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Abstract. Mapping flood physical vulnerability is spatially limited because it requires input data 

such as building structures and mat 

erials, which are unavailable on large spatial scales. In this study, we propose a new method for 

qualitatively evaluating the flood vulnerability of residential areas in the context of the exposure 

and resilience to flood hazard on large spatial scales. This method utilizes the possible 

correlations between the structural physical vulnerability and residential types obtained from the 

statistical classifications of multispectral satellite images. Because multispectral classification is 

well-established as an inexpensive technique for automatically classifying land cover types over 

wide areas, our method is feasible and efficient for mapping the physical vulnerability of 

residential areas. As a case study, we present an application of the proposed approach to the 

Thach Ha district, Ha Tinh province, Vietnam, using the Japanese type 2 Advanced Visible and 

Near Infrared Radiometer (AVNIR-2) images and Phased Array type L-band Synthetic Aperture 

Radar (PALSAR) images captured by the Advanced Earth Observing Satellite (ADEOS). 

Keywords: qualitative evaluation; physical vulnerability; flood mapping; residential areas; multispectral 

classification.  

Classification numbers: 3.5.2, 2.9.  

1. INTRODUCTION 

In recent decades, the number of natural floods has increased in the context of climate 

change, causing extensive loss and damage to residential areas. Between 1975 and 2000, among 

all the natural disasters, floods impacted the most number of people in Asia and caused the most 

damage in Europe [1]. Flood risk depends on the following location-specific factors: (i) 

hazardous event, (ii) vulnerability, and (iii) elements-at-risk [2]. Flood risk can be assessed 

traditionally as the combined product of the probability of and damage caused by the hazard and 

vulnerability [3]. In 2016, a holistic participatory approach for flood risk assessment presented 

both quantitative and qualitative methods to generate an alternative flood risk map; however, it 

was limited to providing details on a small spatial scale [4]. 
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Vulnerability is defined as the susceptibility of a community to the impact of a hazardous 

event. Because vulnerability depends on numerous components, it can change rapidly, and 

generally, explain the reason for the same hazardous event having a different effect on the 

various elements-at-risk [5]. The different types of variability found are: physical, social, 

economic, and environmental vulnerabilities [6].  Flood physical vulnerability can be 

determined as the degree of loss of the physical infrastructure and population owing to flooding. 

The physical conditions comprise of the exposure to the flood hazard (location relative to the 

hazard and environmental surrounding), susceptibility of the elements-at-risk (the constructions 

in the flooded areas), and resilience (adjustments, preparation) depending on the self-adaptation 

of the local residents [7, 8, 9]. Among the construction materials used to determine the physical 

vulnerability, certain materials have a higher sensitivity to floods than earthquakes [5]. To 

determine the flood physical vulnerability, some previous research studies delineated flood areas 

to assess the exposure to the flood hazard using optical and radar images [10, 11]. The 

susceptibility and resilience to flood hazard are commonly obtained from detailed fieldwork data 

and mapping exercises with local residents [4, 8].  

Some calculation methods have been proposed for determining the physical vulnerability of 

residential areas; however, they require data such as the building structure and materials for 

obtaining the susceptibility of the elements-at risk, which are unavailable on large spatial scales. 

This is because buildings have different structures and materials and so, generally lack spatial 

ordering, which makes it easier to evaluate such buildings directly from high-resolution imagery. 

Manual identification of detailed structural types has been applied in participatory mapping 

approaches [4, 5, 6, 8]. However, it is an expensive and time-consuming process, also requiring 

finely detailed information, which is available only at small spatial scales.  

Multispectral satellite remote sensing is an efficient technique for inexpensively observing 

a wide area. Although it cannot directly observe the structure or material of each house, it is 

capable of automatically classifying land cover types, including residential areas [12]. It has the 

potential for application to vulnerability mapping if a correlation between the structure or 

material and different land cover classes in the residential areas can be established. Kang, Su, 

and Chang demonstrated that the damages caused to land uses and building types are not 

identical after the same flood event [13].  

