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Abstract. The paper presents an approach to design the adaptive output tracking controller for 

disturbed Twin Rotor Multi-Input Multi-Output System (TRMS) by using a time receding 

observer of functional disturbances for compensative control purpose, without using 

conventional methods as a neural network. To do this, first the disturbed Euler-Lagrange model 

of TRMS is converted to an equivalent bilinear form. And then, secondly an optimal estimator 

for this disturbed bilinear system is constructed based on time receding minimizing their effect. 

The complete output tracking controller for TRMS is created then by combining an exact 

linearization controller with the proposed disturbances estimation mechanism. Simulation results 

show that the here suggested controller meet completely the expected output tracking 

performances 
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1. INTRODUCTION 

The Twin Rotor Multi-Input Multi-Output System (TRMS) is known as a standard model 

of a helicopter [1]. Not only that it is attached to a tower as the helicopter construction, but also 

their position and velocity are controlled by the rotor velocity variation, which are similar to 

helicopter controller principle. Therefore, TRMS is often used to verify the performance of a 

new designed controller for helicopters. While the TRMS is operating there are many inevasible 

disturbances effects badly to the system dynamic behavior. The main reasons are due to 

unexpected air currents and vibrations by system structure. Some investigations for trying to 

eliminate these effects are published last decade in [2 - 6]. These publications propose mainly 

the disturbance compensation algorithm for continuous-time multi input multi output (MIMO) 

nonlinear plants under parametric uncertainties and external disturbances with quantized output 

signal. The auxiliary loop approach is used for estimation of disturbance function. The proposed 

algorithm guarantees that the output of the plant tracks the reference output with the required 

accuracy.  In [4] and [5] a robust tracking controller for TRMS by using an integral sliding mode 

controller is proposed. To eliminate the discontinuity in the control signal, the controller is 

augmented by a sliding mode disturbance observer (DOB) [4]. The actuator dynamics is handled 
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using a backstepping approach, which is applicable due to the continuous chattering free nature 

of the command signals generated using the disturbance observer based controller. The proposed 

controller is validated by simulation and experiment. A novel disturbance observer-based 

trajectory tracking controller based on integral back-stepping approach are presented in [6]. To 

avoid the complexity of analytically calculated derivatives of virtual control signals in the 

standard backstepping technique, a command filtered backstepping approach is utilized. Some 

experimental as well as simulation results in virtually real environment on TRMS similar prove 

the robustness of these controllers to model uncertainties and external disturbances. The method 

presented in [6] uses a simple form of DOB, which does not need to solve the plant model 

inverse, and uses H∞ control method using LMIs to design the Q-filter in the DOB. The 

obtained results confirm that the DOB is successful to estimating the disturbance and then to 

eliminate the disturbance occurred in TRMS. 

Quite different to all these presented adaptive and robust control methods for TRMS, this 

paper will propose another control approach based on exact linearization control, which is often 

used for mechanical systems presented in [7], and the time receding optimal DOB presented 

theoretically in [8], for the purpose of eliminating adaptively the input disturbances. The here 

proposed approach is simple to implement and effective as shown by a numerical simulation 

afterward. 

2. CONTROLLER DESIGN 

2.1. TRMS modeling 

In this paper the following Euler-Lagrange model of TRMS will be used consistently, 

which was established by using Lagrange equation for mechanical systems [9] and has been 

given similarly in [2]: 

 ( ) ( , ) ( ) ( , , , ) ( )     M q q C q q q g q u q q q t t  (1) 

where 

–  , 
T

h vq  are the outputs of TRMS 

–  ( ) ( ) ijM q m q  and  ( , ) ( , ) ,  , 1,2 ijC q q c q q i j , 
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g q
m l m lv vg

, 

      . . , 
T

prop h prop vM Mu   is the vector of control signals, 1 2( ) ( , )Tt    are the vector of 

system input noises, and ( , , , ) q q q t  expresses the model error, respectively [2]. 
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It is obviously that ( )M q  is a positive definite matrix. Both 
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are the sum of applied torques in the horizontal and vertical movements [2]. 

The vector of all unknown functions (the disturbances): 

 ( ) ( , , , ) ( )  n t q q q t t  

represents both model uncertainties and system noises of the TRMS. 

