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Abstract. The present work is devoted to the extension of the non-gradient approach, namely 

proportional topology optimization (PTO), for compliance minimization of three-dimensional 

(3D) structures. Two schemes of material interpolation within the framework of the solid 

isotropic material with penalization (SIMP), i.e. the power function and the logistic function are 

analyzed. Through a comparative study, the efficiency of the logistic-type interpolation scheme 

is highlighted.  Since no sensitivity is involved in the approach, a density filter is applied instead 

of sensitivity filter to avoid checkerboard issue. 
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1. INTRODUCTION 

Topology optimization is a well-known design tool, in which the material is systematically 

removed from the design domain in order to get a structure with desirable properties, under 

specified loads and boundary conditions. For example, a minimum compliance problem searches 

for a design with high strength – to – weight, while a heat conduction problem is intentionally 

used to find structures with efficiency in conductive heat transfer. Since the introduction of 99-

line Matlab code by Sigmund [1], which is based on the method of solid isotropic material with 

penalization (SIMP), topology optimization has been drawing much attention from researchers 

all over the world. Andreassen et al. [2] successfully improved the efficiency of the code and 

reduced the total lines to 88, while keeping its simplicity and readability. The work of PolyTop 

was later introduced by Talischi et al. [3] for minimum compliance problems, incorporating the 

high accuracy of polygonal finite element analysis and the simplicity of SIMP. Other than SIMP, 

the level set method [4, 5, 6] and phase-field method [7, 8, 9] have also been proposed. Recently, 

Chen et al. [10] presented an extension of topology optimization for geometrically nonlinear 

structures. Regarding topology optimization involving material nonlinearity, various 

contributions have been made, e.g. for hyperelastic structures [11, 12] and elasto-plastic 

behaviors [13, 14, 15]. 
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Most of the works on topology optimization are based on sensitivity analysis, which 

involves the derivatives of objective function with respect to design variables. Such approaches 

are also usually referred to as gradient-based. Though sensitivity contains the physical 

information of the problem and thus is useful in optimization, its derivation and computation can 

become a burdensome task which is difficult to be implemented, e.g. in problems considering 

nonlinearities [16] or change of interfaces between different media [17]. Furthermore, as a 

mathematical aspect, the gradient-based optimization could possibly fall into local optima, e.g. 

optimized results may differ due to the selection of starting point [18, 19, 20]. In contrast, the 

non-gradient approaches rely only on the calculation of the objective function and do not require 

gradient information. The search for optimized design is usually done globally in the whole 

design space using some stochastic algorithm. For example, Wu and Tseng [18] employed the 

modified binary differential evolution, which is motivated from the evolution of species. The 

binary particle swarm algorithm in the work of Luh et al. [19] imitates the social behavior of 

animals when they collaborate to search for food. Guirguis and Aly [20] combined level set 

method and pattern search algorithm to develop a derivative-free tool for topology optimization. 

Critically, the global search of non-gradient approaches does not guarantee a global optimum, as 

pointed out in some works [19, 21]. Another drawback is the large number of function 

evaluation during the stochastic search, which quickly scales up corresponding to the problem 

size [20, 21]. Therefore, both gradient- and non-gradient approaches have their own strengths 

and weaknesses. In order to select between gradient- and non-gradient topology optimization, 

one should consider the trade-off in terms of computational complexity and efficiency. 

Recently, a non-gradient technique namely Proportional Topology Optimization (PTO) has 

been proposed by Biyikli and To [22]. The main point of the method is that material is 

distributed proportionally to the compliance value calculated at each finite element. PTO was 

then further developed for multi-material optimization by Cui et al. [23]. However, both [22] 

and [23] are limited to 2D elastic problems. 3D topology optimization based on sensitivity 

analysis has been introduced by Liu and Tovar [24] using SIMP. Nevertheless, the number of 

works on non-gradient is still limited in the literature. In the present paper, PTO is extended to 

3D topology optimization, for both minimum compliance and heat conduction problem types. 

Furthermore, a comparison is made between the power function traditionally used in SIMP for 

material interpolation and the logistic function proposed in [23]. 

The paper is organized as follows. Immediately after the Introduction, a brief review of 

topology optimization is presented in Section 2. Section 3 is reserved for PTO and numerical 

aspects to extend the algorithm from 2D to 3D domains. In Section 4, numerical examples are 

presented and discussed in details, demonstrating the algorithm. Comparison between the two 

models of material interpolation, i.e. the power function and the logistic function is also 

analyzed. Finally, conclusions and remarks are given in the last Section. 

