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Abstract. Vibration of two-directional functionally graded sandwich (2D-FGSW) Timoshenko 

beams traversed by a harmonic load is investigated. The beams consist of three layers, a 

homogeneous core and two functionally graded skin layers with the material properties 

continuously varying in both the thickness and length directions by power functions. The 

conventional functionally graded sandwich beams are obtained from the present 2D-FGSW 

beams as a special case. A finite element formulation is derived and employed to compute the 

vibration characteristics of the beams. The obtained numerical result reveals that the material 

distribution and the layer thickness ratio play an important role on the natural frequencies and 

dynamic magnification factor. A parametric study is carried out to highlight the effects of the 

power-law indexes, the moving load speed and excitation frequency on the vibration 

characteristics of the beams.  The influence of the aspect ratio on the vibration of the beams is 

also examined and discussed.   

Keywords: 2D-FGSW beam, moving harmonic load, vibration analysis, dynamic magnification factor, 

finite element formulation.  

Classification numbers: 5.4.2, 5.4.5. 

1. INTRODUCTION 

Functionally graded material (FGM), initiated by Japanese researcher in mid-1980s [1], has 

wide application in automotive and aerospace industries. This material is recently employed in 

the fabrication of sandwich structural elements to improve the performance of the structures. 

Functionally graded sandwich (FGSW) structures with smooth variation of material properties  

overcome the problem of layer separation and stress concentration as often seen in traditional 

sandwich structures. Vibration analysis of FGSW beams, the topic discussed herein, has drawn 
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much attention from researchers. Many investigations on free and forced vibration of sandwich 

beams are available in the literature, the contributions that are most relevant to the present work 

are briefly discussed below.   

Based on the discrete Green function, Sakiyama et al. [2] derived the characteristic 

equation of the free vibration of the sandwich beam with an elastic or viscoelastic core. Apetter 

et al. [3] considered static bending of the sandwich beams with a FGM core using different beam 

theories.  The element free Galerkin and penalty methods were used by Amirani et al. [4] in 

vibration analysis of sandwich beam with an FGM core. Free vibration of the sandwich beam 

with a functionally graded syntactic core was considered by Rahmani et al. [5] using a high-

order sandwich panel theory. Bending, buckling and free vibration of the FGSW beams were 

studied in [6, 7] using various shear deformation theories. Free vibration and buckling analyses 

of FGSW beam were also considered by Vo et al. [8] using a quasi-3D finite element model.  

The beam under moving loads is an important problem in practice, especially in the 

transportation field. Investigations on FGM beams under moving loads have been reported in the 

last two decades. Based on Rayleigh-Ritz method, Khalili et al. [9] constructed the discrete 

equation of motion for an Euler-Bernoulli beam under a moving mass, then used the differential 

quadrature method to compute the dynamic behavior of the beam. Rajabi et al. [10] analyzed the 

forced vibration of a FGM simply supported Euler-Bernoulli beam under a moving oscillator 

with the aid of the Petrov-Galerkin method. Gan et al. [11] studied dynamic response of FGM 

Timoshenko beam with material properties varying along the beam length using an element 

formulation. Dynamic analysis of FGM beams under moving loads was carried out by Şimşek 

and co-workers [12, 13] using a semi-analytical method. Ritz method was used in combination 

with Newmark method Songsowan et al. [14] in computing dynamic responses of FGSW 

Timoshenko beams resting on Pasternak foundation under a moving harmonic load.  

 In the above discussed references, the material properties of the beam change in only one 

direction, the transverse or axial direction. Development of beams with material properties 

varying in two or more directions plays an important role in practice. Several models for two-

dimensional FGM (2D-FGM) and FGSW (2D-FGSW) beam and their mechanical behavior have 

been considered recently. Hao and Wei [15] assumed the beam material properties varying in 

both the beam thickness and length according to the exponential law in their free vibration study 

of 2D-FGM Timoshenko beams. Nguyen et al. [16] derived a finite element formulation for 

studying vibration of the 2D-FGM Timoshenko beam due to a moving load. The beam was 

considered to be formed from four materials with volume fraction varying in the thickness and 

length by power-law functions. Based on the NURBS method, Huynh et al. [17] investigated 

free vibration of 2D-FGM Timoshenko beams. Bending behavior of the 2D-FGSW beam was 

considered by Karamanli [18] using a quasi-3D shear deformation theory and symmetric 

smoothed particle hydrodynamics method. 

