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Abstract. This work deals with systems whose dynamics are affine in the control input. Such 

dynamics are considered to be significantly differentially expressed in a canonical form, namely 

the quadratic (pseudo) port-Hamiltonian representation, in order to explore further some 

structural properties usable for the tracking-error passivity-based control design without the 

(generalized) canonical transformation. Different kinds of linear and nonlinear engineering 

systems including an open isothermal homogeneous system and a continuous biochemical 

fermenter are used to illustrate the approach. 
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control. 
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1. INTRODUCTION 

This paper deals with the port-based modelling of general engineering systems [1] whose 

dynamics are described by a set of Ordinary Differential Equations (ODEs) and affine in the 

control input u as follows: 

                                                  
  

  
  ( )   ( )   (   )                       (1) 

where ( )x x t  is the state vector contained in the operating region D n , ( ) nf x   

expresses the smooth (nonlinear) function with respect to x . The input-state map and the control 

input are denoted by ( ) n mg x   and mu , respectively. It is worth noting that many 

industrial applications in the fields - physical, mechanical, electrical, and biochemical, etc. 

belong to this kind of systems [2 - 5]. 

In addition to the Bond graph modelling [6, 7], the port-based modelling [8, 9] leads to the 

so-called port-Hamiltonian (PH) systems. It is important to transform the dynamic equation (1) 

into the PH representation prior to developing state feedback laws for stabilizing control 
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purposes [10 - 14]. In this work, we focus our attention on a particular class of the PH systems, 

called the quadratic PH systems, where the Hamiltonian function is of the quadratic form [8, 15]. 

In other words, once the quadratic PH representation of the system dynamics is derived, then the 

tracking-error passivity-based control approach can be advantageously applied to show 

stabilization properties despite abnormal behaviours (for example, combined input-output 

multiplicities [16]). This is the main contribution of this study. 

The paper is organized as follows. Section 2 gives a brief overview of the PH 

representation of affine dynamical systems, including motivating examples. Section 3 is devoted 

to two case studies. The first case study focusses on an open, isothermal homogeneous system 

while the second one is a continuous biochemical fermenter system. The design of an error-

tracking-based dynamic controller together with the implementation of numerical simulations 

for the purpose of comparison is then included. We end the paper with some concluding remarks 

in Section 4. 

Notations: The following notations are considered throughout the paper: 

  is the set of real numbers. 

   stands for the matrix transpose operator. 

 m  and n  ( )m n  are positive integers. 

 0x  is the initial value of the state vector x . 

2. THE QUADRATIC (PSEUDO) PH REPRESENTATION 

Assume that the drift vector field ( )f x of the dynamics (1) verifies the so-called 

separability condition [17 - 19], that is, ( )f x  can be decomposed and expressed as the product 

of some (interconnection and damping) structure matrices and the gradient of a potential 

function with respect to the state variables, i.e. of the co-state variables: 

                                                            ( )  [ ( )   ( )]
  ( )

  
              (2) 

where J(x) and R(x) are the n n  skew-symmetric interconnection matrix (i.e. J(x) = − J(x)
T
 ) 

and the n n   symmetric damping matrix (i.e. R(x) = R(x)
T
), respectively while H(x) : n   

represents the Hamiltonian storage function of the system (possibly related to the total energy of 

the system) and if the damping matrix R(x) is positive semi-definite 

                                                                           ( )                         (3) 

then the dynamic model (1) with (2) is said to be a PH representation with dissipation [8, 9]. It is 

then completed with the output    ( ) 
  

  
 and rewritten as follows

1
: 

                                            {

  

  
 [ ( )   ( )]

  ( )

  
  ( )  

   ( ) 
  ( )

  
 

        (4) 

It can be shown for the PH representation (4) that the time derivative of the Hamiltonian 

H(x) satisfies the energy balance equation below [8, 9] 