2. TOPOLOGY OPTIMIZATION FOR MINIMUM COMPLIANCE PROBLEMS 

In the minimum compliance problem, the compliance (an inverse measure of structural 

stiffness) is minimized, while the total mass must not exceed a target value. The optimization 

problem reads 

 min  
ne

T

e e e

e

C
=

=u K u
1

, (1) 

such that:  =Ku F : equilibrium (2a) 
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and  

ne

e e

e

v M
=

=
1

: “mass” constraint       (2b) 

and 

e 0 1  : density limits      (2c) 

in the above equations, C is the compliance; u is the vector of displacements; K is the stiffness 

matrix; F is the load vector; subscript e refers to element e and ne is the number of elements. In 

constraint (2b), ve is the volume of element e and M is the prescribed total amount of material. It 

is noted that though C is in fact elastic energy, the term “compliance” has been commonly used 

in the research community. Linear elastic behavior and small deformation are assumed. 

The design variables are elemental relative densities, e, which take value from 0 to 1, 

indicating whether an element is solid (
e 1 ) or voided region (

e 0 ). Applying the SIMP 

method, the elastic modulus is assumed to vary with respect to density as 

 ( ) ( )e e eE E f = 0 1 , where ( ) ( ) p

e ef    = + −1 1 , (3) 

in Equation (3), E0 is the material elastic modulus and κ is a positive small number (in this work, 

κ = 10-9) to avoid singularity when e tends to zero. Here, a power law is used to penalize the 

contribution of the intermediate density (
e 0 1) on the structural stiffness. Due to the 

penalization, the intermediate density quickly tends to 0 or 1 after some iterations. A small value 

of p may slow down the solution process due to insufficient penalization; while a large value of 

p also penalizes relatively high density (e.g. .e 0 5) to zero, leading to a pre-mature solution 

[23, 24]. Typically, the penalty power, p, is chosen as p = 3. Another type of material 

interpolation function, recently proposed in [23], is the S-shaped logistic-type function, such that 

the density-stiffness interpolation reads  

 ( ) ( )e e eE E f = 0 2 , where ( )
e

e

b

e b

e
f

h e




 =

+
2 . (4) 

Curious readers can refer to [23] for a parametric study of parameters b and h. In the current 

work, the values b = 12 and h = 3000 are adopted. It is noted that when
e =1 , function f2 is not 

equal to unity. A comparison between the efficiency of the two schemes is conducted in the 

present work. For that purpose, here function f2 is further multiplied by a scaling factor, i.e. 

 ( )
e

e

b b

e b b

e h e
f

eh e






+
= 

+
2 . (5) 

The curves of function f1 (power law) and function f2 (logistic-type law) are plotted in 

Figure 1 for illustration. It is observed that the contribution on the stiffness of low densities (

.e 0 5) is small. The low-density region will be quickly penalized to 0 during the iterative 

loop. In power law, even the relatively high-density ( . .e 0 5 0 75 ) has a small contribution 

to structural stiffness and will eventually be penalized due to its insignificance, leading to the so-

called “premature deletion” of the involved elements during the search for an optimized solution 

[23, 25]. On the other hand, in the logistic-type law, a more significant number of relatively 

high-density are enabled to participate in the optimization process. 
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Figure 1. Illustration of the two density-stiffness interpolation schemes. 

3. PROPORTIONAL TOPOLOGY OPTIMIZATION (PTO) ALGORITHM FOR                     

3D PROBLEMS 

Originally proposed by Biyikli and To [22] for 2D problems, PTO is a non-gradient 

algorithm with a simple idea: the material is distributed to elements proportionally to the 

compliance. That is, larger values of design variables (elemental densities) will be assigned to 

elements that have high compliance (i.e. weak regions) and smaller values of design variables 

will be assigned to elements that have low compliance (i.e. strong regions). No sensitivities 

calculation is involved and thus the complication associated with sensitivities can be avoided. 

The mass constraint is directly enforced the total amount of materials that are provided, i.e. the 

constraint is globally imposed on the entire system. 

 

Figure 2. Flowchart of the topology optimization procedure. 
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Flowchart of the topology optimization procedure is presented in Figure 2, and that of PTO 

algorithm is in Figure 3. Convergence of the topology optimization procedure is defined as the 

change between the previous vector of design variables (densities) and the current one is less 

than a given tolerance. After each iteration, the elemental density is updated as follows 

 ( )current previous optimized

e e e   = + −1 , (6) 

where previous

e is the density in previous iteration and optimized

e  is the density obtained from PTO 

algorithm in the current iteration. The history coefficient α is chosen between 0 and 1 to 

represent the contribution of previous data to the current density. For example, α = 0 means that 

the density in the previous iteration does not affect the current density; and α = 0.5 means that 

the current density is blended equally between the previous value and the value obtained from 

PTO algorithm. Higher values of α means more contribution from previous solution. Thus, 

slower evolution can be expected. With α = 1, the previous solution is exactly kept, and 

therefore no evolution occurs. On the other hand, small values of α will put more weights on the 

optimized solution. The case α = 0 indicates that the current solution does not depend on history 

data at all. Stability issue (difficulty in convergence) may occur, if the optimized solution is 

much different from the previous solution, which likely happens especially in the first few 

iterations. In this paper, α = 0.5 is selected. 