The EL model (1) of the TRMS above can be now rewritten accordingly in a so called 

input disturbed bilinear state equation as follows: 

 ( ) ( , ) ( )  M q q C q q q u d t  (2) 

with a new summarized system disturbances: 

 ( ) ( ) ( ) d t n t g q . (3) 

2.2. Exact linearization controller for undisturbed system 

The following exact linearization of undisturbed nonlinear system (2) is recommended by 

[7]. In the case that all uncertainties and gravity of (3) could be ignored, then the initial state 

equation (2) of TRMS will be altered to: 

 ( ) ( , )M q q C q q q u  . (4) 

By using the following state-feedback controller: 

  1 2 ( , )( ) r K e K e Cu M q q q q    (5) 

the closed loop system, including the plant (4) and the controller (5), becomes exactly linear as 

follows: 

 
1 2

Ie e

K Ke e

    
     

     

0
 or x Ax  with 

1 2

I
A

K K

 
  

  

0
 and 

e
x
e

 
  
 

. (6) 

In the controller (5) above the vector 

  1 2( ) ( ), ( )
T

r t r t r t  

contains required references, which the outputs of TRMS has to track asymptotically, and 

 e r q   (7) 

is the vector of tracking errors, as well as 1 2,  K K  are two arbitrarily chosen matrices. 

Theorem 1: If both 1 2,  K K  are so chosen that 

 1 1 2 2diag( ),  diag( )i iK k K k   with 
2
2 1 0i ik k   (8) 

then ( )x t  is bounded and converges asymptotically to the origin 0. 
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Proof: 

It is obviously that with the assumptions (8) both matrices: 

 

2
1

2
2 1

2
K

Q
K K

 
  

  

0

0
 and 

1 2 1

1 2

2K K K
P

K K

 
  
 

 (9) 

are positive definite. Moreover, they satisfy the following Lyapunov equation: 

 TA P PA Q   . (10) 

Hence, the matrix A  given in (6) is Hurwitz, and it implies that ( ) (0)Atx t e x  is bounded and 

tends asymptotically to zero.   ■ 

2.3. Disturbances compensation based on time receding minimization 

According to Theorem 1, the asymptotical tracking performance of the linearized 

controller (5) applied to the TRMS (2) can be obviously satisfied only if ( ) 0d t  . In the case 

that we force to apply it to control the input disturbed system (2), i.e. in the case of ( ) 0d t  , we 

evidentially have to eliminate the disturbances ( )d t  first before applying it. 

The main idea here in this paper to eliminate the disturbances ( )d t  from the system (2) is 

that: (I) the disturbance ( )d t  at the time instant k st kT  will be approximated optimality 

( )k kd d t  so that: 

 ( ) min!k kd d t   

and then (II) giving it back to the system with: 

 ( )u d t  

for compensating ( )d t  as illustrated in Fig. 1. 

 

 

 

 

 

 

Figure 1. Disturbance estimator for compensation control purpose. 

For a time receding construction of the disturbance estimator, the derivation of ( , )Tx q q  

in (2) will be replaced approximately first by the following Euler equation: 
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with a chosen time receding horizon: 

 1s k kT t t   for all k . 

This implies that the system model (2) of disturbed system after eliminating the disturbance ( )d t  

by ( )d t  at the time instant kt  will be approximated with: 

 1
11 1( ) ( ) ( )

k k
k k k

s k k k

Ix x
x u d d

T M x C x M x


 

   
               

0 0

0
 (12) 

or 

   1 1
x

s k s kk k k kx I TA x TB u d d 
      

 (13) 

where 

 
1 1

1 1 1

,  .
( ) ( ) ( )

x
k k

k k k

I
A B

M x C x M x 
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   
          

0 0

0
  (14) 

Now we compare the disturbed model (13) with a corresponding undisturbed one:  

   1 1
z

s k s kk k kz I T A z T B u d 
     

 (15) 

where 

 
1

1 1( ) ( )

z
k

k k

I
A

M z C z
 

 
    

0

0
 (16) 

in the sense of determining the model difference: 

    1 1
x z

s k s k s kk k k k kx z I T A x I T A z T B d        

or 

 0 s kk kb T B d   (17) 

with 

    1 1
z x

s k s kk k k k kb x z I T A z I TA x       . (18) 

Denote the right site of (17), which could be considered as model errors, by k , then we 

have:  

 0s kk kk b T B d     (19) 

and this value k  at the time instant kt  is obviously depended only on the disturbance kd , 

which is to estimate now. 

