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Abstract. In this paper, free vibration of a bidirectional functionally graded sandwich (BFGSW) 

beams partially resting on a Pasternak foundation is studied. The beams with three layers, an 

axially functionally graded core and two bidirectional functionally graded face sheets, are made 

from a mixture of metal and ceramic. The material properties of the face sheets are considered to 

vary continuously in both the thickness and length directions by the power-law distributions, and 

they are estimated by Mori-Tanaka scheme. A sinusoidal shear deformation theory, in which the 

transverse displacement is split into bending and shear parts, is employed to derive energy 

expressions of the beam. A finite element formulation is formulated and employed to compute 

vibration characteristics. Numerical result reveals that the ratio of foundation support to the 

beam length plays an important role on the vibration behaviour, and the dependence of the 

frequencies upon the material grading indexes is governed by this ratio. Numerical investigation 

is carried out to highlight the effects of the material distribution, the layer thickness ratio, the 

foundation stiffness on the vibration characteristics of the beams. The influence of the aspect 

ratio on the frequencies of the beams and is also examined and discussed.  

Keywords: BFSW beam, Pasternak foundation, sinusoidal theory, free vibration, finite element 

formulation.  

Classification numbers: 5.4.2, 5.4.3, 5.4.5. 

1. INTRODUCTION 

Thanks to the advanced manufacturing methods [1], functionally graded materials (FGMs) 

initiated by Japanese scientists in mid-1980 [2] can now be incorporated into sandwich 

construction to improve performance of the structures. Nowadays, there is a speedy increase in 

the use of functionally graded sandwich (FGSW) structures in aerospace, energy, automotive, 

reactor industries and civil due to their high rigidity, low specific weight, excellent vibration 

characteristics and good fatigue properties. Many investigations on mechanical behaviour of 
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FGSW structures have been carried out recently, contributions that are most relevant to the 

present work are briefly discussed below.  

Vo et al. [3] employed the finite element method to study free vibration and buckling of 

FGSW beams with power-law distribution of the material properties. The finite element 

formulation has been derived by the authors using the quasi-3D shear deformation theory, which 

taking the thickness stretching effect into account. Thai and Vo [4] considered static bending, 

buckling and free vibration of FGM plates using a new shear deformation theory, which ensures 

free shear stress at the upper and lower surfaces of the plate. In [5], Nguyen et al. employed 

Timoshenko beam theory to derive a finite element formulation for studying dynamic responses 

of two-directional FGM (2D-FGM) beams under a moving force. The beams [5] were assumed 

to be formed from four different constituent materials, two ceramics and two metals. Refined 

shear deformation theories were employed by Vo et al. in [6] to study vibration and buckling of 

FGM beams and FGSW beams. The influence of the layer thickness ratio, rules of material 

distribution on responses of the sandwich beams has been examined by the authors. A Ritz-

based solution for buckling and free vibration analyses of FGSW beams with various boundary 

conditions was presented by Nguyen et al. [7] using a quasi-3D beam theory. Apetre and Sankar 

[8] investigated several available sandwich beam theories for their suitability in analysing 

sandwich plates with a functionally graded core. Amirian et al. [9] employed the element free 

Galerkin method and Galerkin formulation to investigate free vibration of sandwich beams with 

functionally graded core. Sakiyama et al. [10] studied free vibration of a sandwich beam with an 

elastic or viscoelastic core and arbitrary boundary conditions using the discrete Green function. 

Rahmani and Khalili [11] employed the high-order sandwich panel theory to study free vibration 

of sandwich beams with syntactic foam as a functionally graded flexible core. The state space 

approach was used by Trinh et al. [12] to investigate free vibration of FGSW beams. Karamanli 

[13] employed the symmetric smoothed particle hydrodynamics method to investigate bending 

of FGM sandwich beams with material properties varying in both the thickness and length 

directions. Bending behaviour of sandwich beams with a homogeneous core and two-directional 

FGM faces was also considered by Nguyen et al. [14] using a finite element formulation.  