The objective of this research is to propose a simple approach to qualitatively evaluate the 

physical vulnerability of different residential areas to flood disasters. This study uses the 

correlation between the house physical vulnerability and land-cover classification obtained from 

contemporary multispectral satellite imagery. We demonstrate the capability of this method 

using the Advanced Visible and Near Infrared Radiometer type 2 (AVNIR-2/ALOS) images and 

Phased Array type L-band Synthetic Aperture Radar (PALSAR) images captured over the Thach 

Ha district, Ha Tinh province, Viet Nam.  

2. PROPOSED APPROACH 

2.1. Qualitative evaluation of flood physical vulnerability  

First, an unsupervised classification of the land cover is performed using one or more 

multispectral satellite image(s) of the target region. The classification parameters are adjusted so 

that the residential areas are categorized into multiple classes. 

Next, in situ land cover measurements at discrete locations in each land cover class are 

recorded as the ground truth data for calibration. At this stage, the land cover characteristics for 
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each class and inundated information at each GPS point are clarified. The locations of the 

residential areas, structures, and materials in the different classes are observed in detail and their 

physical vulnerabilities are quantitatively evaluated.   

Next, a supervised land-cover classification is performed for achieving a better accuracy, 

using the same satellite image(s) and a majority of the ground truth points for training. The land 

cover classes can include permanent water, vegetation, bare lands, and residential areas. Here, 

the classes should be modified so that each residential area belongs to a uniform class.  

Subsequently, the relationships between the physical vulnerabilities of the residential area 

classes and their subsidiary sample houses are investigated. The established correlations can be 

used to qualitatively evaluate the physical vulnerability of each residential area in the target 

region. 

2.2. Analyzing flood physical vulnerability in terms of exposure and resilience  

First, the exposure is determined by combining the floodplains that occurred in some recent 

years in the research area. The combination of floodplains yields the probability of flood hazard. 

To this end, each floodplain is extracted by comparing the radar images before and during the 

flood event. A radar image is well-known to be an effective satellite image in comparison with 

other optical images for extracting flooding areas [11].  

In addition, the height of the flood water affected by the geography should be analysed 

because vulnerability strongly depends on the status of the water level. The digital elevation 

model (DEM) is useful for identifying the geographic features of the research area. The DEM is 

used to classify the various geographic features. The water level in the different geographic 

features in a floodplain is determined by interviewing the local population and taking samples.  

Finally, the spatial distribution of the resilience to flood in the residential area is determined 

from the participatory information on the adaptability of the local residents to a flood or method 

for the mitigation of a flood.  

3. DEMONSTRATION METHOD 

3.1. Study area 

 

Figure 1. Location of the study area in the Thach Ha district, Ha Tinh province, Viet Nam. 
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The study area is in central Viet Nam, in a flat area of the delta of the Sot river, Thach Ha 

district, Ha Tinh province, Viet Nam (Figure 1). In this area, a large 100-yr-flood was caused by 

the 2010 La Nina in the autumn season between 4–16 October 2010.   

Choosing to analyse the severest flood that occurred in 2010 as the study area offers certain 

conveniences for our demonstration method. First, because this area has a flat topography, the 

backscattering errors of satellite images that are affected by the topographic conditions are 

reduced to a minimum. This supports easier and more exact observance of the land cover and 

floodplains with a simple calibration. Second, under the condition of geographic stability and 

characteristics of the fluid dynamics of the water run-off to lower regions, the floodplain of the 

severest flood event with the highest rainfall can cover the floodplains of other flood events. 

3.2. Unsupervised classification 

An unsupervised classification was performed using the K-means method [14] on a 

multispectral ALOS/AVINIR-2 image with three visible bands and a single near-infrared band, 

acquired on 21 September 2009 in the autumn season prior to the 2010 flood. Following 

radiometric calibration and geometric correction, the image was used as the input for land-cover 

classification. The samples of the desired class numbers were tested with the K-means 

classification numerous times to identify the land cover classes in the study area. It was possible 

to vary the number of classes between a minimum of five and a maximum of ten. Categorizing 

the land coverage into nine classes established the correct number of multiple residential area 

classes when collating the classified results with a high-resolution optical image from Google 

Earth. A comparison with Google Earth imagery was not required for an input image with a 

sufficiently high resolution because the residential areas could be confidently identified. 