In PTO algorithm, TM is the total amount of material, which is determined by mass 

constraint in Equation (2b); RM is the remaining amount of material after distribution. If RM is 

still larger than a given threshold, it will then be again distributed to the elements. The process is 

looped until RM is smaller than the threshold, which is chosen to be 0.001 in this work. Each 

element receives an amount of material which is proportional to its value of compliance, i.e. 

 
distribute e
e ne

i i

i

C
RM

C v



=

=


1

 (7) 

here, the elemental compliance Ce is evaluated at the centroid of each element. Notation vi 

denotes the volume of element i. 

 

Figure 3. Flowchart of the PTO algorithm. TM is the total amount of material; RM is the remaining 

amount of material after distribution. 
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The PTO algorithm for updating densities, as presented in Figure 3, will stop either when 

the remaining amount of material (RM) is smaller than a specified value or the maximum 

number of iteration is exceeded. If the latter is the case, the whole numerical process will be 

aborted due to “non-convergence”. A non-convergence situation may indicate that the constraint 

is not appropriate, e.g. too low volume fraction. A review on the evolution of topology would be 

helpful to analyze why convergence does not occur. 

A commonly known issue in topology with SIMP model for material interpolation is the 

checkerboard phenomenon, which is in fact numerical instability. To overcome this issue, some 

restriction must be introduced [26, 27, 28]. In general, a filter technique is used, either on the 

sensitivities or the densities [2, 29]. For some certain cases, as reported in [30], the density filter 

may have better performance than the sensitivity one. In the current work, a non-gradient 

approach is employed, in which sensitivity is not calculated. Therefore, density filter is chosen in 

this paper. Applying filter, the density value in each element e is modified as follows 

 

ˆ

e

e

e ej

j J

e

ej

j J

H

H








=




, (8) 

in which Hej is the distance between the centroid of element e and element j. J is the set of 

elements satisfying that Hej is smaller than a given threshold Hmin. In practice, the values of Hej 

and the set Je can be calculated only once and stored for any element e, right after the finite 

element mesh is known. 

Extension of PTO to 3D problems brings the algorithm one step closer to practical 

applications (though it is currently still limited to linear elasticity and small deformation). 

Regarding implementation, the procedure is in general straightforward. However, it is obvious 

that computational cost of a 3D problem is usually much higher than a 2D problem. For every 

iteration, the stiffness matrix K has to be assembled and then Equation (2a) is solved for 

displacement. Calculation of K requires the determination of element stiffness Ke for all element 

e. Therefore, efficient evaluation of Ke is essential to increase overall efficiency.  

It is assumed here that a finite element package for 3D linear elasticity using 8-node-

hexahedral element is already available. With elastic modulus being function of density, i.e. 

( ) ( )e e e eE E E f = = 0 , either f = f1 or f = f2 (see Equation (3) and (Equation (4)), the 

constitutive matrix for an element e (isotropic material) is calculated as 

 ( )e ef = D D0 , (9) 

where D0 is the usual constitutive matrix in 3D linear elasticity 

 

( )( )
E

  

  

  



 





− 
 
 −
 
 −
 
 −
 =

+ −  
 

− 
 
 

− 
  

D 0
0

1 0 0 0

1 0 0 0

1 0 0 0

1 2
0 0 0 0 0

21 1 2

1 2
0 0 0 0 0

2

1 2
0 0 0 0 0

2
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in Equation (10), E0 is the material elastic modulus and ν is the Poisson’s ratio. The stiffness 

matrix of an element e is then calculated by 

 ( )e e ef = K K 0 , (11) 

where Ke0 is the standard element stiffness matrix. In practice, Ke0 can be calculated only once 

and stored for every element. 

4. NUMERICAL EXAMPLES 

This section is served to demonstrate the extension of PTO algorithm for 3D problems of 

minimum compliance. For simplicity, only the eight-node hexahedral element is used in the 

current work. Actually, any existing finite element framework can be employed. The compliance 

then is calculated as a post-process of finite element analysis. 