The effect of elastic foundation support on mechanical behaviour of structures has been 

reported by several authors. Regarding to the FGSW beams on elastic foundation, Su et al. [15] 

employed the modified Fourier series to study free vibration of FGSW beams supported by a 

Pasternak foundation. Chebyshev collocation method was used by Tossapanon and 

Wattanasakulpong [16] to solve buckling and vibration problems of FGSW beams on an elastic 

foundation. Zenkour et al. [17] studied bending behaviour of a functionally graded viscoelastic 

sandwich beam with elastic core resting on Pasternak elastic foundations using an analytical 

method. The Ritz method was employed in combination with Newmark method by Songsuwan 

et al. [18] to compute dynamic response of FGSW beams on an elastic foundation under the 

action of a moving harmonic load. However, it has been shown that the mechanical behaviour of 

structures partially supported by an elastic foundation is very different from that of the ones fully 

supported by the foundation. For instance, Eisenberger et al. [19] employed an analytical 

approach to show that the frequencies and mode shapes of beams partially supported by the 

elastic foundation significantly differ from that of the beams fully supported by the foundation. 

Based on a refined shear deformation theory,  Le et al. [20] derived a finite element formulation for 

computing frequencies and mode shapes of FGSW plates partially resting on Pasternak foundation.  

To the authors’ best knowledge, the free vibration of bidirectional functionally graded 

sandwich (BFGSW) beams partially resting on Pasternak foundation has not been reported in the 

literature, and it is studied in the present work. The beams consist of three layers,  

a unidirectional FGM core and two skin layers of bidirectional FGM. The material properties of 



 
 
Free vibration of bidirectional functionally graded sandwich beams partially resting …  

 

637 

the skin layers are considered to vary continuously in both the length and thickness directions by 

power-law distributions, and they are estimated by Mori-Tanaka scheme. Based on a sinusoidal 

shear deformation theory, a finite element formulation is derived and employed to compute the 

frequencies and mode shapes of the beams. It is worthy to note that addition to the partial 

foundation support to the BFGSW beams, the sinusoidal shear deformation theory and the Mori-

Tanaka scheme used in the study are new features of the present work. Using the derived 

formulation, vibration characteristics are evaluated, and the effects of the material distribution, 

the layer thickness ratio and the foundation support on the vibration characteristics of the beams 

are examined and highlighted. 

2. MATERIALS AND METHODS 

A BFGSW beam with length L, rectangular cross section (b×h), partially supported by a 

foundation as depicted in Figure 1 is considered.  The beam consists of three layers, an FGM 

core and two bidirectional FGM skin layers. The foundation is modelled herein as the Pasternak 

foundation, which is represented by Winkler springs of stiffness kW and a shear layer with 

stiffness kG. The beam is partially supported by the foundation from the left end as shown in 

Figure 1, where αF is the ratio of the supported part LF to the total beam length L.  The Cartesian 

system (x, z) in Figure 1 is chosen such that the x-axis is on the mid-plane, while the z-axis 

directs upward. Denoting z0, z1, z2 and z3 are, respectively, the vertical coordinates of the bottom 

surface, two interfaces between the layers, and the top surface. 

 

Figure 1. A BFGSW beam partially supported by a Pasternak foundation. 

The beam is assumed to be formed from a mixture of ceramic and metal whose volume 

fraction varies according to [13]  
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 (1) 

and 1m cV V  . In Eq. (1), nx and nz are the power-law indexes which determine the material 

distribution through the thickness and length directions, respectively.  The beam becomes 

homogeneous if nx = nz =0. Figure 1 shows the distribution of Vc and Vm in the thickness and length 

direction for two pairs of the power-law indexes, nx = nz = 0.5 and nx = nz =5, and z1 = -h/4, z2 = h/4. 
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Figure 2. The distribution of Vc and Vm of the BFGSW beam for z1 = -h/4 and z2 = h/4. 

Mori-Tanaka scheme [21] is employed herewith to evaluate the effective properties of the 

FGM layers. According to Mori-Tanaka scheme, the effective bulk modulus Kf and shear 

modulus Gf of the three layers of the beam are given by 
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where  
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are the bulk and the shear moduli of the ceramic and metal at each point of the beam, respectively.  