The disturbance kd  at the time instant kt  will be hereafter approximated optimally 

according to minimize the following objective function: 

      2 2
TT T T TT

k s k s k s k k s kk k k k k k k k k kk kJ b T B d b T B d d T B B d b T B d b b         (20) 
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It means that we have to determine the optimal value kd  of ( )kkd d t  according to: 

 arg min kkd J . (21) 

Since the optimization problem (21) is quadratic and unconstraint, this solution is easily 

obtained immediately as follows: 

  
1T T

s k k kk kd T B B B b


 . (22) 

Theorem 2: If the input disturbances are detectable by state feedback, the approximation (11) is 

exact and rank dimkB u , then: 

 k kd d . (23) 

Proof: See [8].  ■ 

Figure 2 exhibits the principle of time receding optimal calculation of disturbances ( )d t  at 

all time instants ,  0,1,  kt k   based on (14)-(16), (18) and (22), where 0 0t   and 0z  is 

chosen arbitrarily. 

 

 

 

 

 

 

 

 

 

Figure 2. Scheme of time receding disturbance estimation [8]. 

2.4. Implementing the adaptive controller 

For a convenient implementation purpose of the proposed adaptive controller, all 

calculations (14)-(16), (18), (22) given above will be now summarized in the following 

algorithm: 

1. Convert the EL model (1) into bilinear form (2). 

2. Choose an appropriate time receding horizon sT . Assign arbitrarily 1z   and 1d  . Set 0k  . 

3. Measure ( )skx x kT  from the controlled system and calculate: 

 , ,x z
k k kA B A  according to (14) and (16). 

 kz  according to (15), kb  according to (18) and kd  according to (22). 

4. Send ku d  for a while of sT  to the controlled plan, where u  is obtained from the state 

feedback controller (5) with two matrices 1 2,K K  chosen accordingly to (8). 

kd   

1kd   1kd   

t   

2kt   1kt   kt   1kt   

measure ( )kkx x t  

calculate kz  

determine kd  
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5. Set : 1k k   and turn back to step 3. 

Figure 3 illustrates the proposed adaptive controller based on time receding disturbance 

estimator. 

 

 

 

 

 

 

 

 

Figure 3. Adaptive control framework for output tracking disturbed TRMS.  

2.5. Stability of closed loop system 

The closed-loop control system exhibited in Fig. 3 has the disturbed EL model: 

 
2

1 22
( , ),       

d e de
K e K q t e r q

dtdt
 (24) 

where 

 1( , ) ( ) ( ) ( )q t M q d t d t       

is the remaining estimation error, which based on Theorem 2 is bounded  ( , )q t   with a 

very small constant  , when ( )d t  is assumed to be continuous. 

Converted equivalently the EL model (24) in: 

 ,  x Ax B B
I


 

    
 

0
 

with ,A x  are defined in (6), then with ,Q P  given in (9), we obtain for the candidate 

Lyapunov’s function ( ) ( ) 2
TV x x Px , the following inequality: 

 
 

 

2
( ) ( )   

 

      

 

TT T TdV
x A P PA x B P PB x x x

dt

x x
 (25) 

where the relation (10) had been used and: 

    2 2
1 2 1 1 2min  , ,  max  , i i i i i

i i
k k k k k    . (26) 

Hence, the closed-loop system is ISS-stable with a very small attractor: 

  col( , ) | |x e e x     . 

r

  

u

  

d

  
col( , )x q q
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3. SIMULATTING ON TRMS 

3.1. Disturbed bilinear model of TRMS 

From the EL model of TRMS given in [2] it is obtained correspondingly the input disturbed 

bilinear model (2) as follows: 

1
33 34

43 44

0 0 1 0

0 0 0 1
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a aM q C q q

a a
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Note that for the latter application of the exact linearization controller (5) both 1 2,g g  will 

be considered as supplement disturbances. 