                                              
1
We shall not elaborate any further on the PH representation here (for example, the concepts related to the 

cyclo-passive and passive property or Dirac structure, etc.) and refer the reader to [8, 9, 19] for more 

details and applications. 
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  ( )

  
  [

  ( )

  
]
 
 ( )

  ( )

  
            (5) 

With (3), Eq. (5) becomes: 

                                                      
  ( )

  ⏟
            

    ⏟
              

              (6) 

From a physical point of view, inequality (6) implies that the total amount of energy 

supplied from external source is always greater than the increase in the energy stored in the 

system. Also, equality in (6) holds if and only if the damping matrix R(x) that is strongly related 

to the dissipation term is equal to 0. Thus, the PH system (4) is said to be passive with the input 

u and the output y corresponding to the Hamiltonian storage function H(x) [20]. 

Remark 1. If the damping matrix R(x) (3) is negative semi-definite or indefinite then the energy 

balance equation (5) might lose its physical meaning. In other words, inequality (6) is not met. 

In that case, the structure (4) is called a pseudo PH system [19]. 

Motivated by the recent work of Monshizadeh and coauthors [15], the (pseudo) PH 

representation (4) is considered here with the Hamiltonian given by 

 ( )  
 

 
               (7) 

where the constant square matrix Rdi is symmetric positive definite. The PH form (4) with (7) 

then reduces to the affine quadratic PH representation that enables the tracking-error passivity-

based control design for the stabilization of the state x  at a desired set-point *x [21, 22] without 

the (generalized) canonical transformation as done in [14]. To highlight our motivation, the 

quadratic PH representation of linear electrical and mechanical systems will be provided next 

(extracted from literature, see e.g. [2, 9, 23]). 

Motivating example 1. Consider the linear time-invariant circuit consisting of the series 

connection of a resistor (with resistance R), an inductor (with inductance L), a capacitor (with 

capacitance C), and a voltage source V [23], as sketched in Fig. 1. 

{
 

                                   
   

  
 

                        
   

  
            

                           

   

 

Figure 1. A series RLC circuit. 
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On the basis of electric circuit theory [2, 24], the following constitutive equations are 

derived: 

                                     

{
 

                                   
   

  
 

                        
   

  
            

                           

    (8) 

where     and     are the charge stored in the capacitor C and the magnetic flux through the  

inductor L, respectively, while i is the electric current passing through the circuit and    is the 

voltage of the inductor L (and similarly for    and   ). By considering Kirchhoff’s voltage law 

(i.e., the second law [24]), one obtains: 

                                                 V = uR + uC + uL.                     (9) 

Using (8), Eq. (9) becomes: 

                     
  

 
 
   

  
            (10) 

From Eqs. (8) and (10), the following equations hold: 

                                                  (

   

  
   

  

)  (

  

 

 
  

 
  

  

 

)  (
 
 
)       (11) 

Let x be the vector consisting of the charge qC and the magnetic flux ɸL, i.e.   (     )
  

(     )
 , Eq. (11) therefore becomes Eq. (1) with: 

                                                              ( )  (

  

 

 
  

 
  

  

 

)       (12) 

                                                              ( )  (
 
 
)         (13) 

and 

                                                                                      (14) 

On the other hand, Eq. (12) can be rewritten as follows: 

     ( )  (
  
    

)(

  

 
  

 

)       (15) 

This, combined with (2), yields: 

                                                           ( )  (
  
   

)           (16) 

                                                          ( )  (
  
  

)           (17) 

and the Hamiltonian function H(x) is given by Eq. (7) with  

         
 

 
(

 

 
 

 
 

 

)            (18) 

Hence, the dynamics (11) give rise to a quadratic PH representation where the output y is 

expressed as 
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   (           )      (19) 

It is important to note that R(x) = R(x)
T
 ≥ 0 and the Hamiltonian H(x) (7) with (18) is equal to 

the total energy of the system (i.e., it characterizes the amount of energies stored in capacitor and 

inductor, respectively). Consequently, it has the unit of energy. 