Noting that the effective mass density ρf is defined by Voigt model as 

 f c m c mV       

The effective Young’s modulus Ef and Poisson’s ratio νf are computed via effective bulk 

modulus and shear modulus as 
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3. MATHEMATICAL MODEL 

Based on the sinusoidal shear deformation theory [4], the transverse displacement is split 

into bending and shear parts, wb and ws, and the displacements of a point in x and z directions, 

u(x;z;t) and w(x;t), respectively, are given by 

       

     

0 , ,, , , , sin ,

, , ,

b x s x

b s

h z
u x z t u x t zw x t z w x t

h

w x t w x t w x t





  
      

  

 

 

where u0(x,t), wb(x,t) and ws(x,t) are, respectively, the in-plane displacement in x-directions, 

bending and shear components of the transverse displacement of points on the neutral axis of the 

beam. In the above equation and hereafter, a subscript comma is used to denote the derivative 

with respect to the followed variable, e.g. ,b x bw w x   .  

(3) 

(4) 

(5) 

(6) 
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The strains resulted from Eq.  are of the forms 

   0, , , ,,x x b xx s xx xz s xu zw f z w g z w      

where      ,sin , 1 z

h z
f z z g z f z

h




    . 

The constitutive equations based on linear behaviour of the beam material are of the forms 
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 The finite element method is used herein to handle the variation of the beam rigidities 

along the beam length. To this end, the beam is assumed to be divided into a number of elements 

with length of l. Eqs.  and  give the strain energy for the element due to the beam deformation, 
B

eU , in the form 
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where Ve is the volume of the element; I1, I2, … I6, I7 are the beam rigidities, defined as 
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In Eq.  and hereafter a superscript “T” denotes the transpose of a vector or a matrix.  

The element strain energy resulted from the foundation deformation is of the form 

     
22F 2 2

, , ,
0 0

, ,

0
, ,

1 1

2 2

1

2

l l

e W G x W b s G b x s x

TT
l b x b xb W W b G G

s x s xs W W s G G

b k w k w dx b k w w k w w dx

w ww k k w k k
b dx

w ww k k w k k

      
 

            
            

            

 



U

 (3) 

The element kinetic energy resulted from Eq.  is of the form 
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where an over dot denotes the derivative with respect the time variable t, and the mass moments 

(7) 

(8) 

(9) 

(10) 
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J1, J2, ... J6 are defined as 
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Noting that the rigidities I1, I2, ... I6, I7 and the mass moments J1, J2, ... J6 as defined by Eqs.  and 

(5) are functions of x. 

4. FINITE ELEMENT FORMULATION 

A two-node beam element with five degree of freedom per node is considered herewith. 

Linear polynomials are used to interpolate the axial displacement u from its nodal values, while 

Hermite cubic polynomials are employed for the transverse displacements wb and ws as 
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Using the above interpolations, one can write the element strain energy 
B

eU  in the forms 
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is the element stiffness matrix; kuu, kbb and kss are, respectively, the membrane, bending and 

shear stiffness matrices with the following forms 
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and the coupling stiffness matrices kub, kus and kbs have the forms 
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The strain energy 
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eU  given by equation (3) can now be written in the form 
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The kinetic energy eT in Eq. (4) can also be written in the form 
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where me is the element mass matrix formed from the following sub-matrices 
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Equations of motion for the beam in the context of finite element analysis can be obtained 

from the Hamilton's principle 
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where nEB and nEF are, respectively, the total number of elements used for the beam and foundation. 

Assuming a harmonic form for the vector of nodal displacements, the Hamilton’s principle 

leads to discrete equation of motion in the form   

    2 0 K M D  (20) 

where M, and K are, respectively, the global mass matrix and stiffness matrix;  and D  are, 

respectively, the frequency and the eigenvector of the nodal displacements corresponding to an 

eigenvalue. 

5. NUMERICAL INVESTIGATION 



 
 

Le Cong Ich, Nguyen Van Chinh, Tran Van Binh, Nguyen Dinh Kien 
 

 

642 

Numerical investigation is carried out in this section to study the effect of various 

parameters on the vibration of the BFGSW beam partially resting on a Pasternak foundation. 

Otherwise stated, a BFGSW beam formed from aluminium (Al) and alumina (Al2O3) with the 

following properties [16]: 

 For Aluminium: Em = 70 GPa, m = 2702 kg/m
3
, m = 0.3; 

 For Alumina: Ec = 380 GPa, c = 3960 kg/m
3
, c = 0.3. 

