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Abstract. Using various chromatographic separations, three phenolic derivatives (1‒3) and three 

phytosteryl glycosides (4-6) were isolated from a methanolic extract of R. mucronata Lam. stem 

barks. Their structures were elucidated to be cinchonain Ib (1),  breynioside B (2), polystachyol 

(3), β-sitosterol 3-O-β-D-glucopyranoside (4), β-sitosterol 3-O-β-D-(6'-O-palmitoyl) 

glucopyranoside (5), and β-sitosterol 3-O-β-D-(6'-O-stearoyl)glucopyranoside (6) by detailed 

analysis via spectroscopic techniques (1D, 2D NMR, and ESI-MS data) as well as comparison 

with those reported. This is the first report of compounds 1-6 from the Rhizophora genus. 

Keywords: Rhizophora mucronata, Rhizophoraceae, phenolic, phytosteryl glycoside. 

Classification numbers: 1.1.1; 1.1.6. 

1. INTRODUCTION 

To date, more than 84 species belonging to 24 genera and 16 families of mangrove plants 

have been discovered across the world, which composed of a large group of different salt-

tolerant plants [1, 2]. Among them, the family Rhizophoraceae belongs to a true mangrove 

family, which contains 24 species in four genera, including Bruguiera (7 species), Ceriops (5 

species), Kandelia (2 species), and Rhizophora (10 species) [1, 3]. In recent years, Rhizophora 

plants have attracted extensive scientific interests in the chemical and pharmacological 

properties [4 - 7]. 
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Figure 1. Structures of compounds 1‒6 isolated from R. mucronata. 

The true mangrove, Rhizophora mucronata Lam. is widely distributed in Southeast Asia 

along the coastlines of the Indian Ocean [8, 9]. This plant is used as a folk medicine in Southeast 

Asia to treat angina, constipation, diabetes, diarrhea, dysentery, haematuria, hemorrhage, nausea, 

and leprosy [10, 11]. Interestingly, the extracts and fractions of the leaves, fruits, and barks of 

this plant were reported to exhibit significant in vitro α-amylase and α-glucosidase inhibitory 

[12, 13], anti-arthritic [14], antibacterial [15 - 17], antidiabetic [18, 19], anti-inflammatory [14, 

20, 21], anti-gastric cancer [22, 23], antihyperglycemic [24], and antioxidant [16, 18, 25 - 28] 

effects. According to previous phytochemical studies, besides being the source of tannins (up to 

70 %) [18, 29], alkaloids [16, 21], phenolics [9], polysaccharides [30], and terpenoids [8, 22, 23, 

31 - 34] have been reported from R. mucronata. 

In our continuing search for secondary metabolites from the Vietnamese mangrove plants 

[35 - 37], an EtOAc fraction of R. mucronata stem barks was investigated on the chemical 

constituents. The current paper deals with detailed structure elucidation of six compounds (1-6, 

Figure 1) from this plant. 

2. EXPERIMENTAL 

2.1. General experimental procedures 

The procedure and instruments used correspondingly to isolate compounds, measure optical 

rotation, and record Infra Red (IR), Nuclear Magnetic Resonance (NMR), Mass Scpectroscopy 

(ESI-MS) data collection, TLC, and MPLC are similar to those described in a previous paper 

[38]. 

2.2. Plant material 
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The stem barks of Rhizophora mucronata Lam. were collected at Ca Mau National Park, Ca 

Mau province, Viet Nam in May 2018, and taxonomically identified by Dr. Nguyen The Cuong 

(Institute of Ecology and Biological Resources, VAST). A voucher specimen (TĐPCCC-

2018.03) was deposited at the Herbarium of Institute of Marine Biochemistry and Institute of 

Ecology and Biological Resources, VAST. 

2.3. Extraction and isolation 

The dried stem barks of R. mucronata (2.5 kg) were cut into pieces and extracted with 95 % 

aqueous MeOH by percolation at room temperature to obtain 210 g of extract. The concentrated 

methanol extract was suspended in water and defatted with n-hexane and then was partitioned 

into ethyl acetate-soluble fraction. 

The EtOAc fraction (E, 60 g) was separated on silica gel MPLC (column: Biotage SNAP 

Cartridge, KP-SIL, 100 g) using the mobile phase of CH2Cl2-EtOAc (0 - 5 min 50 % EtOAc, 6-