Motivating example 2. Consider an ideal mass-spring-damper system as shown in Fig. 2 [23]. 

 

 

Figure 2. A mass-spring-damper system. 

The following equation is derived using Newton’s second law [25]
2
: 

     
   ( )

   
     ( )   

  ( )

  
              (20) 

where: 

 M is the mass of body; 

 F is the external force; 

 k is the stiffness constant of the linear spring; 

 c is the damping constant; 

Let x be the vector consisting of the movement z(t) and the momentum  
  ( )

  
 of the body, i.e. 

  (     )
  ( ( )  

  ( )

  
)
 

 , Eq. (20) can be rewriten as follows: 

                                           (

   

  
   

  

)  (
  
    

)(
   
  

 

)  (
 
 
)        (21) 

Similarly to the previous motivating example, the system dynamics (21) lead to a quadratic PH 

representation (4) with: 

     ( )  (
  
   

)          (22) 

   ( )  (
  
  

)          (23) 

                                                          ( )  (
 
 
)              (24) 

and the Hamiltonian function H(x) given by Eq. (7) with 

                                              
2
Equation (20) belongs to the (generalized) Euler-Lagrange equations of classical mechanics [2, 9]. 
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(
  

 
 

 

)          (25) 

Finally, the output y is derived as 

                                                           
  

 
 
  ( )

  
 (            )        (26) 

In this example, the Hamiltonian H(x) (7) with (25) is also equal to the total energy of the 

system (i.e., it characterizes the amount of the elastic potential energy of the spring and the 

kinetic energy of the body, respectively). Consequently, it has the unit of energy. The damping 

matrix R(x) (23) is symmetric positive semi-definite. 

In what follows, we shall illustrate the derivation of the quadratic (pseudo) PH 

representation of nonlinear chemical and biological systems. This is the main contribution of this 

work. 

3. CASE STUDIES 

3.1. Case study 1: An open isothermal homogeneous system with internal transformation 

We consider next the transformations described by Van de Vusse mechanism taking place 

in an isothermal continuous stirred tank reactor to produce products from raw materials 

        
  
→   

  
→   

      
  
→  

                 (27) 

where Si stands for species i. The species S1 and S2 are the reactant and main product, 

respectively. The main product S2 is of most interest to practitioners while the two other 

undesired products are S3 and S4. A typical example of the Van de Vusse mechanism is the 

synthesis of cyclopentenol from cyclopentadiene by sulfuric acid-catalyzed addition of water in 

a dilute solution. Based on the material balance equations, the mathematical model of the system 

is given as follows [26- 29]: 

                                                  {

   

  
            

  (      ) 

   

  
              

           (28) 

where: 

 x1 and x2 are the concentrations of S1 and S2, respectively; 

 x10 is the concentration of S1 in the inlet; 

 u is the dilution rate and considered as the control input; 

 ki, i = 1, 2, 3, are the (constant) isothermal reaction kinetics and k1 = k2 (see e.g., [26, 

28]). 

Let us state the following proposition. 

Proposition 1. The system dynamics (28) admit a quadratic PH representation (4) where 

  (     )
  and the Hamiltonian is of the form (7)

3
 with 

                                              
3
In this case, the Hamiltonian H(x) has a clear physical meaning and is strongly related to the inventories-

based storage function of chemical processes [30]. 
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(
  
  

)      (29) 

and  

     ( )  (
 

   
 ⁄

  
 
⁄  

)         (30) 

         ( )  (
        

   
 ⁄

   
 
⁄   

)             (31) 

        ( )  (
      
   

)                 (32) 

       (      )     
                 (33) 

Proof. First of all, the dynamics (28) are rewritten as Eq. (1) with  ( )  (
           

 