The following non-dimensional parameters are used for the frequencies and foundation 

stiffness [16] 

2

00
0 1

100 110 110

, ,W G
i i

I k L k
L K K

A A A
     (21) 

where  i is the ith natural frequency, A110 = Emh and I00 = mh. 

Three number in brackets are used herein to denote the layer thickness ratio, e.g. (1-2-1) 

means that the thickness ratio of the bottom layer, the core layer and the top layer is 1:2:1. Four 

types of boundary conditions, namely simply-supported (SS), clamped-clamped (CC), clamped-

free (CF) and clamped-simply supported (CS) are considered herein.  

Before computing the vibration characteristics of the beam, the accuracy and convergence 

of the derived formulation are necessary to verify.  Since the data for the BFGSW beam partially 

supported by the elastic foundation are not available in the literature, the accuracy of the derived 

formulation is verified herewith by comparing the fundamental frequency parameters of a 

unidirectional FGSW beam obtained in the present work with the published data. To this end, 

Table 1 compares the fundamental frequency parameters of the unidirectional FGSW beam with 

L/h = 10 fully supported on a Pasternak foundation of the present work with the result of Ref. 

[16]. Noting that the unidirectional FGSW beam model in Ref. [16] can be obtained from the 

present beam just by setting nx = 0. Table 1 shows a good agreement between the frequencies of 

the present work with the Chebyshev collocation method based result of Ref. [16], regardless of 

the boundary conditions and the foundation stiffness. 

The convergence of the derived formulation in evaluating the fundamental frequency 

parameter of the 2D-FGSW beam partially supported by the foundation is shown in Table 2 for   

the SS and CF beam with    = 0.5, K0 = K1 = 0.2 and various values of the grading indexes and 

aspect ratios. The convergence, as seen from the table, is achieved by using 24 elements, 

regardless of the boundary conditions and the grading indexes. Because of this convergence, a 

mesh of 24 elements is used in all the computations reported below. 

Table 1. Verification study for dimensionless fundamental frequency ( ) of 1D-FGSW beam                            

(with nx = 0, nz = 0.5 & L/h = 10) fully supported by Pasternak foundation. 

K0, K1 Source 

(1-0-1) (1-1-1) (2-1-2) 

SS CC CS SS CC CS SS CC CS 

0, 0 
Ref. [16] 0.3530 0.7738 0.5431 0.3845 0.8434 0.5917 0.3687 0.8091 0.5676 

Present 0.3535 0.7792 0.5467 0.3849 0.8483 0.5952 0.3692 0.8145 0.5711 

0.2, 0 
Ref. [16] 0.5255 0.8661 0.6681 0.5418 0.9257 0.7041 0.5329 0.8959 0.6856 

Present 0.5258 0.8709 0.6710 0.5421 0.9301 0.7071 0.5332 0.9007 0.6885 

0.2, 0.2 
Ref. [16] 1.3310 1.5657 1.4387 1.3161 1.5837 1.4387 1.3209 1.5728 1.4368 

Present 1.3310 1.5752 1.4451 1.3162 1.5919 1.4439 1.3210 1.5819 1.4421 
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Table 2. Convergence of the derived formulation in evaluating frequency parameter 
1  of BFGSW 

beams partially supported on a Pasternak foundation with αF = 0.5 and K0 = K1 = 0.2. 

nx nz nEB  

SS, L/h = 5 CF, L/h = 20 

(2-1-2) (2-1-1) (2-2-1) (2-1-2) (2-1-1) (2-2-1) 