65 min 50 - 75 % EtOAc, 66 - 75 min 100 % EtOAc, 76 - 90 min 100 % MeOH, 15 mL/min, 90 

min) to give ten fractions (E-1 to E-10). This MPLC procedure was repeated 5 times using the 

same conditions before further isolation. By TLC monitoring, fraction E-6 was further separated 

on a silica gel column chromatography (CC), using CH2Cl2-MeOH (3.5 L, 50:1, 25:1, v/v) as the 

mobile phase, to give four subfractions (E-6.1 to E-6.4). Fractions E-6.1 and E-6.2 were 

combined (105 mg) and fractionated over Sephadex LH-20 (eluted with MeOH, 2.5 L) to give 

three subfractions (E-6.2a to E-6.2c). Compounds 3 (4.6 mg) and 5 (3.9 mg) were obtained from 

subfraction E-6.2b and compound 6 (5.5 mg) was obtained from subfraction E-6.2c by a silica 

gel CC (2L of CH2Cl2-MeOH, 4:1) and then by a Sephadex LH-20 column (1.5 L of CH2Cl2-

MeOH, 1:3). In a similar process to that described above, fraction E-7 (1.05 g) was 

chromatographed over an open YMC*GEL column eluted with MeOH-H2O (2.5L, 1 : 3, 1 : 2, 

v/v) to give subfraction E-7.1 and compound 4 (5.9 mg). Similarly, fraction E-10 was separated 

by a Sephadex LH-20 column and was eluted with a gradient solvent mixture of MeOH-H2O 

(stepwise gradient 1 : 3, 1 : 1, 13 : 7, 3 : 1, MeOH, 4L) to yield five subfractions (E-10.1 to E-

10.5), based on TLC analysis. Subfraction E-10.1(180 mg) was separated via silica gel CC and 

eluted with EtOAc-MeOH (25:1, v/v) to yield three subfractions (E-10.1a to E-10.1c). 

Subfraction E-10.1b was subjected to silica gel CC (Φ20 mm, L800 mm with a solvent mixture 

of n-hexane-EtOAc, 1:1.2) and then an open YMC*GEL column (Φ15 mm, L800 mm, 65 → 

100 %, H2O-MeOH) to afford compound 1 (10.7 mg). Finally, when the same steps were 

repeated as above, compound 2 (2.1 mg) was obtained by purifying subfraction E-10.3 on 

YMC*GEL column (Φ20 mm, L700 mm) and followed by passing a Sephadex LH-20 column 

(Φ15 mm, L900 mm) using a mixture of MeOH-H2O (1.5L, 1:2). 

Cinchonain Ib (1): Dark yellow, amorphous powder;  24

Dα –19.6 (c 0.15, MeOH); UV 

(MeOH) λmax (logε) 214 (4.67), 2.83 (3.98), and 335 (3.39) nm; IR (KBr) νmax 3361, 1746, 1612, 

1521, 1447, 1361, and 1199 cm
–1

; 
1
H NMR (500 MHz, CD3OD) and 

13
C NMR (125 MHz, 

CD3OD) spectroscopic data, see Table 1; ESI-MS m/z 453 [M + H]
+
 (C24H21O9

+
) and 475 [M + 

Na]
+
 (C24H20NaO9

+
), C24H20O9, M = 452. 

Breynioside A (2): Colorless needles; mp. 245 - 246 
o
C;  24

Dα –21.5 (c 0.15, MeOH); UV 

(MeOH) λmax (log ε) 216 (3.94), 258 (4.04) nm; IR (KBr) νmax 3370, 1698, 1605, 1510, 1280, 

1210, and 1048 cm
–1

; 
1
H NMR (500 MHz, CD3OD) and 

13
C NMR (125 MHz, CD3OD) 

spectroscopic data, see Table 2; ESI-MS m/z 391 [M - H]
–
 (C19H19O9

–
), C19H20O9, M = 392. 

Polystachyol (3): White, amorphous powder; UV λmax (MeOH) (log ε): 230 (4.02) and 276 

(3.47) nm; IR(KBr) νmax 3393, 1695, 1605, 1517, 1504, 1368, 1464, 1221, and 1116 cm
–1

; 
1
H 
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NMR (500 MHz, CD3OD): δH 6.40 (2H, br s, H-2/H-6), 4.33 (1H, d, J = 5.5 Hz, H-7), 1.99 (1H, 

m, H-8), 3.51 (2H, m, H-9), 6.60 (1H, br s, H-2'), 2.58 (1H, dd, J = 15.5, 11.0 Hz, H-7'a), 2.71 

(1H, dd, J = 15.5, 5.0 Hz, H-7'b), 1.65 (1H, m, H-8'), 3.52 (1H, dd, J = 11.0, 5.5 Hz, H-9'a), 3.61 

(1H, dd, J = 11.0, 7.0 Hz, H-9'b), 3.75 (6H, s, 3,5-OCH3), 3.88 (3H, s, 3'-OCH3), and 3.40 (3H, 

s, 5'-OCH3); 
13

C NMR (125 MHz, CD3OD): δC 139.3 (C-1), 106.9 (C-2/C-6), 149.0 (C-3/C-5), 

134.5 (C-4), 42.3 (C-7), 49.3 (C-8), 64.2 (C-9), 130.2 (C-1'), 107.8 (C-2'), 148.7 (C-3'), 138.9 

(C-4'), 147.7 (C-5'), 126.2 (C-6'), 33.5 (C-7'), 40.9 (C-8'), 66.8 (C-9'), 56.7 (3,5-OCH3), 56.5 (3'-

OCH3), and 60.1 (5'-OCH3); ESI-MS m/z 421 [M + H]
+
 (C22H29O8

+
), C22H28O8, M = 420. 