3.3. Acquisition of ground truth data 

From the fieldwork, 215 random ground truth points of the land cover characteristics and 

flooding information were recorded in the autumn season after the 2010 flood to identify the 

nine classes. We selected the number of ground truth points in each land cover type based on the 

area ratio of the land cover type from the unsupervised classification. All the land cover types 

were sampled during the fieldwork. The ground truth points for studying the land cover 

characteristics were randomly separated into 128 training and 87 testing points. We collected 

additional training areas for performing supervised classification by determining the uniform 

land-use area around each training point using images from Google Earth. Fifty two ground truth 

points were in residential areas for which the structures or materials and their flood damages 

were specified. We classified them into groups based on the similarity in the structure or 

material characteristics and then calculated the physical vulnerability of each building type. 

3.4. Supervised classification of land coverage 

A multispectral supervised classification was processed with two types of data: same 

ALOS/AVINIR-2 images and ground truth areas. Both the maximum likelihood estimation 

(MLE) and textural features were used for the classification; the latter facilitates modifying each 

residential area so that it belongs to a uniform class and improves the classification accuracy.  

The MLE [15] was employed with a combination of four original bands and three 

appropriate textural bands for the multispectral supervised classification. The training areas were 

supported to create a region of interest (ROI) required for the MLE.  
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In the textural classification, heterogeneous characteristics were observed between the 

sparse and dense residential areas when comparing the AVNIR-2 and Google Earth images. For 

the land-coverage classification, textural features, mean, standard deviation, and coefficient of 

variation were obtained for a rectangular neighbourhood to extract the differences in the image 

band grey tones [16]. Textural feature trials were established in each image band and rectangle 

neighbourhood to choose the most effective textural applications for the classification. We 

identified these as the blue band, coefficient of variation (7 × 7), green band, mean (7 × 7), red 

band, and standard deviation (7 × 7).  

After the classification, the testing points were utilized to generate a classification error 

matrix. The overall accuracy and Kappa index (κ) were calculated as the indicators of the 

accuracy with equal weight of variables [17].  

3.5. Physical vulnerability calculation  

Table 1. Matrix to assess the physical (structural) vulnerability index of a house in natural hazards [18]. 

    Structural degree 

   Low Medium High 

  WEIGHT 1 3 5 

S
tr

u
ct

u
ra

l 
c
h

a
ra

ct
er

is
ti

cs
 Walls 15 block, brick 

metallic structure 

adobe cardboard, light 

wood, plastic, 

bamboo 

Roof, 

materials 

10 concrete slab galvanized sheeting, 

cement tiles 

straw, plastic 

 brick tiles 

Roof, 

inclination 

5 very inclined moderately inclined low inclination 

Roof, support 

material 

5 Steel structure,  

new, treated wood 

old, non-treated wood weights, stones 

Doors 1 metal, wood small windows large windows 

Windows 1 metal, wood small glass  

Based on the model used by De León and Carlos (Table 1), we calculated the physical 

vulnerability of each house type observed during the fieldwork. The model assessed the physical 

vulnerability associated with the housing sectors based on the elements-at-risk of loss. In this 

model, the correlated matrix between the structural degrees (low, medium, and high) and house 

structures, walls, roof materials, roof inclination, roof support material, doors, and windows was 

established based on the characteristics of the structural materials. The structural vulnerability is 

calculated as follows:   

         ∑       with                   (1) 

where Wi and Wj are the weights of the structural characteristics in row i house structures and 

column j structural degrees, respectively, in the model correlation matrix, and Vestruct is the 

calculated structural vulnerability.  The maximum structural vulnerability is 185. 