         
) and 

g(x) (32).  Let M(x) be the square matrix given by (
–          

     
)  it follows that 

 ( )   ( ) (
  
  
). It can easily be checked that the separability condition (2) is met for f(x) 

above where H(x) is of the quadratic form (7) with Rdi given by (29). Using the fact that any 

square matrix can uniquely be written as sum of a symmetric and a skew-symmetric matrix 

thanks to the Toeplitz decomposition of linear algebra, one may write  ( )  
 ( )  ( ) 

 
 and 

 ( )   
 ( )  ( ) 

 
 that lead to Eqs. (30) and (31), respectively. Finally, the damping matrix 

R(x) (31) is symmetric positive definite because all the principal minors of R(x) are (strictly) 

positive due to the fact that k1 = k2. The latter completes the proof. 

3.2. Case study 2: A continuous biochemical fermenter system 

We consider next the dynamic model of a second order continuous biochemical fermenter 

described by the equations (see Section 4 in [3]) 

    {

   

  
  (  )   

 

 
  

   

  
  

 (  )

 
   

 

 
(     )

       (34) 

where: 

 cx and cs denote the cell and substrate concentrations, respectively; 

 The term µ = µ(cs) denotes the specific cell growth rate; 

 q is the volumetric inflow rate of the reactor and is equal to the outflow rate; 

 V is the total reactor volume and is assumed to be constant; 

 Sf is the feed of substrate entering the reactor; 

 Y is the biomass/substrate yield coefficient. Let us state the following proposition. 

Let us state the following proposition. 
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Proposition 2. The system dynamics (34) are a quadratic pseudo PH representation (4) where 

  (     )
  (     )

  and the Hamiltonian storage function is of the form (7) with 

     
 

 
(
  
  

)             (35) 

and 

     ( )  (
 

 (  )
  
⁄

  (  )
  
⁄  

)       (36) 

    ( )  (
  (  )

 (  )
  
⁄

 (  )
  
⁄  

)             (37) 

                                                   ( )  (
   
     

)    
 

 
                 (38) 

                                                          (     )     
                 (39) 

Proof. Equations in (34) are rewritten as     

  (

   

  
   

  

)  (
 (  )  

 
 (  )

 
 
)

⏟        
 ( )

(
  
  
)  (

   
     

)
 

 
     (40) 

From this, the proof immediately follows by using the same arguments as done in the previous 

case study. Note that the symmetric matrix R(x) (37) is indefinite (i.e. neither positive definite 

nor negative definite). 

3.3. Further discussions 

Two of the main advantages of the quadratic (pseudo) PH representation are summarized as 

follows, (i) it circumvents the passivation design of the dynamics by input coordinate 

transformations [14] and (ii) it enables the control design via tracking-error approach with 

specific control benefits compared to the interconnection and damping assignment passivity-

based control (IDA-PBC) approach [10, 12], that is, no need to solve matching equations that are 

expressed by partial differential equations. 

In the quadratic (pseudo) PH framework, the key idea of the tracking-error passivity-based 

control approach consists in guaranteeing that the system trajectory x globally exponentially 

tracks some reference trajectory xd when time goes to infinity while xd is of the form 

 
   

  
 [ ( )   ( )]

  (  )

   
   ( )

  ( )

  
  ( )        (41) 

where the damping injection RI(x) is a symmetric positive definite matrix to be appropriately 

chosen such that
4
 

          ( )      ( )                      (42) 

and  ( )  
 

 
  Rdie with e = x – xd the error state vector. At the control design stage, only m 

components of the reference trajectory xd are chosen in such a way that their time evolutions 

converge globally asymptotically or exponentially to the corresponding m-values of the desired 

                                              
4
We refer the reader to [21, 22] for a complete proof. 
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constant set-point x
*
, that is, 

     

  
   (  

∗      )  i = 1, . . . , m, provided that the corresponding 

m m submatrix obtained from g(x) is full rank. 