β-Sitosterol 3-O-β-D-glucopyranoside (4): White, amorphous powder; mp. 284 - 285 
o
C; 

 24

Dα  – 29.7 (c 0.20, MeOH); UV (MeOH) λmax 200 and 192 nm; IR (KBr)νmax 3401 - 3415, 

2914, 2875, 1340-1465, and 1021-1160 cm
–1

; 
1
H NMR (500 MHz, pyridine-d5): δH 0.91 (1H, m, 

H-1a), 1.68 (1H, m, H-1b), 1.71 (1H, m, H-2a), 2.11 (1H, m, H-2b), 3.94 (1H, m, H-3), 2.41 

(1H, m, H-4a), 2.69 (1H, m, H-4b), 5.35 (1H, t, J = 2.5 Hz, H-6), 1.31 (1H, m, H-7a), 1.46 (1H, 

m, H-7b), 1.32 (1H, m, H-8), 0.82 (1H, m, H-9), 1.38 (2H, overlapped signals, H-11), 1.09 (1H, 

m, H-12a), 1.92 (1H, m, H-12b), 0.89 (1H, m, H-14), 0.99 (1H, m, H-15a), 1.49 (1H, m, H-15b), 

1.20 (1H, m, H-16a), 1.79 (1H, m, H-16b), 1.06 (1H, m, H-17), 0.61 (3H, s, H-18), 0.89 (3H, s, 

H-19), 1.31 (1H, m, H-20), 0.93 (3H, d, J = 6.5 Hz, H-21), 1.01 (1H, m, H-22a), 1.32 (1H, m, H-

22b), 1.19 (2H, overlapped signals, H-23), 0.92 (1H, m, H-24), 1.60 (1H, m, H-25), 0.84 (3H, d, 

J = 7.0 Hz, H-26), 0.87 (3H, d, J = 7.0 Hz, H-27), 1.22 (2H, overlapped signals, H-28), 0.81 

(3H, t, J = 7.5 Hz, H-29); Glc: 4.95 (1H, d, J = 7.5 Hz, H-1'), 3.98 (1H, dd, J = 9.0, 7.5 Hz, H-

2'), 4.23 (1H, t, J = 9.0 Hz, H-3'), 3.34 (1H, t, J = 9.0 Hz, H-4'), 4.21 (1H, m, H-5'), 4.27 (1H, 

dd, J = 12.0, 5.0 Hz, H-6'a), and 4.58 (1H, dd, J = 12.0, 2.0 Hz, H-6'b); 
13

C NMR (125 MHz, 

pyridine-d5): δC 37.3 (C-1), 29.9 (C-2), 78.2 (C-3), 39.1 (C-4), 140.7 (C-5), 121.7 (C-6), 31.8 (C-

7), 31.9 (C-8), 50.1 (C-9), 36.1 (C-10), 21.0 (C-11), 39.7 (C-12), 42.3 (C-13), 56.6 (C-14), 24.3 

(C-15), 28.3 (C-16), 56.0 (C-17), 11.7 (C-18), 19.2 (C-19), 36.7 (C-20), 19.0 (C-21), 33.9 (C-

22), 26.1 (C-23), 45.8 (C-24), 29.3 (C-25), 18.8 (C-26), 19.7 (C-27), 23.2 (C-28), 11.9 (C-29); 

Glc: 102.2 (C-1'), 74.8 (C-2'), 78.0 (C-3'), 71.3 (C-4'), 77.9 (C-5'), and 62.3 (C-6'); ESI-MS m/z 

575 [M - H]
–
 (C35H59O6

–
), C35H60O6, M = 576. 

β-Sitosterol 3-O-β-D-(6'-O-palmitoyl)glucopyranoside (5): White, amorphous powder; 

mp. 168 - 170 
o
C;  24

Dα  –32.3 (c 0.25, MeOH); IR (KBr) νmax 3401 - 3410, 2985 - 2914, 2852, 

1739, 1170, and 1022 cm
–1

; 
1
H NMR (500 MHz, CDCl3): δH 1.06 (1H, m, H-1a), 1.84 (1H, m, 

H-1b), 1.29 (1H, overlapped signal, H-2), 3.56 (1H, m, H-3), 2.27 (1H, m, H-4a), 2.34 (1H, m, 

H-4b), 5.35 (1H, d, J = 5.0 Hz, H-6), 1.93 (1H, m, H-7a), 1.24 (1H, m, H-7b), 1.26 (1H, m, H-8), 