We converted Vestruct to the physical vulnerability index (PVI) related to house sectors. PVI 

was calculated as the ratio of the house structural vulnerability and maximum structural 

vulnerability. The vulnerability is expressed on a scale from 0 (no damage potential) to 1 

(highest damage potential).  

                            with                                        (2) 
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3.6. Qualitative evaluation of physical vulnerability of residential areas 

We considered the correlation between the land-use classes and physical vulnerability by 

observing the frequencies of the structural physical vulnerabilities of different residential types. 

Finally, we qualitatively evaluated the physical vulnerability of different residential areas from 

the possible correlations.  

3.7. Determination of exposure to flood hazard 

 

Figure 2. Backscatter images (a) before the flood acquired on 30 August, 2010 and (b) during the                       

flood acquired on 15 October 2010. The data source was ALOS PALSAR, JAXA. 

To extract the floodplain to determine the exposure, we quantitatively evaluated the 

difference in the backscattering coefficient before and during the flood event using two L-band 

radar satellite images (ALOS/PALSAR) acquired on 30 August 2010 and 15 October 2010 

(Figure 2). The multi-temporal images have a homogeneous nadir angle resolution and were 

captured in the same geographical location. The images before and during the flood should be 

captured within a short period. This is to reduce the differences in the topography unrelated to 

the effects of the flood. 

During pre-processing, speckle noise removal, conversion of the digital number (DN) to the 

backscatter coefficient, and geometric correction of the radar images need to be performed 

initially.  

First, we decided to use double filters including Lee’s filter (7 × 7) and low-pass filter (3 × 

3) to remove the speckle noise in the PALSAR images. The double filter supported the 

minimization of the misinformation of the images. Subsequently, we transformed the DN of the 

pixel to the backscattering coefficient and corrected the geometry relevant to the study area [19]. 

Next, we obtained the absolute backscattering difference by subtracting the radar image 

captured during the flood from the image captured before the flood. The quantitative evaluation 

of the backscattering difference was analyzed in the inundated and non-inundated areas of each 

land cover type. We masked the value of the backscattering difference in permanent water to 0 

dB to distinguish permanent water with inundated area. We classified the land covers into two 

groups of land surface: complex group with numerous impediments on the surface and rough 

group without impediments on the surface. In this step, the thresholds for the segmentation of 

the inundated and non-inundated areas in each land cover and land surface were realized. The 

presence of flooding was detected, which demonstrated effective floodplain extraction. After 

  

(a) (b) 
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that, we again compared the floodplain with the land cover map to remove the omission error in 

the inundated area. 

Finally, during post-processing, the flooding information of the ground truth points was 

used to calculate the error matrix and Kappa index with equal weights for the inundated and 

non-inundated areas, leading to accurate segmentation.  

3.8. Determination of resilience to flood  

To identify the resilience, we designed a household survey with a questionnaire to collect 

the information from the local residents on the adaptation to and mitigation of the flood. The 

survey was only processed randomly at 72 households located in the inundated areas. Half of the 

households were in a dense residential area, and the other half were in a sparse residential area. 

The question required them to take some actions to adapt to or mitigate a flood; to rank the 

effectiveness of the actions, using six values ranging from 0 (no effect) to 5 (strong effect); and 

to list their protections for their constructions.  

After collecting the participatory data, we determined six levels of constructed protection. 

The levels and their significance are as follows: level 0 (Non-protection), level 1 (Slightly 

improving the background height by soil and sand), level 2 (Moving properties to a safe place), 

level 3 (Significantly improving the background height by cement or reinforcing the roof and 

wall), level 4 (Mixing more than one solution to protect constructions), and level 5 

(Rebuilding/Relocation of a house to a non-inundated area). 

4. DEMONSTRATION RESULTS 

 

Figure 3. Spatial distributions of the nine land-cover classes in the Thach Ha district,                                            

Ha Tinh province, Viet Nam.  