As a matter of illustration, we reconsider the Case study 2 (Subsection 3.2) where the 

specific cell growth rate µ(cs) is assumed given by the Monod-kinetics with an additional 

substrate overshoot term [3] 

  (  )  
       

               
                  (43) 

where the scalars µmax, d1 and d2 are positive. The continuous fermenter system exhibits the 

combined input-output multiplicities behaviour [3, 16] which is very challenging but interesting 

for the stabilizing control design. A three-step design procedure is provided below with the 

tracking-error passivity-based control approach. 

Step 1 (the damping injection): From the damping matrix R(x) (37) and the stabilization 

condition (42), the damping injection element RI(x) can be chosen as 

   ( )  (
 (  )     

 (  )

  

 
 (  )

  
  

)                 (44) 

where δ1 and δ2 are positive. 

Step 2 (the reference trajectory): From Proposition 2 and Eqs. (41) and (44), the reference 

trajectory is given by: 

      

  
  (  )     ( (  )    )(       )  

 (  )

  
(       )           (45) 

              
     

  
  

 (  )

 
     

 (  )

  
(       )    (       )  (     )     (46) 

Step 3 (the control design): First, the dynamics of xd,1 is chosen to be assigned, that is, 
     

  
 

 (  
∗      ) where the scalar K is positive while   

∗ is the first component of the desired set-

point  ∗  (  
∗    

∗) . The state feedback law is then derived from (45) as 

  
 

  
(  (  

∗      )   (  )     ( (  )   )(       )  
 (  )

  
(       ))   (47) 

The simulation parameters can be found in Tables 1 and 2. Figure 3 shows that the 

convergence of the system state x to the desired set-point  ∗ is guaranteed with the 

corresponding control input u (see Fig. 4). 

Table 1. Simulation parameters of the fermenter model [3]. 

Quantity Value Unit 

µmax 1 1/s 

d1 0.03 mol/m
3
 

Sf 10 mol/m
3
 s 

Y 0.5 mol/kg BM 

d2 0.5 m
3
/mol 

x* (4.80, 0.40) 
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Table 2. Control parameters and initial conditions. 

Quantity Value  

K  0.1  

δ1 = δ2 100000  

IC1 (2, 0.1)  

IC2 (1.5, 4)  

                     
Figure 3. The time evolution of the system states under controller (47). 

                
Figure 4. The control input computed from (47). 

 

In order to assess the performance of the proposed controller, we consider next the 

interconnection and damping assignment passivity-based control (IDA-PBC) approach [3, 10, 

12] for the purpose of comparison. Indeed, for the case study we are concerned with here, a 

qualified state feedback control law can be derived as [3] 

   (  )  
  

  
 {   (     

∗)  (     )(     
∗)}     (48) 

Figure 5 shows the time evolution of the system states under controller (48) with the control gain 

   equal to  , that is,        has been used. As indicated, despite the oscillations 

at the beginning of the operation the convergence of the system states to the desired set-point is 
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in about 20 seconds, i.e. the settling time is two times faster than the one with controller (47) 

(see Figure 3). Nevertheless, if no input constraint (i.e. the input saturation or  ( )   ) is 

imposed, this feature could be paid to the admissibility of the control input due to its negative 

value which is physically inacceptable as seen in Figure 6. In other words, the fermenter system 

under controller (47) may be operated with better performance (i.e. avoiding a very fast settling 

time provided by a larger domain of validity for operating conditions and initial conditions). 

 
Figure 5. The time evolution of the system states under controller (48). 

 
Figure 6. The control input computed from (48). 

4. CONCLUSION 

In this work, an introductory survey of the port Hamiltonian-based modelling of linear 

electrical and mechanical systems is given. This modelling framework can be adapted for 

nonlinear chemical and biological systems leading to a unified quadratic (pseudo) PH 
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representation. The resulting presentation enables the tracking-error passivity-based control 

approach with specific control benefits. It remains now to extend the proposed approach to large 

dimensional engineering systems. 
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