0.89 (1H, m, H-9), 1.48 (2H, overlapped signals, H-11), 1.17 (1H, m, H-12a), 2.01 (1H, m, H-

12b), 0.98 (1H, m, H-14), 1.38 (1H, m, H-15a), 1.59 (1H, m, H-15b), 1.27 (1H, m, H-16a), 1.83 

(1H, m, H-16b), 1.15 (1H, m, H-17), 0.68 (3H, s, H-18), 1.00 (3H, s, H-19), 1.38 (1H, m, H-20), 

0.91 (3H, d, J = 6.5 Hz, H-21), 1.02 (1H, m, H-22a), 1.36 (1H, m, H-22b), 1.57 (2H, overlapped 

signals, H-23), 0.91 (1H, m, H-24), 1.23 (1H, overlapped signal, H-25), 0.87 (3H, d, J = 7.0 Hz, 

H-26), 0.86 (3H, d, J = 7.0 Hz, H-27), 1.29 (2H, overlapped signals, H-28), 0.84 (3H, t, J = 7.5 

Hz, H-29); 3-Glc: 4.38 (1H, d, J = 7.5 Hz, H-1'), 3.40 (1H, dd, J = 9.0, 7.5 Hz, H-2'), 3.58 (1H, t, 

J = 9.0 Hz, H-3'), 3.34 (1H, t, J = 9.0 Hz, H-4'), 3.46 (1H, m, H-5'), 4.45 (1H, dd, J = 12.0, 5.0 

Hz, H-6'a), and 4.26 (1H, dd, J = 12.0, 2.0 Hz, H-6'b); 6'-Palmitoyl: 2.37 (2H, t, J = 7.5 Hz, H-

2''), 1.62 (2H, overlapped signals, H-3''), 1.20 - 1.38 (overlapped signals, H-4'' – H-14''), 1.28 

(2H, overlapped signals, H-15''), 0.85 (3H, t, J = 7.0 Hz, H-16''); 
13

C NMR (125 MHz, CDCl3): 

δC 37.2 (C-1), 29.6 (C-2), 79.6 (C-3), 38.9 (C-4), 140.3 (C-5), 122.1 (C-6), 31.9 (C-7), 31.9 (C-

8), 50.2 (C-9), 36.1 (C-10), 21.0 (C-11), 39.7 (C-12), 42.3 (C-13), 56.7 (C-14), 24.3 (C-15), 28.2 

(C-16), 56.1 (C-17), 11.8 (C-18), 19.3 (C-19), 36.7 (C-20), 19.0 (C-21), 33.9 (C-22), 26.1 (C-
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23), 45.8 (C-24), 29.1 (C-25), 18.8 (C-26), 19.8 (C-27), 23.0 (C-28), 11.9 (C-29); 3-Glc: 101.2 

(C-1'), 73.5 (C-2'), 76.0 (C-3'), 70.1 (C-4'), 73.9 (C-5'), 63.2 (C-6'); 6'-Palmitoyl: 174.5 (C-1''), 

34.2 (C-2''), 24.9 (C-3''), 29.2 - 29.7 (C-4'' – C-14''), 22.6 (C-15''), and 14.1 (C-16''); ESI-MS m/z 

837 [M + Na]
+
 (C51H90NaO7

+
), 574 [M - C16H32O]

+
, 414 [M - palmitoyl - glucosyl]

+
, 397 [M - 

C22H41O7]
+
, and 240 [M - C36H62O5]

+
; C51H90O7, M = 814. 

β-Sitosterol 3-O-β-D-(6'-O-stearoyl)glucopyranoside (6): White, amorphous powder; mp. 

288 - 290 
o
C;  24

Dα  –11.9 (c 0.15, MeOH); IR (KBr) νmax 3400 - 3410, 2986 - 2910, 2851, 1739, 

1169, and 1023 cm
–1

; 
1
H NMR (500 MHz, pyridine-d5): δH 0.93 (1H, m, H-1a), 1.69 (1H, m, H-

1b), 1.71 (1H, m, H-2a), 2.12 (1H, m, H-2b), 3.92 (1H, m, H-3), 2.45 (1H, m, H-4a), 2.70 (1H, 

m, H-4b), 5.32 (1H, d, J = 5.0 Hz, H-6), 1.33 (1H, m, H-7a), 1.20 (1H, m, H-7b), 1.89 (1H, m, 

H-8a), 1.21 (1H, m, H-8b), 0.87 (1H, m, H-9), 1.39 (2H, overlapped signals, H-11), 1.06 (1H, m, 

H-12a), 1.97 (1H, m, H-12b), 0.92 (1H, m, H-14), 1.01 (1H, m, H-15a), 1.52 (1H, m, H-15b), 

1.23 (1H, m, H-16a), 1.31 (1H, m, H-16b), 1.07 (1H, m, H-17), 0.63 (3H, s, H-18), 0.90 (3H, s, 