In this paper, vibration of a 2D-FGSW Timoshenko beam formed from three distinct 

materials traversed by a harmonic load is studied by the finite element method. The beam 

consists of three layers, a homogeneous core and two FGM skin layers with the material 

properties continuously varying in both the thickness and length directions by power functions. 

A finite element formulation, in which linear, quadratic and cubic polynomials are employed to 

interpolate the axial displacement, rotation and transverse displacement is derived and employed 

in the study.  Using the formulation, the natural frequencies and dynamic response are evaluated 

for the beam with various boundary conditions. The effects of the material and loading 

parameters on the vibration characteristics of the beam are examined in detail and highlighted. 
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2. 2D-FGM SANDWICH BEAM 

2.1. 2D-FGSW beam  

  A 2D-FGSW beam with rectangular cross section (bxh) as depicted in Figure 1 is 

considered. The beam consists of three layers, a homogeneous core and two FGM face layers 

with material properties varying in both the length and thickness directions. In the figure, a 

Cartesian coordinate (x, y, z) is chosen such that the x-axis is on the mid-plane of the beam and 

the z-axis is perpendicular to the mid-plane and it directs upward. Denoting 

0 3 1 22 2,z =-h / , z = h / z , z  are the vertical coordinates of the bottom and top surface, the 

interfaces of the layers, respectively. The beam is subjected to a moving harmonic load PcosΩt, 

moving from the left end to the right end of the beam with a constant speed v. 

 

Figure 1. 2D-FGSW beam model in analysis of free and forced vibration.  

 The beam is assumed to be formed from three distinct materials, namely M1, M2 and M3. 

The volume fraction of M1, M2 and M3 are assumed to vary in the x and z directions according to 
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where V1, V2 and V3  are, respectively, the volume fraction of the M1, M2  and M3; L is total beam 

length; nx and nz are the grading indexes. The model defines a softcore sandwich beam if  M1 is a 
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metal, and it is a hardcore one if M1 is a ceramic. Figure 2 shows the variation of V1, V2 and V3 

of 2D-FGSW beam in the length and thickness directions for nx=nz=0.5 and z1=-h/5, z2 =h/5. 

 

Figure 2. Variation of V1, V2 and V3 of the 2D-FGSW beam for nx = nz = 0.5 and z1 = -h/5, z2 = h/5. 

 The effective material properties (k)

fP , such as the Young’s modulus (k)

fE , shear modulus 

(k)

fG and mass density (k)

f , of the kth layer (k = 1..3) evaluated by Voigt’s model are of the form 
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where P1, P2 and P3 represent the properties of the M1, M2 and M3, respectively. Substituting 

Eq. (1) into Eq. (2), one gets 
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where 
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 One can easily verify that if nx = 0 or M2 is identical to M3, Eq. (3) reduces to the expression 

for the effective material properties of unidirectional FGSW beam made of M1 and M3 in [6]. 

Furthermore, if nz = 0, Eq. (3) reduces to the property of a homogenous beam of M1. 

2.2. Basic equations 

 Based on the Timoshenko beam theory, the displacements of a point in x and z directions, 

u1(x,z,t) and u3(x,z,t), respectively, can be written in the following matrix form 
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where u(x,t) and w(x,t) are the axial and transverse displacements of the point on the x-axis, 

respectively; θ(x,t) is the rotation of the cross section; t is the time variable; z is the distance 

from the point to the z-axis. 

 Equation (5) leads to the axial strain εxx and shear strain γxz in the forms 
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where the subscript comma is used to denote the derivative with respect to the variable that 

follows. 

 The constitutive equation for the beam is of the form 
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where andxx xz  are, respectively, the axial and shear stresses; (k) (k)andf fE G are the effective 

Young and shear moduli given by Eq. (3); ψ is the shear correction factor chosen by 5/6 for the 

beam with the rectangular cross section. 