Furthermore, a comparison study is conducted for the two material interpolation schemes, 

i.e. the power law (Equation (3)) and the logistic-type law (Equation (5)). For that purpose, an 

“equivalent compliance” is defined, which is in fact the compliance value calculated using the 

power law for material interpolation, after the optimized densities are obtained. The optimization 

problem is considered to be “converged” if the change between the current solution and the 

previous one is less than 0.01. 

 

 

 a) Cantilever beam b) Hollow cantilever beam 

 

c) A-shaped bracket 

Figure 4. Geometry and boundary conditions of the numerical examples. 
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Three numerical examples are considered in this section: the cantilever beam, the hollow 

beam, and the A-shaped bracket structure. Geometry and boundary conditions of the three 

problems are given in Figure 4. The cylindrical hole in the hollow beam problem is modeled by 

requiring elemental density values within the hole region to be zero. On the other hand, the first 

layer of elements on the upper surface and the first layer of elements on the clamped surface are 

both required to be unity, i.e. solid material. 

Without loss of generality, an artificial material with elastic modulus E = 1 MPa and 

Poisson ratio ν = 0.3 is taken. The volume fraction, i.e. the ratio of volume of the optimized 

design and that of the initial model, is chosen as 0.5 for the problems of cantilever beam and 

hollow beam, while in the A-shaped bracket problem, the volume fraction is 0.15. 

Table 1. Number of iterations and the optimized compliance. 

Problem Power law Logistic-type scheme 

Number of 

iterations 

Equivalent 

compliance 

Number of 

iterations 

Equivalent 

compliance 

Cantilever beam 62 2057.31 179 1869.42 

Hollow beam 42 324.19 32 316.33 

Bracket 34 583.87 48 490.16 

Three numerical examples are considered in this section: the cantilever beam, the hollow 

beam, and the A-shaped bracket structure. Geometry and boundary conditions of the three 

problems are given in Figure 4. The cylindrical hole in the hollow beam problem is modeled by 

requiring elemental density values within the hole region to be zero. On the other hand, the first 

layer of elements on the upper surface and the first layer of elements on the clamped surface are 

both required to be unity, i.e. solid material. 

Without loss of generality, an artificial material with elastic modulus E = 1 MPa and 

Poisson ratio ν = 0.3 is taken. The volume fraction, i.e. the ratio of volume of the optimized 

design and that of the initial model, is chosen as 0.5 for the problems of cantilever beam and 

hollow beam, while in the A-shaped bracket problem, the volume fraction is 0.15. 

Table 1, in all of three examples, the logistic-type scheme tends to need more iterations than 

the power law scheme to reach convergence, but lower compliance (i.e. better solution) can be 

obtained. This observation could be attributed to the property of the logistic-type scheme, such 

that it does not prematurely exclude the relatively high-density element from the optimization 

process. The shape of optimized structures obtained by the two schemes are presented in Figure 

5, Figure 6 and Figure 7. 

 
Figure 5. Optimized shape of the cantilever beam problem, obtained by the power law scheme (left)                

and the logistic-type scheme (right). 
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Figure 6. Optimized shape of the hollow beam problem, obtained by the power law scheme (left)                       

and the logistic-type scheme (right). 

 
Figure 7. Optimized shape of the A-shaped bracket problem, obtained by the power law scheme (left)   

and the logistic-type scheme (right). 

5. CONCLUSION AND OUTLOOKS 

The non-gradient proportional topology Optimization (PTO) [22] has been successfully 

extended to three-dimensional problems of minimum compliance. Among the non-gradient 

techniques, the idea of the PTO is simple yet physical, i.e. material is distributed to each element 

proportionally to its value of compliance. As a constraint defines the total amount of material, 

the optimized can be obtained after some certain number of iterations. No calculation of 

sensitivity, i.e. derivatives of the objective function with respect to the design variables, is 

involved. 

Comparison between the two material interpolation schemes, i.e. the well-known power 

law scheme and the logistic-type one, is studied in this research. It is exhibited that the logistic-

type scheme tends to require more iterative steps to be converged but the obtained results are 

better optimized than the power law scheme. 

In optimization, the minimization problem and the maximization problem are equivalent. 

Instead of minimizing compliance, the problem can be re-formulated as maximizing stiffness. 

Since C in Equation (1) is a measure of compliance (in the sense that smaller C means stiffer 

structure), J = 1/Ccan be a representation of stiffness. Using the PTO, more material will be 

distributed to the elements with lower values of J.  

In engineering problems, it is more interested in minimizing the structural weight while the 

stress value does not exceed a certain level, namely the stress-constrained problems. Sensitivity 

analysis for stress-constrained problems is a challenging task [31, 32]. Thus, it is promising for 
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the employment of non-gradient methods. The extension of the PTO approach for 3D stress-

constrained problems, has been scheduled for future works. 
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