H-19), 1.34 (1H, m, H-20),0.95 (3H, d, J = 6.5 Hz, H-21), 1.03 (1H, m, H-22a), 1.39 (1H, m, H-

22b), 1.22 (2H, overlapped signals, H-23), 0.96 (1H, m, H-24), 1.63 (1H, overlapped signal, H-

25), 0.82 (3H, d, J = 7.0 Hz, H-26), 0.97 (3H, d, J = 7.0 Hz, H-27), 1.24 (2H, overlapped signals, 

H-28), 0.63 (3H, t, J = 7.0 Hz, H-29); Glc: 4.99 (1H, d, J = 7.5 Hz, H-1'), 4.01 (1H, dd, J = 9.0, 

7.5 Hz, H-2'), 4.26 (1H, t, J = 9.0 Hz, H-3'), 4.19 (1H, t, J = 9.0 Hz, H-4'), 4.25 (1H, m, H-5'), 

4.50 (1H, dd, J = 12.0, 2.5 Hz, H-6'a), 4.32 (1H, dd, J = 12.0, 5.5 Hz, H-6'b); 6'-Stearoyl: 2.48 

(2H, t, J = 7.5 Hz, H-2"), 1.02 (1H, m, H-3"a), 1.53 (1H, m, H-3"b), 1.25 - 1.39 (overlapped 

signals, H-4"–H-16"), 1.41 (2H, overlapped signals, H-17"), 0.83 (3H, t, J = 7.0 Hz, H-18"); 
13

C 

NMR (125 MHz, pyridine-d5): δC 37.4 (C-1), 29.8 (C-2), 78.2 (C-3), 39.2 (C-4), 140.8 (C-5), 

121.8 (C-6), 32.0 (C-7), 31.9 (C-8), 50.2 (C-9), 36.3 (C-10), 21.2 (C-11), 39.8 (C-12), 42.4 (C-

13), 56.7 (C-14), 24.4 (C-15), 28.4 (C-16), 56.1 (C-17), 11.8 (C-18), 19.3 (C-19), 36.8 (C-20), 

19.1 (C-21), 34.1 (C-22), 26.3 (C-23), 45.9 (C-24), 29.4 (C-25), 18.9 (C-26), 19.8 (C-27), 23.3 

(C-28), 11.8 (C-29); Glc: 102.4 (C-1'), 75.0 (C-2'), 78.1 (C-3'), 71.4 (C-4'), 78.1 (C-5'), 62.5 (C-

6'); 6'-Stearoyl: 174.5 (C-1"), 34.1 (C-2"), 24.9 (C-3"), 29.4 - 29.8 (overlapped signals, C-4"–C-

16"), 22.6 (C-17"), 14.1 (C-18"); ESI-MS m/z 574 [M - C18H36O]
+
, 397 [M - C24H45O7]

+
, and 268 

[M - C36H62O5]
+
, C53H94O7, M = 842. 

3. RESULTS AND DISCUSSION 

Compound 1 was isolated as a dark yellow, amorphous powder. Its molecular formula was 

determined to be C24H20O9 based on a protonated molecular ion peak at m/z 453 [M + H]
+
 and a 

sodium adduct molecular ion peak at m/z 475 [M + Na]
+
 in the ESI-MS data (consistent with 15 

degrees of unsaturation). Analysis of the 
1
H, 

13
C NMR, and HSQC spectroscopic data of 1 

(Table 1) displayed signals for all 20 protons and 24 carbons, suggesting the presence of a 

flavan-3-ol skeleton in the molecule which could be determined from the characteristic signals 

of an AMX2-type [δH 4.91 (1H, br s, H-2)/δC 80.2 (C-2), 4.22 (1H, m, H-3)/δC 67.0 (C-3), and 

2.84 (1H, dd, J = 17.0, 2.5 Hz, H-4a), 2.95 (1H, dd, J = 17.0, 4.5 Hz, H-4b)/δC 29.2 (C-4)], while 

the presence of an aromatic singlet signal [δH 6.23 (s, H-6)/δC 96.4 (C-6)] was attributed to a 

pentasubstituted system in the flavan A-ring. Additionally, the occurrence of two ABX spin-spin 

systems [δH 6.85 (1H, d, J = 2.0 Hz, H-2')/δC 115.0 (C-2'), 6.70 (1H, d, J = 8.5 Hz, H-5')/δC 

115.9 (C-5'), 6.63 (1H, dd, J = 8.5, 2.0 Hz, H-6')/δC 119.3 (C-6'), and 6.64 (1H, d, J = 2.0 Hz, H-

2'')/δC 115.03 (C-2''), 6.71 (1H, d, J = 8.5 Hz, H-5'')/δC 116.5 (C-5''), 6.56 (1H, dd, J = 8.5, 2.0 