0.5 0.5 

10 1.0936 1.1005 1.1118 0.2038 0.2071 0.2125 

12 1.0936 1.1005 1.1118 0.2036 0.2069 0.2123 

14 1.0936 1.1005 1.1118 0.2035 0.2068 0.2121 

16 1.0936 1.1005 1.1118 0.2034 0.2067 0.2120 

18 1.0936 1.1005 1.1118 0.2033 0.2066 0.2120 

20 1.0936 1.1005 1.1118 0.2033 0.2066 0.2119 

22 1.0936 1.1005 1.1118 0.2033 0.2065 0.2119 

24 1.0936 1.1005 1.1118 0.2033 0.2065 0.2119 

2 2 

10 1.0593 1.0614 1.0607 0.1767 0.1795 0.1830 

12 1.0593 1.0614 1.0606 0.1764 0.1792 0.1827 

14 1.0592 1.0613 1.0606 0.1762 0.1790 0.1825 

16 1.0592 1.0613 1.0606 0.1761 0.1788 0.1824 

18 1.0592 1.0613 1.0606 0.1760 0.1787 0.1823 

20 1.0592 1.0613 1.0606 0.1759 0.1787 0.1822 

22 1.0592 1.0613 1.0606 0.1758 0.1786 0.1822 

24 1.0592 1.0613 1.0606 0.1758 0.1786 0.1822 

        Table 3. Frequency parameter (
1 ) of SS beam partially supported by the foundation with K0 = K1 = 

0.2. 

F  xn  zn  
5L h   20L h   

(1-0-1) (2-1-2) (2-1-1) (2-2-1) (1-0-1) (2-1-2) (2-1-1) (2-2-1) 

0.2 

0.5 

0.5 0.8995 0.9153 0.9257 0.9438 0.3583 0.3675 0.3738 0.3841 

1 0.8527 0.8685 0.8814 0.9026 0.3293 0.3388 0.3472 0.3600 

1.5 0.8133 0.8178 0.8330 0.8502 0.3038 0.3049 0.3153 0.3266 

1 

0.5 0.8802 0.8912 0.8987 0.9113 0.3497 0.3567 0.3616 0.3695 

1 0.8440 0.8552 0.8647 0.8795 0.3258 0.3332 0.3398 0.3495 

1.5 0.8133 0.8160 0.8275 0.8387 0.3046 0.3052 0.3135 0.3218 

5 

0.5 0.8299 0.8317 0.8330 0.8349 0.3244 0.3266 0.3281 0.3305 

1 0.8225 0.8246 0.8263 0.8286 0.3162 0.3186 0.3206 0.3236 

1.5 0.8149 0.8164 0.8185 0.8204 0.3078 0.3086 0.3112 0.3138 

0.5 

0.5 

0.5 1.0861 1.0935 1.1004 1.1117 0.7034 0.7092 0.7143 0.7211 

1 1.0639 1.0670 1.0745 1.0853 0.6781 0.6850 0.6929 0.7026 

1.5 1.0683 1.0531 1.0589 1.0602 0.6564 0.6529 0.6649 0.6737 

1 

0.5 1.0772 1.0811 1.0858 1.0926 0.6945 0.6986 0.7026 0.7076 

1 1.0627 1.0629 1.0679 1.0740 0.6745 0.6790 0.6850 0.6919 

1.5 1.0705 1.0559 1.0595 1.0573 0.6582 0.6545 0.6632 0.6683 

5 

0.5 1.0724 1.0713 1.0716 1.0713 0.6714 0.6721 0.6728 0.6737 

1 1.0735 1.0711 1.0713 1.0703 0.6676 0.6682 0.6692 0.6702 

1.5 1.0819 1.0755 1.0752 1.0716 0.6648 0.6640 0.6652 0.6657 

The fundamental frequency parameters of the SS beam are typically given in Table 3 for 

different layer thickness ratios and the material grading indexes. The layer thickness ratio and 
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the foundation supporting parameter    have significant influence on the frequency, and the 

frequency parameter is higher for the beam associated with a larger core thickness and a higher 

parameter   . For         , the parameter    decreases with the increase of the indexes nx and 

nz, regardless of the boundary condition and the layer thickness ratio. The decrease of the 

frequency parameter by the increase of the material grading indexes can be explained by the 

decease of the ceramic content, as seen from Eq. (1). The decrease of    by increasing nx and nz, 

however is altered for the foundation supporting    = 0.5, and the parameter    is not always 

increased by the increase of nx. 

        In order to examine the effect of the supporting parameter    on the relation between 

frequency parameter    with the indexes nx and nz in more detail, Figs. 3-5 respectively show the 

variation of    with nx and nz of (2-1-2) SS, CC and CF beams with L/h = 20 for various values 

of   . As seen from the figures, the supporting parameter    has a significant influence on the 

variation of     with nx and nz. For    = 0 and 0.3, Fig. 3 shows that the parameter    decreases 

with the increase of the indexes nx and nz, but this tendency is not correct for    = 0.6 and 0.9. 

