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Abstract. Electric field distribution of positive streamers during propagation was determined 

with the finite element method by using COMSOL multiphysics. Modelling was performed at 

210 kV and 270 kV. The geometrical shape of streamers was modelled with cylinder and sphere 

for the case of 210 kV while a growing cylinder was used for streamer propagation at 270 kV. In 

addition, a spherical model was used for determining the relationship between the branching of 

streamers and the electric field at the tip of branches. It is obtained from the simulation results 

that the 2
nd

 mode streamers has the electric field at channel tips of about 0.1 MV/cm while 8.3 

MV/cm was received for the 4
th
 mode streamers. The simulation results also reveal that the 

shielding effect resulting from streamer branching significantly reduces the electric field at the 

channel tips, and the shielding effect disappears with the angle  between channels is about 30
o
-

60
o
 depending on the size of streamer envelope. The hypothesis on correlation among velocity, 

streamer branching and electric field is suggested.      

Keywords: streamers, electric field, branching, velocity, finite element modelling. 

Classification numbers: 2.3.1, 2.8.3, 2.10.1. 

1. INTRODUCTION 

Streamers in mineral oil have been investigated for a long time to understand prebreakdown 

phenomena, i.e. streamer initiation and propagation, occurring in oil [1-7]. Based on this 

understanding, the new insulating liquids can be designed and testing standards for high voltage 

equipment can be amended. However, the full understanding of mechanism behind streamer 

propagation has not been achieved yet. Therefore, many investigations were performed with 

streamer propagation in model oils with and without aromatic typed additives 6, 7. It was 

reported that streamers behave in different modes with increasing applied voltage in a type of 

paraffinic oil, e.g. Exxsol oil, as seen in Fig. 1 and Fig. 2 6. Similar results were reported in 

other types of model oils and mineral oil 3, 7. In these figures, streamer structure and velocity 

change with different modes. As seen in Fig. 1, there is a threshold value, Va, and streamers 

switch to fast mode from slow mode if the applied voltage exceeds Va. At the slow mode, i.e. the 
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2
nd

 mode, streamers have a multifilament structure with low velocity of about 1-3 km/s (Fig. 2a) 

and become more branching with increasing applied voltage (Fig. 2b). At the fast mode, i.e. the 

4
th
 mode, streamers have tree-like structure and propage with the speed of about 100 km/s (Fig. 

2d). The 4
th
 mode streamers become more branching with a slight increase in velocity (Fig. 2e) 

when the applied voltage is much higher than Va. The 3
rd

 mode streamers were transition ones 

with the velocity of about 4-10 km/s (Fig. 2c) and appear for a period of time during the 

transition process when streamers switch from the 4
th
 mode to the 2

nd
 mode.  

 

  Figure 1. Positive streamer velocity versus applied voltage (redrawn from 6). 

 

 

  Figure 2. Streamer shape versus applied voltage 6. 

The low velocity of the 2
nd

 mode streamers is possibly due to the effect of more branching, 

i.e. the shielding effect, which results in low electric field at the streamer channel tips 4. By 

contrast, high velocity of the 4
th
 mode streamers was explained by high electric field at streamer 

channel tips due to the less branched structure of streamers, i.e. tree-like 4. The electric field at 

the streamer channel tips was calculated in previous studies 1, 2, 4. However, these studies 

investigated the electric field of the 2
nd

 and 3
rd

 mode streamers at different applied voltages as 

well as at different experiments, and there is a lack of determination of the electric field at the 

tips of branches of the streamers at the 4
th
 mode. Moreover, the influence of the shielding effect 

on the electric field at the channel tips were not yet determined, and the correlation between 
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streamer branching, velocity and electric field was also not yet established. In this paper, 

therefore, the electric field at the streamer channel tips at a magnitude of applied voltage, which 

results in streamers in the 2
nd

, 3
rd

 and 4
th
 modes in one experiment, was determined with the 

finite element method by using COMSOL multiphysics software, which was also used to 

simulate the influence of shielding effect on the electric field at the streamer channel tips. In 

addition, based on the simulation results, the relationship among the branching of streamers, 

velocity and electric field was also discussed.   