Hz, H-6'')/δC 119.4 (C-6'')] demonstrates the characteristics of two 1,3,4-trisubstituted phenyl 

groups which exhibited the presence of the 3',4'-dihydroxyflavan B-ring. Based on these data, 
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the presence of the flavan-3-ol skeleton related to that of (–)-epicatechin (fragment A) [39 - 42], 

along with signals for a dehydrocaffeoyl group [δH 4.47 (1H, dd, J = 7.0, 2.0 Hz, H-α)/δC 35.1 

(C-α)], a methylene [δH 2.89 (1H, dd, J = 16.0, 2.0 Hz, H-βa), 3.01 (dd, J = 16.0, 7.0 Hz, H-

βb)/δC 38.3 (C-β)] (fragment B, phenylpropanoid-substituted), was also observed in the 1D 

NMR data. 

Table 1. 
1
H and 

13
C NMR spectroscopic data for 1 and 2 (in CD3OD). 

Position 
1 

Position 
2 

δC
a δH

b mult. (J in Hz) δC
a δH

b mult. (J in Hz) 

2 80.2 4.91 br s 1 152.3 - 

3 67.0 4.22 m 2,6 119.6 6.96 d (9.0) 

4 29.2 
2.95 dd (17.0, 4.5) 

2.84 dd (17.0, 2.5) 
3,5 116.6 6.63 d (9.0) 

5 157.2 - 4 153.9 - 

6 96.4 6.23 s 1' 103.7 4.75 d (7.5) 

7 152.0 - 2' 74.9 3.48 dd (9.0, 7.5) 

8 106.1 - 3' 78.2 3.50 dd (9.0, 9.0) 

9 153.5 - 4' 72.1 3.45 t (9.0) 

10 105.2 - 5' 75.5 3.74 ddd (9.0, 7.0, 2.0) 

1' 131.6 - 6' 65.1 
4.70 dd (11.5, 2.0) 

4.36 dd (11.5, 7.0) 

2' 115.0 6.85 d (2.0) 1'' 122.2 - 

3' 146.3 - 2'',6'' 132.9 7.92 d (9.0) 

4' 145.9 - 3'',5'' 116.2 6.88 d (9.0) 

5' 115.9 6.70 d (8.5) 4'' 163.6 - 

6' 119.3 6.63 dd (8.5, 2.0) 7'' 167.9 - 

1'' 135.2 -    

2'' 115.3 6.64 d (2.0)    

3'' 145.8 -    

4'' 145.1 -    

5'' 116.5 6.71 d (8.0)    

6'' 119.4 6.56 dd (8.0, 2.0)    

α 35.1 4.47 dd (7.0, 2.0)    

β 38.3 
3.01 dd (16.0, 7.0) 

2.89 dd (16.0, 2.0) 
   

-COO- 170.7 -    

a125 MHz, b500 MHz. Assignments were confirmed by HMQC and HMBC experiments. 

Moreover, the signal for a carbonyl carbon (δC 170.7) was conspicuously observed in the 
13

C 

NMR data and was assigned through a 
2
JC−H correlation between the carbonyl signal (δC 170.7) 

and H-β (δH 2.89/3.01). This relationship was supported by the HMBC experiments, in which 

correlations were observed for the resonances between δH 4.47 (1H, dd, J = 7.0, 2.0 Hz, H-α) 

and 2.89 (1H, dd, J = 16.0, 2.0 Hz, H-βa)/3.01 (dd, J = 16.0, 7.0 Hz, H-βb) with δC 170.7 (C=O). 

On the other hand, the location of a pyranone ring fused to the A-ring at C-8 and C-7 was further 

observed by the HMBC correlations between δH 4.47 (1H, dd, J = 7.0, 2.0 Hz, H-α) with δC 

152.0 (C-7)/106.1 (C-8), between δH 2.89 (1H, dd, J = 16.0, 2.0 Hz, H-βa)/3.01 (dd, J = 16.0, 7.0 

Hz H-βb) with δC 106.1 (C-8), as well as between δH 6.23 (1H, s, H-6) with δC 152.0 (C-7) and 

δC 106.1 (C-8) (Figure 2). The β-configuration of H-α on the pyranone ring in 1 was determined 

by analyzing its spin-coupling pattern and based on the generally comparable NMR data with 

previous reports [39 - 42]. The chemical shifts of C-α (δC 35.1)/δH 4.47 (1H, dd, J = 7.0, 2.0 Hz, 
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H-α) and C-β (δC 38.3)/δH 2.89 (1H, dd, J = 16.0, 2.0 Hz, H-βa)/3.01 (dd, J = 16.0, 7.0 Hz, H-βb) 

in 1 corresponded well to signals observed in the NMR spectra of corbulain Ia [δC 35.3 (C-α)/δH 

4.44 (1H, dd, J = 7.0, 1.5 Hz, H-α) and 38.4 (C-β)/δH 2.85 (1H, dd, J = 16.0, 1.5 Hz, H-βa)/3.01 