For the two larger values of   , the frequency parameter is firstly decreased with the increase of 

nx and nz, but it then increases by the increase of these two indexes.  The situation is similar for 

the CC and CF beams, as seen from Fig. 4 and Fig. 5. 

The dependence of the higher frequency parameters of the 2D-FGSW beams on the 

material grading indexes is shown in Figs. 6, 7, where the variation of the first four frequency 

parameters of the (2-1-2) SS and CC beams with the indexes nx and nz is respectively depicted 

for    = 0.5 and K0 = K1 = 0.2. The variation of the higher frequency parameters with the 

grading indexes is similar to that of the first frequency parameter, regardless of the boundary 

conditions. Among the two types of the boundary conditions, the frequency parameters of the 

CC beam, as expected, are higher, while that of SS beam are smaller. 

 

Figure 3. Variation of frequency parameter    of (2-1-2) SS beam with grading indexes nx and nz  

for L/h = 20, K0 = K1 = 0.2 and different        
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Figure 4. Variation of frequency parameter    of (2-1-2) CC beam with grading indexes nx and nz  

for L/h = 20, K0 = K1 = 0.2 and different       

 

Figure 5. Variation of frequency parameter    of (2-1-2) CF beam with grading indexes nx and nz  

for L/h = 20, K0 = K1 = 0.2 and different       
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Figure 6. Variation of the first four frequency parameters of (2-1-2) SS beam with grading indexes  

nx and nz for L/h = 20,    = 0.5 and K0 = K1 = 0.2.  

 

Figure 7. Variation of the first four frequency parameters of (2-1-2) CC beam with grading indexes  

nx and nz for L/h = 20,    = 0.5 and K0 = K1 = 0.2.  
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Figure 8. First four mode shapes for transverse displacements of a SS (2-1-2) beam for L/h = 20,  

nx = nz = 0.5, K0 = K1 = 0.2 and different foundation supporting parameter     

The first four mode shapes for the transverse displacements of the SS (2-1-2) beam are 

illustrated in Fig. 8 for L/h = 20, nx = nz = 0.5, K0 = K1 = 0.2 and different foundation supporting 

parameter   .  The effect of the partial support by the foundation is clearly seen from the figure, 

where the supporting part of the beam tends to stick on the foundation. 

6. CONCLUSIONS 

Free vibration of BFGSW beams partially supported on a Pasternak foundation has been 

investigated using a finite element formulation. The sandwich beams with an axially functionally 

graded core and two bidirectional functionally graded face sheets is assumed to be made from a 

mixture of ceramic and metal. The material properties of the face sheets are considered to vary in 

both the thickness and length directions by the power-law distributions, and they are estimated by 

Mori-Tanaka scheme.  Based on a sinusoidal shear deformation, equation of motion in term of the 

finite element analysis has been derived, and the vibration characteristics have been evaluated for 

the beams with various boundary conditions. The comparison study confirmed the accuracy of the 

derived finite element formulation. The numerical results have revealed that, the foundation 

supporting parameter defined as the ratio of the supporting part to the beam length plays an 

important role on the vibration behaviour of the beams. The dependence of the frequency upon the 

material grading indexes is founded to be governed by the foundation supporting parameter.  

A parametric study has been carried out to show the dependence of the frequency upon the 

material grading indexes, the layer thickness ratio, the value of stiffness foundation, the length of 

supported foundation and the side-to-thickness ratio of the BFGSW beam.  

REFERENCES 

1. Fukui Y. - Fundamental investigation of functionally graded materials manufacturing 

system using centrifugal force, Japan Society of Mechanical Engineering, Int. J. Series III 

34 (1991) 144-148. 

2.  Koizumi M. - FGM activities in Japan, Compos. Part B 28 (1997) 1-4. 



 
 

Le Cong Ich, Nguyen Van Chinh, Tran Van Binh, Nguyen Dinh Kien 
 

 

648 

3. Vo T. P., Thai H. T., Nguyen T. K., Inam F., Lee J. - A quasi-3D theory for vibration and 

buckling of functionally graded sandwich beams, Compos. Struct. 119 (2015) 1-12. 