 The strain energy U of the beam resulted from Eq. (6) and (7) is of the form 
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where A is the cross-sectional area;
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where the dot over a variable denotes the derivative of the variable with respect to time variable 

t; (k) ( )f x,z are the effective mass density defined by Eq. (3); 
11 12 22, andI I I are the mass 

moments, defined as 
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 As the rigidities, the mass moments can also be written in the following form 
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 The potential of the load PcosΩt is given by 
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where  . is the Dirac delta function; x is the abscissa measured from the left end of the beam. 

3. FINITE ELEMENT FORMULATION  

 The differential equation of motion for the beam can be obtained by applying Hamilton’s 

principle to Eqs. (8), (11) and (14). However, as seen from Eqs. (10) and (13) that the beam 

rigidities and mass moments depend on x, thus it is difficult to obtain a closed-form solution for 

such differential equation. Therefore, a finite element formulation is derived herein for vibration 

analysis of the beam. Assuming the beam is divided into a number of two-node beam elements 

with length l. The vector of nodal displacements (d) contains six components as  
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i i iandu ,w   are, respectively, the values of the axial, transverse displacements and 

rotation θ at the node i; j j jandu ,w  are the corresponding quantities at the node j; a superscript 

‘T’ denotes the transpose of a vector or a matrix. 

 The displacement field  
T

u wu are interpolated from their nodal values according to 
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where N is the matrix of interpolation functions with the following form 
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with 2

22 3312 / ( A )A l  . The polynomials in Eq. (19) and (20) are previously derived by 

Kosmatka in [19] for a homogeneous Timoshenko beam element.  

 Using Eq. (16) and (17), the strain energy in Eq. (8) can be written in the form 
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where NE is the total number of elements discretized the beam; kuu, kuθ, kθθ and kss are, 

respectively, the element stiffness matrices stemming from the axial stretching, axial-bending 

coupling, bending and shear deformation, and they have the following forms 
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    (22) 

 The kinetic energy in Eq. (11) resulted from Eq. (16) and (17) is of the form 

 

 

11 12 uNE

u w 12 22
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  

 



N

d N N N N d

N

d m m - m m d

    (23) 

with  
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(24) 

where muu, mww, muθ and mθθ are the element mass matrices resulted from the axial and 

transverse translations, axial translation-rotation coupling, and cross-sectional rotation, 

respectively. 

 The equation of motion for analyzing vibration of the beam can be written as  

 ex MD KD F    (25) 

where M and K are, respectively, the global mass and stiffness matrix of the beam; andD D are 

the vectors of global nodal acceleration and displacement, respectively; Fex is the vector of nodal 

external force which has the following form 

 
e

NE

ex ex ex w, with cosΩ T

x
P t F f f N   (26) 

 Noting that except for the element under loading, the element nodal force vector fex is zero 

for all other elements. The notation 
e

w

T

x
N means that the matrix of interpolation function w

T
N are 

evaluated at the abscissa xe, the current position of the moving load with respect to the left node 

of the element. Eq. (25) can be solved by the direct integration Newmark method. The average 

acceleration method which ensures the numerical instability of the method is adopted herein. 

 Setting the right hand side of Eq. (25) to zeros leads to equation for free vibration analysis as 

   MD KD 0     (27) 

 Assuming the vector of nodal displacements is in the harmonic form, Eq. (27) leads to an 

eigenvalue problem for determining the frequency ω as 

  2- K M D 0     (28) 

where D is the vibration amplitude.  

4. NUMERICAL INVESTIGATION 

 A hardcore beam made from alumina (Al2O3) as M1, zirconia (ZrO2) as M2 and aluminum 

(Al) as M3 is used for numerical investigation in this section. The material properties of the 

constituents adopted from [6] are given in Table 1.  

Table 1. Properties of constituent materials of 2D-FGSW beam. 

Materials Role E (GPa) ρ (kg/m
3
) υ 

Alumina (Al2O3) M1 380 3960 0.3 

Zirconia (ZrO2) M2 151 3000 0.3 

Aluminum (Al) M3 70 2702 0.3 
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The data for computations are as follows: b = 1 m, h = 1, P = 500 kN. The following 

dimensionless parameters are introduced for natural frequencies and dynamic magnification 

factor (DMF) 

 

2

Al
i i

Al st

w( / 2, )
, DMF max

w

L L t

h E


 

 
   

 
    (29) 

where ωi is the ith natural frequency, and 3

st 48 Zw PL E I is the static deflection of a simply 

supported zirconia beam under load, acting at the mid-span of the beam [14]. 