(dd, J = 16.0, 7.0 Hz, H-βb)] and different from the NMR spectra of corbulain Ib with α-

configuration [δC35.5 (C-α)/δH 4.52 (1H, dd, J = 7.0, 1.5 Hz, H-α) and 38.6 (C-β)/δH 2.85 (1H, 

dd, J = 16.5, 1.5 Hz, H-βa)/3.01 (dd, J = 16.5, 7.5 Hz, H-βb)] [40]. These data indicated the 

presence of a β-configuration of H-α in 1. Moreover, cinchonain Ia and cinchonain Ib were first 

described by Nonaka and Nishioka [41] and their structures were revised by Chen et al. [42] 

based on NOESY experiments and CD data. To date, the structure of cinchonanin Ib was 

accepted to show in Figure 1. From the above evidence, the structure of 1 was determined as 

cinchonain Ib. This compound was previously obtained from the barks of Cinchona succirubra 

[41], Castanopsis hystrix [42], and Trichilia catigua [40]. 

Compound 2 was obtained as colorless needles, with a negative optical rotation 24

Dα – 21.5 

(c 0.5, MeOH). Its molecular formula was found to be C19H20O9 (10 indices of hydrogen 

deficiency) via the 
13

C-NMR spectroscopic data and a negative ESI-MS ion peak at m/z 391 [M-

H]
–
. Analysis of the 

1
H-NMR spectroscopic data of 2 showed four doublets assignable to a 

symmetrical 1,4-disubstituted aromatic ring [δH 6.96 (2H, d, J = 9.0 Hz, H-2/H-6)/6.63(2H, d, J 

= 9.0 Hz , H-3/H-5) (fragment A) and 7.92 (2H, d, J = 9.0 Hz, H-2''/H-6'')/6.88 (2H, d, J = 9.0 

Hz, H-3''/H-5'') (fragment B)], together with one glucosidic moiety [δC 103.7 (C-1'), 74.9 (C-2'), 

78.2 (C-3'), 72.1 (C-4'), 75.5 (C-5'), and 65.1 (C-6')] as evidenced by the presence of an 

anomeric proton signal [δH 4.75 (1H, d, J = 7.5 Hz, H-1')], and other proton signals [δH 3.48 (1H, 

dd, J = 9.0, 7.5 Hz, H-2'), 3.50 (1H, dd, J = 9.0, 9.0 Hz, H-3'), 3.45 (1H, t, J = 9.0 Hz, H-4'), 

3.74 (1H, m, H-5'), 4.36 (1H, dd, J = 11.5, 7.0 Hz, H-6'a), and 4.70 (1H, dd, J =  11.5, 2.0 Hz, 

H-6'b)].  

 
Figure 2. Key HMBC correlations of 1 and 2. 

Moreover, the anomeric proton signal of H-1' was attributed to a β-glucosyl unit (a trans-

diaxial configuration of H-1' and H-2') from the coupling constant (
3
J1',2' = 7.5 Hz). Furthermore, 

analysis of the 
13

C-NMR and HSQC spectroscopic data of 2 revealed the presence of 19 carbon 

signals, including a carbonyl (δC 167.9) and 12 aromatic carbon atoms, along with signals from 

one hexose moiety (Table 1). The sugar moiety was confirmed as β-D-glucose, which was linked 

to the aglycones at C-1 (fragment A) and C-7'' (fragment B) positions in 2. This assignment was 

supported by the HMBC experiments, in which correlations were observed for the resonances 

between δH 4.75 (H-1')/4.36/4.70 (H-6') with C-1 (δC 152.3) and C-7' (δC 167.9). Additionally, 

the locations of two hydroxyl groups were assigned to C-4 and C-4'' positions, respectively, 

which were implied by the HMBC correlations between δH 6.96 (H-2/H-6) and 6.63 (H-3/H-5) 

with δC 153.9 (C-4); δH 7.92 (H-2''/H-6'') and 6.88 (H-3''/H-5'') with δC 163.6 (C-4'') (Figure 2). 
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These spectroscopic data suggested that 2 was a phenolic glycoside with a glucosyl unit and two 

4-hydroxybenzoyl moieties [43]. By comparing the NMR spectroscopic data of 2 with reported 

literature, 2 was determined as 4-hydroxyphenyl 1-O-β-D-[6'-O-(p-hydroxybenzoyl)] 

glucopyranoside (breynioside A) [43]. This compound was previously obtained from the leaves 

of Breynia officinalis [43].  

Compound 5 was obtained as a white, amorphous powder with the molecular formula 

C51H90O7, as determined by the positive-ion sodiated HR-ESI-MS peak (m/z 837.6586 ([M + 

Na]
+
, calcd. for C51H90NaO7

+
, 837.6584). The IR spectrum of 5 showed characteristic hydroxyl 

(3401 - 3410 cm
–1

), ester (1739 cm
–1

), and C-O (1170 and 1022 cm
–1

) group absorption bands. 