2. FEM MODEL FOR STREAMER PROPAGATION 

Figure 3 presents a 2D axisymmetric model that represents the experimental setup of the test 

cell, which is used in 6, for simulation of the electric field distribution during the propagation 

of streamers in the gap of the point-plane electrode system. The high voltage point electrode has 

a diameter of 0.15 mm while the diameter of the plane electrode is 340 mm. The electrode 

system was made by stainless steel and was installed vertically in a borosilicate test cell, which 

contains Exxsol oil. The geometrical model of streamers changes with different stages of 

streamer propagation in oil gap as well as different values of applied voltages.      

 

  Figure 3. The 2D axial symmetry model for simulation of electric field distribution. 

Symmetrical

axis

Point electrode

(V = V applied)

Plane electrode

(V = 0)

Air medium

r = 1

Insulating

oil r = 2.2

Lid r = 4

Test cell

r = 3

Point holder

Field grading 

tube

Field grading 

toroid

Geometrical model

of streamers 

Maximum 

electric field Et

r

z



 
 
Finite Element Modelling for Electric Field Distribution around Positive Streamers in Oil 

 

59 

For simulation of the electric field distribution in the electrode gap with the presence of 

streamers, images of streamers during propagation at 210 kV (Fig. 4) and 270 kV (Fig. 5) were 

used to determine the shape and size of streamer envelope. The velocity of streamers is 

calculated from framing image sequences. At 210 kV, streamers first start with the 4
th
 mode 

(Fig. 4a) followed by the 3
rd

 mode (Fig. 4b) and terminate with the 2
nd

 mode (Fig. 4d). In 

addition, at this value of applied voltage, it was observed that the streamer structure has either 

cylindrical or spherical shapes corresponding to different periods of propagation time. Thus, 

conductive cylinder was used to simulate electric field distribution for streamers in Fig. 4a while 

cylindrical and spherical models with the voltage drop along streamer channel of approximately 

10 kV/cm 4 were used for other cases. Both cylindrical and spherical models are shown in Fig. 

6.  

   

 

  Figure 4. Framing images of streamers during propagation at 210 kV 6. 

 

  Figure 5. Images of the fast mode streamers (the 4
th

 mode) in oil at 270 kV 6. 

 

  Figure 6. Models for simulation of electric field; (a)-l = 16 mm and m = 0.2 mm for streamers in                  

Fig. 4a, l = 37 mm and c = 23 mm for streamers in Fig. 4b; (b)-s = 50 mm and 65 mm for streamers in 

Fig. 4c and d. 
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  Figure 7. The model of growing cylinder for determination of electric field during streamer propagation 

in oil at 270 kV. 

The size of cylindrical and spherical models was determined from streamer envelope in 

Fig. 4 with the use of the known dimension of the needle electrode as a benchmark. At 270 kV, 

streamers appear only in the 4
th
 mode during propagation time and have a tree-like shape, which 

consists of many short branches encircling the main channel. The diameter of the main channel 

is about 0.15 mm measured from the images shown in Fig. 5. Because the fast mode streamers, 

i.e. the 4
th
 mode, has high conductivity as suggested in a previous reference 4, the growing 

cylinder model, which is conductive, is used to determine the distribution of electric field around 

streamers (Fig. 7). An increment in steps of 10 mm is used to simulate the length l of the 

growing cylinder. For the sake of simplicity, it is assumed that there are no space charges around 

streamers. 