3.2. Simulation and results 

The proposed adaptive controller, including the exact linearization state feedback controller 

(5) and the time receding disturbance estimator (22), is now  implemented on Matlab to verify 

the output tracking performance to the desired references: 

 1

2

( ) 0.3sin(0.0628 ) 0.7sin(0.1256 )
( )

( ) 0.5sin(0.1256 )

r t t t
r t

r t t

   
    

  
. (27) 

Furthermore, it is assumed in the simulation that the exact linearization controller (5) for the 

TRMS has two parameter matrices 2 1 2 22 2K K I   , and is disturbed by: 

 1

2

0.1sin(0.3 ) 0.2cos(0.1 )
( )

0.3cos(0.2 ) 0.2sin(0.5 )

n t t
n t

n t t

   
    

  
. (28) 

It means that the bilinear model (2) of it will be disturbed by the total ( ) ( ) ( )d t n t g q   as 

explained already in (3). Note that both, the desired references (27) and the disturbances (28) are 

defined arbitrarily by authors just for carrying out the simulation. These arbitrary definitions do 

not affect to the latter obtained control performance. 

For a purpose of a virtually real simulation, the TRMS will be carried out by using model 

parameters given in [1], which have been obtained via identification technique presented in [2]. 

Table 1 exhibits these parameters. 

After executing the simulation program given in Appendix we obtain results exhibited 

below in Fig. 4 - Fig.7. While both Fig. 4 and Fig. 5 show the real disturbances 1 2( ), ( )d t d t  in 

comparison with their estimated values 1 2( ), ( )k kd t d t , two other Fig. 6 and Fig. 7 illustrate the 

tracking performance of TRMS outputs 1 2( ), ( )q t q t  to desired trajectories 1 2( ), ( )r t r t . 

Figure 4 and Figure 5 show the estimated values of yaw and pitch angle disturbances. They 

coincide after a short time interval at the beginning almost exactly with their real values. 

According to Theorem 2, the estimation errors are caused only by time discretizing the 

continuous model (2) into (13). The tracking performance of TRMS outputs, the yaw and pitch 

angle to their references are shown in Fig. 6 and Fig. 7. It is seen there that both system outputs 

1 2( ), ( )q t q t  have converged asymptotically to the references 1 2( ), ( )r t r t  as expected. 
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Table 1. Simulation parameters (provided in [1]). 

Parameters Symbol Value Unit 

Length of the pivoted beam h   0.06 m 

Total mass of the free beam 
1Tm  0.8250 kg 

Total mass of the counter balance beam 
2Tm  0.0908 kg 

Centre of gravity of the free beam 
1Tl  0.0186 m 

Centre of gravity of the counter balance beam 
2Tl  0.2443 m 

Moment of inertia of the free beam 1J  0.0591 kgm2 

Moment of inertia of the counter balance beam 2J  0.0059 kgm2 

Moment of inertia of the pivoted beam 3J  1.68e-05 kgm2 

Acceleration of gravity g  9.81 m/s2 

 

Figure 4. The first disturbance 1( )d t  in comparison with its estimated values. 

 

Figure 5. The second disturbance 2( )d t  in comparison with its estimated values. 

 

Figure 6. The yaw angle response of TRMS and the desired reference for it. 
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Figure 7. The pitch angle response of TRMS and the desired reference for it.  

4. CONCLUSIONS 

In this paper, the exact linearization controller and the time receding estimator for matched 

disturbances are combined to output tracking control the TRMS. The control scheme proposed in 

this paper is structurally simple to implement, but has conducted an excellent tracking 

performance. Moreover, as seen in the obtained inequality (25), together with the notes (26), the 

tracking behavior of closed-loop system, could be also improved easily by increasing 1 2,i ik k  of 

the implemented controller. Finally, the numerical simulation in this paper shows, that the 

proposed controller can be now applied in practice. 
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APPENDIX: PROGRAM SOURCE 

TRMS.m 

function dx = TRMS(t,x) 

global g r r_d r_dd mT1 mT2 J1 J2 J3 h lT1 lT2 u Ax Bx dh d d_them  

M1=J1*(cos(x(2)))^2 + J2*(sin(x(2)))^2 + (mT1+mT2)*(h^2)+J3; 