The spectral and textural classifications yielded the land-coverage spatial distribution with 

the nine land cover classes (Figure 3). Among these, two types of residential areas were 
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identified, dense and sparse, depending on the structural density and vegetation. The dense 

residential areas had densely built houses, whereas the sparse residential area had a mixture of 

sparsely built houses and dense trees in the house gardens. After the classifications, the overall 

classification accuracy based on the testing set of 87 ground truth points was found to be 85 %, 

with a κ-index of 0.833. 

4.1. House types and their physical vulnerability  

The 52 observed houses in the residential area were categorized into 13 types based on the 

house characteristics (Table 2). From house type 1 to 13, the strength of the structural materials 

decreased, so that the physical vulnerability correspondingly increased. Higher recorded 

vulnerabilities correlated with more serious damage. 

Table 2. Thirteen house types in the research area categorized based on the PVI and house                            

structure and material. 

Type Description PVI Damage and losses 

1 

 

0.36 Low flood level: walls were damp and broken. Medium 

flood level: there was slight building subsidence (< 4 cm). 

High flood level: small parts of the houses were destroyed. 

2 

 

0.37 Low flood level: there was slight yard and building 

subsidence. Medium flood level: walls and parts of the 

houses were broken and destroyed. High flood level: houses 

were unroofed and sloped slightly. 

3 

 

0.38 Low flood level: there was slight yard and building 

subsidence 

4 

 

0.42 Medium flood level: there was medium building subsidence 

(> 4 cm) and parts of houses were destroyed and unroofed. 

5 

 

0.42 Low flood level: there was slight yard and building 

subsidence and the walls were damp and broken. Medium 

flood level: there was medium building subsidence (> 4 cm) 

and parts of the houses were destroyed and unroofed. High 

flood level: large parts of the roofs were broken and 

unroofed. 

6 

 

0.42 High flood level: large parts of the roofs were broken and 

unroofed. 

7 

 

0.43 Low flood level: small parts of the roofs were unroofed, 

there was slight building subsidence, and there were broken 

walls. Medium flood level: roof and building structures 

were broken and the walls were partially damp and broken.  
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8 

 

0.44 Medium flood level: the walls were partially damp and 

broken; houses were partially destroyed, unroofed, and 

sloped slightly; and there was strong building subsidence.  

9 

 

0.47 Low flood level: there were slight building subsidence and 

broken walls and the houses were partially unroofed. 

10 

 

0.47 Low flood level: there were slight building subsidence and 

broken walls and the houses were partially unroofed.  

11 

 

0.74 Medium flood level: large parts of the walls were destroyed, 

houses sloped strongly, and there was strong building 

subsidence. 

12 

 

0.82 Low flood level: large parts of the walls were destroyed, 

houses sloped strongly, and there was strong background 

subsidence. 

13 

 

0.88 Low flood level: houses were significantly destroyed and 

there was strong background subsidence.  

*Note: Low flood level is 0–0.6 m; medium level is 0.6–1.3 m; high level is 1.3–3 m. 

4.2. Qualitative evaluation of physical vulnerabilities of different residential areas  

 

Figure 4. Distributions of the houses based on different vulnerabilities and residential areas                                       

in the Thach Ha district, Ha Tinh province, Viet Nam. 
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The correlation between the residential classes and physical vulnerability was established 

by comparing houses in different residential areas and the PVIs (Figure 4). Among the 52 

houses, 20 were located in sparsely built areas and 32 were in densely built areas. 

The results indicated an inverse correlation between the structural density and structure 

physical vulnerability of the study site: sparser residential areas had a higher flood physical 

vulnerability or weaker house structures or materials. Specifically, lower physical 

vulnerabilities, PVI from 0.36 to 0.44, were found in dense residential areas. We also found that 

abrupt high physical vulnerability values in house types 11, 12, and 13 with PVIs of 0.74, 0.82, 

and 0.88, respectively, only occurred in sparse residential areas. 

 

Figure 5. Estimated physical vulnerabilities of the residential areas in the Thach Ha district,                           

Ha Tinh province, Viet Nam. 