For investigating the influence of streamer branching on the electric field at streamer 

channel tips, the image the slow mode streamers, i.e. the 2
nd

 mode streamers, in Exxsol oil at 

applied voltage of 210 kV shown in Fig. 8a was used to determine the shape and size of streamer 

envelope. It is observed that the overall shape of streamer is nearly spherical, and streamers 

comprise of many thin and long channels. It is considered that the channels of streamers are 

distributed around the z axis and in the r-z plane (Fig. 8b). This indicates that the modelling of 

the so called “shielding effect” formed by streamer branching is really a 3D problem. For 

simplicity, the angle  between surrounding channels is considered to be 0
o
, i.e. hollow cones 

encircle the main channel and the shielding effect of channels around z axis is considered to be 

maximum. Therefore, a 2D axial symmetry model shown in Fig. 3 was reused with a more detail 

in geometrical of streamers structure (Fig. 9). The main channel (m = 0.1 mm) coincides with 

the z axis. Thickness, t, of the hollow cones is 0.05 mm, which is equal to the diameter of side 

branches. Both the tips of the main channel and surrounding channels lie on an imaginary 

spherical surface. Diameter of the sphere (s) was chosen to be 40 mm and 75 mm, which are 

positions of streamers that cross 50 % and 93.8 % of the electrode gap. For each diameter of the 

sphere, the angle  between channels was increased in steps from 0
o
 to 60

o
. Again, for simplified 

simulation, both the main channel and surrounding channels are considered to be conductive, 

and there are no space charges around streamers. 
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  Figure 8. The image of the 2
nd

 mode streamers 6 and the distribution of streamer branches at 210 kV. 

 

  Figure 9. The 2D axial symmetry model for simulation of shielding effect with spherical model. 
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The correlation between the electric field E and the electric potential V is expressed by 

equation (1).  
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                   (3) 

As the charge ρ = 0, the Poisson’s equation can be converted into Laplace’s equation as follows 

   02  V                     (4) 

For 2D axial symmetry problem, the distribution of potential is dependent upon the 

coordinate. Thus, the equation (4) is rewritten as follows 
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The FEM method reported in references 8-9 is used to solve equation (5) as all boundary 

conditions are known. An open domain is applied to the point-plane gap problem, i.e. the electric 

field is zero at infinity. For simplification of simulation, the outermost boundaries are at infinity. 

Due to these assumptions, the conditions of boundary are set as bellows. 

V = Vapplied on the point electrode (high voltage);  V = 0 on the plane electrode (ground); nD = 0 

on outermost boundaries 

Figure 10 shows the typical mesh of one case of simulation with elements of triangles. The 

density of elements is higher while its size is smaller for regions around electrodes and streamer 

branches. Similar results were observed for other cases. 

 

  Figure 10. The mesh of the model for simulation of shielding effect ( = 75 mm,  = 5
o
). 

4. RESULTS AND DISCUSSION 

4.1. The electric field distribution in the electrode gap 

Figure 11 shows the distribution of electric field around streamers at 210 kV derived from 

simulation results with mesh parameters shown in Table 1. The electric field reaches the 

maximum value (Et) at the surface of streamer envelope in the direction of gap axis, and 

decreases with an increase in distance away from a streamer region. From Fig. 11, Et is 



 
 
Finite Element Modelling for Electric Field Distribution around Positive Streamers in Oil 

 

63 

determined and plotted with increasing streamer extension as presented in Fig. 12. It is observed 

that Et reduces gradually with increasing streamer length due to an increase in diameter of 

streamer envelope until it reaches the minimum value at about 60% of gap crossing. Then, Et 

increases again because of the approaching of streamers to the plane electrode. Similar results 

were reported in the 2
nd

 mode and 3
rd

 mode streamers by other researchers 1, 2, 4. Apparently, 

Et obtains the value of about 8.3 MV/cm, which is higher than the electric field of about 7 

MV/cm at the tip of the point electrode, for the 4
th
 mode streamers (Fig. 4a) and drops to about 

0.16 MV/cm for the 3
rd

 mode streamers (Fig. 4b) and reduces to the minimum value of 0.1 

MV/cm for the 2
nd

 mode streamers (Fig. 4c). Fig. 12 also shows the propagation velocity of 

streamers exhibited in Fig. 4. It seems that there is a correlation between the velocity and the 

electric field Et during streamer propagation. Streamers with high electric field at their tips 

propagate with high velocity, and vice versa. With the electric field of about 8.3 MV/cm at their 

tips, streamer velocity reaches the value of about 45 km/s. However, when the electric field at 

streamer tips drops to approximately 0.1-0.2 MV/cm, the streamer velocity reduces to 2-4 km/s. 