4.1. Formulation verification 

 The accuracy and convergence of the derived formulation is firstly verified. Since there are 

no data on the beam model herein, the verification is carried out for the special case of 2D-

FGSW beam when M2 is identical to M3. In this case, the 2D-FGSW beam returns to a 

unidirectional FGSW beam made from Al2O3 and Al, previously studied by Vo et al. in [6], and  

Songsuwan et al. in [14].  

Table 2. Comparison of fundamental frequency parameter 1μ  of simply supported unidirectional FGSW 

beam with nx = 0 and L/h = 5. 

nz Source 1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 1-8-1 

0.5    Ref.[6] 4.1268 4.2351 4.2945 4.3303 4.4051 4.4798 4.8422 

 Present 4.1244 4.2305 4.3055 4.3253 4.4124 4.4754 4.8411 

1 Ref.[6] 3.5735 3.7298 3.8187 3.8755 3.9896 4.1105 4.6795 

 Present 3.5595 3.7161 3.8438 3.8630 4.0077 4.1005 4.6764 

10 Ref.[6] 2.6932 2.7355 2.8669 2.8808 3.0588 3.2356 4.2776 

 Present 2.6752 2.7191 2.9634 2.8668 3.1509 3.2240 4.2727 

Table 3. Convergence of the element in evaluating fundamental frequency parameter of SS beam.  

Beam  nx nz NE = 12 NE = 14 NE = 16 NE = 18 NE = 20 NE = 22 NE = 24 

(2-2-1) 3 0.5 

1 

2 

5 

4.8376    

4.5230    

4.2382    

4.0117 

4.8375    

4.5229    

4.2381    

4.0114 

4.8374    

4.5228    

4.2379    

4.0113 

4.8374    

4.5227    

4.2378    

4.0111 

4.8374    

4.5227    

4.2378    

4.0110 

4.8374    

4.5227    

4.2378    

4.0110 

4.8374    

4.5227    

4.2378    

4.0110 

(2-1-2) 3 0.5 

1 

2 

5 

4.6962    

4.3120    

3.9789    

3.7486 

4.6961    

4.3119    

3.9787    

3.7484 

4.6961    

4.3118    

3.9786    

3.7483 

4.6960    

4.3118    

3.9785    

3.7483 

4.6960    

4.3117    

3.9785    

3.7482 

4.6960    

4.3117    

3.9785    

3.7481 

4.6960    

4.3117    

3.9785    

3.7481 

Table 2 compares the fundamental frequency parameters of the unidirectional FGSW beam 

with L/h = 5 obtained herein with the result of Ref. [6] where a refined shear deformation based 

finite element model was used. Regardless of the material indexes, the layer thickness ratio, a 

good agreement between the result of the present work with that of Ref. [6] is seen from Table 2.  

The convergence of the derived element is shown in Table 3, where the fundamental 

frequency parameters of the SS beam with L/h = 20 obtained by different number of the 

elements are given for various grading indexes and layer thickness ratios. As seen from the table 

3, the 2D-FGSW beam needs 22 elements to achieve the convergence. Because of this 

convergence result, a mesh of 22 elements is used in all the computations reported below. 



 
 
Vibration of two-directional functionally graded sandwich Timoshenko beams traversed … 
 
 

 

769 

 

Figure 3. Comparison time histories for mid-span deflection of unidirectional FGM sandwich beam under 

a constant speed moving load (L/h = 10, nx = 0, nz = 0.5, v = 50 m/s). 

 Figure 3 compares the time histories for mid-span deflection of the unidirectional FGSW 

beam with b = 0.5 m, h = 1.0 m of the present work with the result of Songsuwan et al. in [14] 

for two layer thickness ratios, (1-0-1) and (2-2-1). Very good agreement between the present 

result with that of Ref. [14] is seen from Figure 3. Noting that the static deflection wst in Figure 3 

is the mid-span static deflection of the simply supported aluminum beam.    