Finally, based on the correlation, the physical vulnerability was qualitatively evaluated by 

the land-cover classification (Figure 5). In this process, we found that more detailed residential 

classifications provided a more detailed distribution of the physical vulnerability. 

4.3. Exposure to flood hazard  

Figure 6 shows the backscattering difference for the land cover types. Figures 6a and b 

display the backscattering difference for a sparse residence and (cemetery and grass field), 

respectively, with complex surfaces. The backscattering difference for the bare land, sand 

surface, and crop field in the non-harvest season (Figures 6c, d, and e, respectively) corresponds 

to rough surfaces. We realize that on a rough surface, the backscattering difference for the non-

inundated areas is larger than for the inundated areas; whereas the reverse occurs on complex 

surfaces.  

Following the determination of the threshold values to segment the non-inundated and 

inundated areas in Figure 6, we extracted floodplains. The floodplains in both the rough and 

complex surfaces are shown (Figure 7). 

From the quantitative analysis, we also observed that the backscattering intensity measured 

in dense residential areas was almost unchanged when comparing two satellite images captured 
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before and during the flood. This is because the satellite sensor cannot receive the original 

backscattering signals from a narrow water surface that is changed by crowded buildings and 

constructions. However, floods have occurred in some dense residential areas, using radar 

images to extract floods in densely populated areas has little effect. 

  

  

 

Figure 6. Backscattering difference of inundated and non-inundated areas: (a) Sparse residential area;                 

(b) Cemetery and grass field; (c) Bare land; (d) Sand surface; (e) Crop fields in non-harvest season. 

 

a) b) 

c) 
d) 

e) 

Figure 7.  The floodplains in the 

rough and complex surfaces of the 

2010 flood.  
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Finally, the error matrix and Kappa index were calculated for two inundated and non-

inundated areas for each land cover. The accuracy of the segmentation shows that we attain the 

qualified accuracy when segmenting floodplains in the bare land (86 %), sand surface (95 %), 

crop field (89 %), cemetery/grass field (83 %), and sparse residential areas (90 %). In 

opposition, the accuracy and Kappa index of only 39 % and 0.14, respectively, for the 

segmentation of floodplains in dense residential area are low. 

4.4. Resilience of local people to flood  

Figure 8 shows the percentage of households in the sparse/dense residential area in each 

effective level that is conducted by the household survey. The figure presents the six levels of 

constructed protection according to the six values of the effectiveness of local people actions to 

adapt or mitigate the flood. 

 
Figure 8. Percentage of number of households in each effective level of the solutions to                               

protect constructions. 

4.5. Risky regions to flood hazard and suggestions to the government 

 

Figure 9. Risky regions in study area. 



 
 

To-Uyen Thi Doan, et al. 

590 

The risky regions for flood hazard are identified in the analysis of the physical vulnerability 

in the context of the exposure and resilience to flood hazard. In our study, the risky areas were 

established by combining the high physical vulnerability, highest ability of inundation, and 

weakest resilience recorded in the study area (Figure 9). We observed that the risky areas are 

practically located in the sparse residential areas. The identification of risky regions yielded 

more detailed information on the vulnerability to the local government to provide timely 

guidance and attention to citizens when responding to a flood.  

4. CONCLUSIONS 

This study proposed a qualitative evaluation method of the structural vulnerability of 

residential areas using optical and radar satellite remote sensing. Specifically, we demonstrated 

that in residential areas where land-cover classifications correlated with house structures or 

materials, satellite images could provide a detailed land-cover classification. This would 

facilitate a qualitative evaluation of the physical vulnerability of residential areas. The advantage 

of this approach is the ability to automatically enhance the evaluation of the vulnerability and 

identify risky areas on a large spatial scale, which was unavailable in previous methods. The 

applicability and limitation of this approach should be investigated through additional case 

studies in different areas. 

Acknowledgements. The authors are grateful to the local government of the Thach Ha district, Ha Tinh 

province, Viet Nam for permitting fieldwork in the study area to collect the ground truth data. 
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