Therefore, it is inferred that if the electric field at streamer tips exceeds a value of about 8.3 

MV/cm, streamers will travel at high speed of approximately 45 km/s over the entire electrode 

gap.  

    

 

   Figure 11. Plots of electric field. The letter symbols referred to streamer images shown in Fig. 4. 

Table 1. Mesh statistics (210 kV). 

No Parameters 
Value 

(Fig. 11a) 

Value 

(Fig. 11b) 
Value 

(Fig. 11c) 
Value 

(Fig 11d) 
1 Number of elements 5509 5036 4970 4903 

2 Minimum element quality 0.07562 0.07562 0.07562 0.07562 

3 Average element quality 0.821 0.8183 0.8159 0.8165 

4 Element area ratio 4.32510
-6

 4.32510
-6

 4.32510
-6

 4.32510
-6

 

Figure 13 shows the surface plots of the electric field for the 4
th
 mode streamers at 270 kV. 

Again, the electric field gets the maximum value at the streamer tips. From these plots, the 
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maximum electric field Et was obtained, and Et versus streamer growth is shown in Fig. 14. It is 

observed that Et gradually increases from 8 MV/cm to 25.5 MV/cm when streamers propagate 

across the electrode gap distance with the speed of about 100 km/s at 270 kV. The growth of 

streamer channels leads to a phenomenon that resembles the extension of the point electrode 

resulting in electrode gap reduction and thus an increase in Et. The high magnitude of Et (8 - 

25.5 MV/cm) could be used to explain why the 4
th
 mode streamers (Fig. 5) propagate with very 

high velocity ( 100 km/s). Compared to the value of Et in Fig.12, it was observed that if Et 

increase to the value of about 10 MV/cm after initiation, streamers will keep travel with high 

velocity. Otherwise, streamers will propagate with a decrease in velocity. Thus, the critical value 

of approximately 10 MV/cm can be considered as a threshold value to convert low mode 

streamers into fast mode streamers. However, it is aware that this threshold value is estimated 

without regard to the existence of charges surrounding the tips of branches. Thus, the real value 

of the threshold electric field at the channel tips could be lower close to the tips and could 

increase further away from the tips. The mesh parameters for FEM simulation of this case is 

presented in Table 2. 

 

  Figure 12. Velocity versus electric field at the channel tips of streamers at 210 kV. 

 

Figure 13. Distribution of the electric field around streamer channel tip at 270 kV. 
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Figure 14. Channel tip field Et versus streamer growth at 270 kV. 

Table 2. Mesh statistics (270 kV). 

No Parameters 
Value  

(l = 0 mm) 

Value 

(l = 30 mm) 
Value  

(l = 60 mm) 
Value 

(l = 78 mm) 
1 Number of elements 5341 5478 2343 2126 

2 Minimum element quality 0.07562 0.07562 0.5061 0.561 

3 Average element quality 0.8220 0.8219 0.8323 0.8323 

4 Element area ratio 4.32510
-6

 4.32510
-6

 4.32510
-6

 4.32510
-6

 

4.2. The influence of the shielding effect on electric field at channel tips of streamers 

Figure 15 shows some typical simulation results for the spherical model (s = 75 mm). The 

modelling results shows that the maximum electric field (Et) was found at the main channel tip 

and edges of hollow cones. However, Et at the tip of main channel is much higher than that of 

edges of hollow cones. Outside the channel tip and cone edges, the electric field significantly 

reduces. From simulation results with varying the value of angle , Et is determined and plotted 

as shown in Fig. 16. It is found that Et significantly increases with less branching, i.e. higher 

angle  between channels, and become saturated with  of about 30
o
 and 60

o
 for streamer 

envelope diameter of 75 mm and 40 mm, respectively. This means that an increase in streamer 

branching raises the shielding effect resulting in lower Et and vice versa. The similar results are 

obtained between two cases. However, Et of the bigger diameter of streamer envelope (s = 75 

mm) with higher branching degree still higher than that of the smaller diameter (s = 40 mm) 

with lower degree of branching. This indicates that the influence of the shielding effect on Et 

possibly reduces as streamers approach the plane electrode. The mesh parameters for FEM 

simulation of this case is presented in Table 3.  
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Figure 15. The distribution of electric field for s = 75 mm. 

