the zone x > 2H. As a result, the resulting forces in this 

direction on the segments A’F and D’G for both models are also equal to each other. Since both 

models have the same boundary condition on A'F, the force components in the x-direction for 

them on D'G must be equal to each other. Hence the equality of shear stresses τxy
(i)

 is followed, 

since they do not change within the considered range. 

           

              

Figure 7.  Comparison of numeric and analytic values of   ̅ 
   

   ̅ 
   

   ̅ 
   

,   ̅  
   

 on segment DG               

(The case:          ⁄  = 2 ,           ⁄  = 1.5). 

Obviously, in a configuration where the segment DP is curved, along with the angle θ, the 

coordinates at its nodes will be the determining parameters of the configuration. Thus, the 

correct solutions to the boundary-value problem can be obtained using a process in which these 

parameters are adjusted so that the constants of the admissible field approaching zero and in this 

way, the main meaning of the admissible fields obtained here is confirmed. 
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Perhaps, there is also a case where the obtained solution of equation (44) does not satisfy 

condition (43). This means that the angle value θ chosen for the configuration was not suitable 

for a given set of input parameters {k
(i)

, H
(i)

}. The extreme case, when such suitable value of the 

angle θ do not exist, corresponds to the fact that the configuration under consideration cannot 

work in sticking regime with a given input parameters. Unfortunately, that is exactly what 

happens when k
(2)

 is greater than k
(1)

. In such a situation, it is necessary to choose a different 

approach when configuring the assumed fields. However, the issues just mentioned are beyond 

the scope of this paper and can be considered in subsequent studies. 

        

        

Figure 8.  Comparison of numeric and analytic values of   ̅ 
   

   ̅ 
   

   ̅ 
   

,   ̅  
   

 on segment DG               

(The case:          ⁄  = 0.875 ,           ⁄  = 3). 

6. CONCLUSIONS 

A numerical approach based on the method of characteristics for calculating the statically 

admissible slip-line field of plane-strain compression of a three-layer symmetric strip consisting 

of two different rigid perfectly plastic materials between rough, parallel, rigid plates has been 

performed. The numerical results have been evaluated by comparison with an analytic solution 

which is considered as accurate at the places situated in the distances greater than the strip 

thickness from the edge of the strip. The approach has been adopted to the case when the shear 
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yield stress of the inner layer is greater than that of the outer layer (k
(1) 

> k
(2)

). It has been shown 

that the singularities built at the intersection of rigid-plastic boundary and bi-material interface 

are necessary to ensure the compatibility of the velocity components at these points and, as a 

result, the sticking regime on the interface of the strip layers. It should be noted that this will 

always be true for any other slip-line field configuration when k
(1)

 ≠ k
(2)

, as noted in section 3. 

Since the construction of a statically admissible slip-line field is the first step in the trial 

and error process to determine the solutions to the problem in question, the correct configuration 

set up for these fields and also the possibility of its regulation by suitable determining 

parameters are of high importance. Therefore the numerical approach presented in the present 

paper is the first and necessary step to the development of a numerical method for calculating 

the stress and velocity fields in plane-strain flow of piece-wise homogeneous materials. 
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