       4.2. Free vibration 

 Two types of boundary conditions, namely simply supported (SS) and clamped at both 

ends (CC) are considered herewith. The fundamental frequency parameters of the 2D-FGSW 

beam with an aspect ratio L/h = 20 are given in Table 4 for the SS beams. As seen from the 

table, the frequency parameter decreases by increasing the grading index nz, but it increases by 

increase of the grading index nx, irrespective of the layer thickness ratio. The dependence of the 

fundamental frequency parameter upon the material grading indexes can be explained by the 

change of the effective Young’s modulus as can be seen from Eqs. (2) and (3). An increase of nz 

leads to a decrease of Al2O3 percentage. Since Young’s modulus of Al2O3 is much higher than 

that of ZrO2 and Al, and thus the effective modulus decreases which leads to the decrease of the 

beam rigidities. On the other hand, the increase of index nz also leads to the decrease of the mass 

moments, but this decrease is much lower than that of the rigidities. As a result, the fundamental 

frequency parameters decrease by increasing nz. The increase of the frequency parameters by 

increasing nx can be explained similarly. 

In addition to the material grading indexes, Table 4 also shows an important role of the 

layer thickness ratio on the fundamental frequency parameters of the 2D-FGSW beam. The 

beam with a larger core thickness has a larger frequency parameter, regardless of the grading 

indexes. The variation of the frequency parameters μi with the material grading indexes can also 

be seen from Figure 4, where the first four frequency parameters of the (2-1-2) SS beam are 

depicted for an aspect ratio L/h = 20. The dependence of the higher frequency parameters upon 

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Normalized time, t*

w
(L

/2
,t

)/
w

s
t

 

 

Present work (1-0-1)

Songsuwan et al. (1-0-1)

Present work (2-2-1)

Songsuwan et al. (2-2-1)



 
 

Vu Thi An Ninh, Le Thi Ngoc Anh, Nguyen Dinh Kien 
 

 

770 

the grading indexes is similar to that of the fundamental frequency parameter. All the frequency 

parameters increase by decreasing index nz and it decreases by increasing index nx.  

Table 4. Fundamental frequency parameter of SS beam for various grading indexes and layer thickness 

ratios (L/h = 20). 

nx nz 1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 1-8-1 

0.5 0 

0.3 

0.5 

1 

5 

5.4603    

4.7691    

4.4379    

3.9090    

3.2080 

5.4603    

4.8354    

4.5349    

4.0442    

3.2596 

5.4603    

4.8833    

4.6089    

4.1658    

3.4690 

5.4603    

4.8959    

4.6248    

4.1780    

3.3981 

5.4603    

4.9522    

4.7108    

4.3168    

3.6372 

5.4603    

4.9934    

4.7707    

4.4019    

3.7109 

5.4603    

5.2401    

5.1379    

4.9698    

4.6383 
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Figure 4. Variation of the first four frequency parameters with grading indexes of (2-1-2) SS beam. 

The effect of the aspect ratio L/h on the fundamental frequency parameter μ1 of the 2D-

FGSW beam is illustrated in Figure 5 for the SS and CC beams with nx = nz = 2 and various layer 

thickness ratios. As seen from the figure, the frequency parameter μ1 increases by increasing the 

aspect ratio, regardless of layer thickness ratio and the boundary conditions. The influence of the 
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layer thickness ratio on the frequency parameter can be seen again from Figure 5, and the 

frequency parameter is higher for the beam having a larger core thickness, regardless of the 

boundary conditions. 

 

Figure 5. Effect of aspect ratio on fundamental frequency parameter of 2D-FGSW beam with nx = nz = 2: 

 (a) SS beam, (b)  CC beam. 

4.3. Forced vibration  

       

Figure 6. Variation of DMF of (2-2-1) beam for various moving load speed (Ώ = 0, L/h = 20). 