M2=h*(mT1*lT1*sin(x(2))-mT2*lT2*cos(x(2)))+d_them; 

M3=J1+J2; M=[M1 M2;M2 M3]; c11=2*x(4)*(J2-J1)*sin(x(2))*cos(x(2)); 

c12=h*x(4)*(mT1*lT1*cos(x(2))+mT2*lT2*sin(x(2))); 

c21=x(3)*(J1-J2)*sin(x(2))*cos(x(2)); c22=0; C=[c11 c12;c21 c22]; 

d=[0.1*sin(0.3*t)+0.2*cos(0.1*t);0.3*cos(0.2*t)+0.2*sin(0.5*t)]%-[g1;g2]; 

r=[0.3*sin(0.0628*t)+0.7*sin(0.1256*t);0.5*sin(0.1256*t)]; 

r_d=[0.01884*cos(0.0628*t)+0.08792*cos(0.1256*t);0.0628*cos(0.1256*t)]; 

r_dd=[-0.001183*sin(0.0628*t)-0.01104*sin(0.1256*t);-0.0079*sin(0.1256*t)]; e=r-

[x(1);x(2)]; e_dot=r_d-[x(3);x(4)]; K1=eye(2); K2=2*eye(2); 

u=M*(r_dd+K1*e+K2*e_dot)+C*[x(3);x(4)]; 

Ax=[0 0 1 0;0 0 0 1;zeros(2) -M\C]; Bx=[0 0;0 1;inv(M)]; 

dx=Ax*x+Bx*(u+d-dh); 

runTRMS.m 

global g r r_d r_dd mT1 mT2 J1 J2 J3 h lT1 lT2 u Ax Bx dh d d_them  

g=9.81; mT1=0.825;mT2=0.0908;J1=0.0519;J2=0.0059;J3=1.68e-05; 

h=0.06;lT1=0.0186;lT2=0.2443;x0=[0 0 1 3];d_them=1; 

z0=x0'; t0=0; N=10000; Ts=0.01; dh=[0;0]; px=[]; ti=[]; pd=[]; pdh=[];pr=[]; 

for i=1:N+1 

[t,x]=ode45(@TRMS,[t0 t0+Ts],x0); 

k=length(t); t0=t(k); ti=[ti (i-1)*Ts]; px=[px;x0]; 

Mz1=J1*(cos(z0(2)))^2+J2*(sin(z0(2)))^2 +(mT1+mT2)*(h^2)+J3; 

Mz2=h*(mT1*lT1*sin(z0(2))-mT2*lT2*cos(z0(2)))+d_them; 

Mz3=J1+J2; Mz=[Mz1 Mz2;Mz2 Mz3]; 

cz11=2*z0(4)*(J2-J1)*sin(z0(2))*cos(z0(2)); 

cz12=h*z0(4)*(mT1*lT1*cos(z0(2))+mT2*lT2*sin(z0(2))); 

cz21=z0(3)*(J1-J2)*sin(z0(2))*cos(z0(2));cz22=0; 

Cz=[cz11 cz12;cz21 cz22]; Az=[0 0 1 0;0 0 0 1;zeros(2) -Mz\Cz]; 

B=Ts*Bx; A_x=eye(4)+Ts*Ax; A_z=eye(4)+Ts*Az; 

z=A_z*z0+B*(u-dh); dh=((B'*B)\B')*(x(k,:)'-z+A_z*z0-A_x*x0'); 

z0=z; x0=x(k,:); pd=[pd d]; pdh=[pdh dh]; pr=[pr r]; 

end 

figure(1);plot(ti,px(:,1),ti,pr(1,:)); legend('a_h','a_hr'); 

figure(2);plot(ti,px(:,2),ti,pr(2,:)); legend('a_v','a_vr'); 

figure(3); plot(ti,pd(1,:),ti,pdh(1,:)); legend('d1','dh1'); 

figure(4); plot(ti,pd(2,:),ti,pdh(2,:)); legend('d2','dh2'); 

figure(5); plot(ti,px(:,3),ti,px(:,4)); legend('a_hdot','a_vdot'); 

 

 

 

 

 

 