The 
1
H NMR spectrum of 5 indicated the presence of six methyl groups and a trisubstituted 

double bond. The anomeric proton [δH 4.38 (1H, d, J = 7.5 Hz, H-1')] suggested a sugar moiety 

bonded to the aglycone via a β-glycosidic linkage. Additionally, the presence of a long-chain 

aliphatic moiety was indicated by an overlapped triplet methyl signal [δH 0.85 (1H, t, J = 7.0 Hz, 

H-16'')] and methylene groups. These findings show that 5 is a C-29 steroidal glucoside 

derivative [44, 45]. The 
13

C NMR spectrum of 5 revealed 51 carbon signals, 29 of which were 

assigned to a steroidal moiety, six to one monosaccharide moiety, and the remaining fatty acid 

group. The presence of six methyl groups, an oxymethine group, a pair of olefinic methine 

carbons, together with one glucoside moiety was observed in the 
13

C NMR spectrum. The 
13

C 

NMR data together with the spin-coupling pattern of the sugar proton signals (J1'–2' = 9.0 Hz, J2'–

3' = 9.0 Hz, and J3'–4' = 9.0 Hz), indicated a β-D-glucopyranosyl moiety. Moreover, signals at δC 

174.5 (C=O, C-1"), 34.2 (CH2, C-2"), 24.9 (CH2, C-3"), 29.2 - 29.7 (CH2, overlapped signals, C-

4" - C-14"), 22.6 (CH2, C-5"), and 14.1 (CH3, C-6") were assigned to a long aliphatic chain of a 

fatty acid. 

 

Figure 3. Key HMBC ( ) and COSY ( ) correlations of 5. 

Three partial fragments of 5 were revealed using a combination of 2D NMR HMBC and 
1
H-

1
H COSY spectrum. A downfield shift was observed for δC 63.2 (C-6'), as well as an HMBC 

correlation of δH 4.45/4.26 (H-6') with δC 174.5 (C=O) confirming (6'→1'') glycosidic linkage 

between the glucosyl moiety and the aliphatic chain at C-6' position. Finally, the obvious 

downfield shift of δC 79.6 (C-3) suggested that the glucosyl moiety was at C-3, which was 

verified by an HMBC correlation between δH 4.38 (H-1') and δC 79.6 (C-3) and the proton 

sequence H-1/H-2/H-3/H-4 in the 
1
H-

1
H COSY spectrum (Figure 3). The prominent fragment 

ions in the (+)-EI-MS spectrum at m/z 574 [M - C16H32O]
+
 (6'-deoxy-sitosterolglucoside), 414 

[M - palmitoyl - glucosyl]
+
, 397 [M - C22H41O7]

+
 (3-deoxysitosterol), and 240 [M - C36H62O5]

+ 

(deoxy-C16 fatty acid part) were observed. These NMR spectroscopic and mass data showed the 

presence of one sitosterol-type glucoside and one palmitoyl group in the structure of 5. By 

comparing the NMR spectroscopic data of 5 with reported literature, 5 was determined to be β-

sitosterol 3-O-β-D-(6'-O-palmitoyl)glucopyranoside [45]. 
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Based on the spectroscopic analysis and comparison with literature values, the remaining 

compounds were identified as polystachyol (3) [46], β-sitosterol 3-O-β-D-glucopyranoside (4)  

[47], and β-sitosterol 3-O-β-D-(6'-O-stearoyl)glucopyranoside (6) [45]. Compound 3 is widely 

distributed throughout the plants, e.g, Aphanamixis polystachya [46], Sorbus lanata (D. Don.) 

Schauer [48], Byttneria aspera Colebr [49]. It is not usually of systematic significance but could 

be important in helping differentiate R. mucronata from other species of Rhizophora. Of the 

three phytosteryl glycosides (4–6) isolated from R. mucronata, compound 4 was previously 

isolated from Brassica rapa sb. sp. campestris and Aloe barbadensis [47], Humulus lupulus [50], 

while compound 6 was previously isolated from Typha latifolia [51] and Lycium chinense [45]. 

4. CONCLUSIONS 

Six compounds, including cinchonain Ib (1), breynioside B (2), polystachyol (3), β-

sitosterol 3-O-β-D-glucopyranoside (4), β-sitosterol 3-O-β-D-(6'-O-palmitoyl)glucopyranoside 

(5), and β-sitosterol 3-O-β-D-(6'-O-stearoyl)glucopyranoside (6), were isolated from a 

methanolic extract of R. mucronata stem barks. The structure determination of these isolates was 

accomplished using comprehensive spectroscopic methods and comparison with those reported. 

This is the first report of compounds 1-6 from the Rhizophora genus. 
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