 

Figure 16. The channel tip field versus angle between branches. 
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Table 3. Mesh statistics (the shielding effect). 

No Parameters 
 = 40 mm  = 75 mm 

 = 0
o
  = 5

o  = 60
o  = 0

o
  = 5

o  = 60
o 

1 Number of elements 4955 13876 5791 4890 14679 5796 

2 Minimum element quality 0.07562 0.07562 0.07562 0.07562 0.07562 0.07562 

3 Average element quality 0.8174 0.803 0.8209 0.8161 0.8035 0.8161 

4 Element area ratio 4.3310
-6

 2.8610
-11

 1.9110
-6

 4.3310
-6

 2.9310
-11

 4.3310
-6

 

4.3. The relationship among electric field, branching and velocity 

From Fig. 4, Fig. 5, Fig. 12, Fig. 14 and Fig. 16, it is observed that the 2
nd

 mode streamers 

consisting of numerous filamentary branches propagate with the velocity of about 1-2 km/s, and 

the electric field at the channel tips of streamers is estimated to be about 0.13-0.19 MV/cm. It is 

also obtained that the 3
rd

 mode streamers propagating with velocity of about 4-10 km/s has the 

electric field at their tips of about 0.2 MV/cm. The 4
th
 mode streamers with few branches travel 

with velocity of 50 km/s-100 km/s and reach the estimated field at the streamer tips of about 8-

25.5 MV/cm. This indicates that more branching, which is manifested with high number of 

branches, is associated with low velocity (1-2 km/s) and low electric field ( 0.2 MV/cm) at the 

streamer channel tips and vice versa. Therefore, the relationship between branching and velocity 

of positive streamers is suggested as follows. Streamers initiating with the speed of about 1-2 

km/s allow the development of branches, i.e. more branching. Due to branching, the 

macroscopic field of streamers becomes lower leading to a reduction in streamer velocity. By 

contrast, when streamers start with the high velocity ( 50 km/s), the chance for streamer 

branches to develop is low. Therefore, the electric field in front of the dominating branches 

raises greatly, which further increases the speed of streamers. The relationship among velocity, 

branching and electric field is summarized as shown in Fig. 17. This suggested hypothesis is also 

supported by experimental results that streamer propagation across the electrode gap was 

observed to be controlled by the macroscopic electric field of streamers 5, and guiding tubes 

that suppressed branching accelerated streamers 4, 10.  

Figure 17. The diagram describing the correlation between branching and velocity of streamers. 
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4. CONCLUSIONS 

Simulation of electric field distribution for positive streamers during propagation and the 

influence of the shielding effect on the electric field were performed. The simulation results 

show that the electric field reduces with streamer extension and reaches the minimum value at 

the position of about 60 % of the electrode gap before increases again due to streamer proximity 

to the plane electrode. The channel tip field of streamers at the 2
nd

 mode is determined to be 

about 0.1 MV/cm while 8.3 MV/cm was received for the 4
th
 mode streamers. It was also 

observed that the shielding effect formed by streamer branching greatly reduces the electric field 

at streamer channel tips. The shielding effect reduces with increasing the angle  between 

channels and has a tendency of saturation at the angle   of about 60
o
 and 30

o
 for 40 mm and 75 

mm of diameters of streamer envelope, respectively. The hypothesis on the relationship among 

electric field, velocity and branching of streamers is proposed as follows. If starting with high 

electric field at the tips (10 MV/cm), streamers will propagate with very high velocity which 

results in less branching and thus high electric field (10 MV/cm) which further raises the  

velocity, and vice versa. However, the accuracy of the hypothesis should be further checked with 

simulation results from higher applied voltage, e.g. 540 kV, in next study. 
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