The dynamic behavior of the SS and CC beams with L/h = 20 traversed by the moving 

harmonic load is examined in this sub-section. It is assumed that the moving harmonic speed v is 
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constant herein. The effects of the moving load speed and the material grading indexes on the 

DMF are shown Figure 6 for the (2-2-1) beam and Ώ = 0. The DMF, as seen from the figure, is 

significantly influenced by the moving load speed and the material grading indexes. The DMF 

increases by the increase of the index nz, and it decreases by increasing index nx. The DMF 

firstly increases by increasing the moving load speed, and then it reaches a maximum value 

before decreasing. The moving load speed at which the DMF attains the maximum value clearly 

depend on the grading index. In addition, the moving load speed corresponding to the maximum 

DMF of the CC beam is much larger comparing to the SS beam. 

 

Figure 7. Variation of DMF of (2-2-1) beam with the grading index for various moving                                

harmonic load speed Ώ = 30 rad/s.  

        Figure 7 shows the variation of the DMF with the material grading indexes of the SS and 

CC beams for an excitation frequency Ώ = 30 rad/s and three values of the moving load speed,          

v = 20 m/s, v = 35 m/s and v = 75 m/s. The dependence of the DMF as remarked above is clearly 

seen from the figure again. The influence of the moving load speed on the DMF of the SS beam 

is different from that of the CC when nz = 2. Though the dependence of DMF on nx of the two 

beams is the same, the increase of the moving load speed leads to an increase of the DMF of the 

SS beam, but it leads to a decrease of the DMF of the CC beam.  

The relation between the DMF and the excitation frequency Ώ is shown in Figures 8 and 9 

for the SS and CC beams, respectively. The DMF increases rapidly when the excitation 

frequency approaches the fundamental frequencies of the beams. The layer thickness ratio and 

the material grading indexes, as seen from the figures, alter the DMF. The change of the DMF 

due to the change of the layer thickness ratio is, however less significant than by the change of 

the index nz, irrespective of the boundary conditions. This is due to the fact that the fundamental 
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frequency of the 2D-FGSW beam is influenced by the change of the index nz more significantly 

than that by the layer thickness ratio. For example, the frequency ω1 of the (1-0-1), (2-1-1) and 

(3-2-1) SS beam, with nx = nz = 0.5, is 56.4702 rad/s, 58.6462 rad/s and 59.9110 rad/s, 

respectively, and that of CC beam with the same layer thickness ratio is 127.3216 rad/s, 

131.7258 rad/s, 134.1372 rad/s. On the other hand, the frequency of the (2-2-1) SS beam with 

(nx, nz) = (0.5, 0), (0.5, 0.5), (0.5, 3) is 69.4805 rad/s, 59.9432 rad/s, 48.1070 rad/s, respectively, 

and that of the CC beam is 155.4987 rad/s, 134.6120 rad/s, 107.5614 rad/s. 

 

Figure 8. The DMF of  the SS beam with moving harmonic load speed v=50 m/s. 

 
Figure 9. The DMF of the CC beam with moving harmonic load speed v = 50 m/s. 

       To illustrate the influence of the excitation frequency and the material grading indexes on 

the DMF in some more further, Figure 10 shows the variation of the DMF of the (2-2-1) SS and 

CC beam with grading indexes for two values of the excitation frequency, Ώ = 25 rad/s and Ώ = 

35 rad/s. As clearly seen from the figure, the DMF is higher for the beam under the moving load 

with the large excitation frequency, regardless of the material grading indexes and the boundary 
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condition. The difference between the DMF by the excitation frequency is more pronounced for 

the larger index nz and smaller index nx, regardless of the boundary conditions.    

 

Figure 10. Variation of the DMF of  the (2-2-1) beam with moving harmonic load speed v = 50 m/s. 

4. CONCLUSIONS 

 Free and forced vibration of a 2D-FGSW Timoshenko beam traversed by a harmonic load  

has been studied by a finite element formulation. The beam formed from three distinct materials 

is assumed to consist of three layers, a homogeneous core and two FGM skin layers with the 

material properties continuously varying in both the thickness and length directions by the power 

functions. A finite element formulation was derived and employed to compute the natural 

frequencies and dynamic response of the beam. The accuracy of the formulation was confirmed 

through a comparison study. The obtained numerical results reveal that the material indexes, the 

layer thickness ratio, the excitation frequency and the moving load speed play an important role 

on the vibration characteristics of the beams. The influence of the aspect ratio on the vibration of 

the beam has also been examined and discussed.   
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