4. Thai H. T., Vo T. P. - A new sinusoidal shear deformation theory for bending, buckling, 

and vibration of functionally graded plates, App. Math. Model. 37 (5) (2013) 3269-3281. 

5. Nguyen D. K., Nguyen Q. H., Tran T. T., Bui V. T. - Vibration of bi-dimensional 

functionally graded Timoshenko beams excited by a moving load, Acta Mech. 228 (1) 

(2016) 141-155. 

6. Vo T. P., Thai H. T., Nguyen T. K., Inam F., Lee J. - Finite element model for vibration 

and buckling of functionally graded sandwich beams based on a refined shear deformation 

theory, Eng. Struct. 64 (2014) 12-22. 

7. Nguyen T. K., Vo T. P., Nguyen B. D., Lee J. - An analytical solution for buckling and 

vibration analysis of functionally graded sandwich beams using a quasi-3D shear 

deformation theory, Compos. Struct. 156 (2016) 238-252. 

8. Apetre N.A., Sankar B.V., Ambur D.R. - Analytical modelling of sandwich beams with 

functionally graded core, J. Sandw. Struct. Mater. 10 (2008) 53-74. 

9. Amirani M.C., Khalili S.M.R., Nemati N. - Free vibration analysis of sandwich beam with 

FG core using the element free Galerkin method, Compos. Struct. 90 (2009) 373-379. 

10. Sakiyama T., Matsuda H., Morita C. - Free vibration analysis of sandwich beam with 

elastic or viscoelastic core by applying the discrete Green function, J. Sound Vib. 191 

(1996) 189-206. 

11. Rahmani O., Khalili S. M. R., Malekzadeh K., Hadavinia H. - Free vibration analysis of 

sandwich structures with a flexible functionally graded syntactic core, Compos. Struct.  91 

(2009) 229-235. 

12. Trinh L. C., Vo T. P., Osofero A. I., Lee J. - Fundamental frequency analysis of 

functionally graded sandwich beams based on the state space approach, Compos. Struct. 

156 (2016) 263-275. 

13. Karamanli A. - Bending behaviour of two directional functionally graded sandwich beams 

by using a quasi-3d shear deformation theory, Compos. Struct. 174 (2017) 70-86. 

14. Nguyen V. C., Le C. I., Le T. N. A., Nguyen D. K. - Elastostatic bending of 2D-FGSW 

beams under nouniform distributed loads, Vietnam J. Sci. Tech. 57 (3) (2019) 381-400.  

15. Su Z., Jin G., Wang Y., Ye X. - A general Fourier formulation for vibration analysis of 

functionally graded sandwich beams with arbitrary boundary condition and resting on 

elastic foundations, Acta Mech. 227 (2016) 1493-1514. 

16. Tossapanon P., Wattanasakulpong N. - Stability and free vibration of functionally graded 

sandwich beams resting on two parameter elastic foundation, Compos. Struct. 142 (2016) 

215-225. 

17. Zenkour A. M., Allam M. N. M., Sobhy M. - Bending analysis of FG viscoelastic 

sandwich beams with elastic cores resting on Pasternak’s elastic foundations, Acta Mech, 

212 (2010) pp. 233-252. 

18. Songsuwan W., Pimsarn M., Wattanasakulpong N. - Dynamic responses of functionally 

graded sandwich beams resting on elastic Foundation under harmonic moving loads, Int. 

J. Struct. Stab. Dynam. 18 (9) (2018), DOI: 10.1142/S0219455418501122. 



 
 
Free vibration of bidirectional functionally graded sandwich beams partially resting …  

 

649 

19. Eisenberger M., Yankelevsky D. Z., Adin M. A. - Vibration of beams fully or partially 

supported on elastic foundation. Earth. Eng. Struct. Dynam. 13 (1985) 651-660. 

20. Le C. I., Pham V. N., Nguyen D. K. - Free vibration of FGSW plates partially supported 

by Pasternak foundation based on refined shear deformation theories, Math. Prob. Eng. 

2020 (2020) 1-13. 

21. Mori T., Tanaka K. - Average stress in the matrix and average elastic energy of materials 

with misfitting inclusions, Acta Metall. 21 (1973) 571-574.  

 


