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Abstract. This paper presents the new numerical results of vibration response analysis of 

cracked FGM plate based on phase-field theory and finite element method. The stiffener is 

added into one surface of the structure, and it is parallel to the edges of the plate. The 

displacement compatibility between the stiffener and the plate is clearly indicated, so the 

working process of the structure is described obviously. The proposed theory and program are 

verified by comparing with other published papers. Effects of geometrical and material 

properties on the vibration behaviours of the plate are investigated in this work. The computed 

results show that the crack and stiffener have a strong influence on both the vibration responses 

and vibration mode shapes of the structure. The computed results can be used as a good 

reference to study some related mechanical problems. 
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1. INTRODUCTION 

The structures made from functionally graded materials (FGM) are used widely in 

engineering applications. These are smart materials which have many advantages than 

classical materials such as high strength, good performance in high temperature, wear-

resistant, light weight and so on. However, they can appear cracks in the working process due 

to external forces. Hence, studying on the mechanical responses of FGM structures with 

cracks is a very important issue, in which the describing the crack in one structure in order to 

be convenient to analyze the mechanical system is the barrier. There have been many 

researches considering these problems. Rabczuk and Areias [1] used extended finite element 

method (X-FEM) to study the natural frequencies of FGM plate with cracks based on 4-noded 

field consistent enriched element. Natarajan et al. [2] used the extended finite element method to 

investigate the free vibration response of cracked functionally graded material plates. Chau-Dinh 
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et al. [3] applied phantom node method to carry out the mechanical behavior of shell with 

random cracks. Ghorashi et al. [4] employed an isogeometric analysis to examine the plate with 

cracks based on the T- spline basic functions. Kitipornchai et al. [5] researched the nonlinear 

vibration response of edge cracked FGM Timoshenko beams by using Ritz method. Huang et al. 

[6-8] used Ritz technique to explore the vibration of side-cracked FGM plate using the first-of-

its-kind solutions. Huang et al. [9] investigated the vibration behavior of the cracked FGM plate 

based on the 3D theory of elasticity and Ritz methodology. Recently, phase-field method has 

been applied widely to study the structures with cracks; this new method presents an efficiency 

for both analyzing the structures with static cracks and dynamic cracks. The viewers can find the 

advantages of this method in [10-16].  

This paper uses phase-field method to study the free vibration of FGM stiffened plate with 

and without cracks. The finite element formulations are derived based on first order shear 

deformation Mindlin plate theory. The numerical results show that the stiffeners have a strong 

effect on the free vibration of the structure. These computed data can be applied for engineers 

when analyzing and designing these types of structures in practice. 

1. FORMULATION FOR FGM PLATE BASED ON REISSNER-MINDLIN THEORY 

Consider an FG plate with a stiffener as shown in Figure 1. This paper employs Reissner-

Mindlin plate theory, herein, the displacement field at any points of the structure can be 

expressed as follows: 
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where , ,u v w  are the vertical displacements along the x, y and z – axes at the coordinate z, 

respectively. ,x y   are the transverse normal rotations in the xz- and yz- planes. 
0 0 0, ,u v w are the 
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Figure 1. An FG plate with a stiffener.  

At any points, three components (membrane strain ε p , bending strain εb
and shear strain 

γ s
)  are expressed as follows 
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Assuming that the stiffener is parallel to the Ox axis, the displacement field of the stiffener 

at this time takes the form as follows 
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The strain components of the stiffener are defined as follows 

;  ;  
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The relationship between the strain field of the stiffener and the displacements field of the 

plate is shown in [17]. 

Herein, the elastic potential energy of the stiffened plate is expressed as follows 
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where 
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in which [10, 14, 18-19] 
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Herein, Ec, c  and Em, 
m  are the Young’s Modulus, Poisson ration of ceramic and metal, 

respectively. Vm and Vc are the volume fraction of metal ceramic. In this work, we assume that 

the stiffener is under the bottom surface of the plate and the stiffener is full of metal, so that Es = 

Em.  

The kinetic energy of the stiffened FGM plate is expressed as 
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The Lagrange functions can be now written in the form as 

     u u u L T U                                                           (11) 

According to phase-field theory, the crack is the discontinuous region, which is described 

as a narrow zone by adding phase-field variation s. When s equals 0 means that the material is 

damaged and s equals 1 means that the material is not damaged. When phase-field variation s 

varies smoothly from 1 to 0, the crack is corresponding to the softening state of the material. 

Therefore, we can easily analyze the whole considered region, and it is convenient to integrate 

the crack area. This is the highlight point of phase-field approach comparing with other methods 

when solving numerous problems deal with cracks. Readers can see more detail in [10-13, 15-

16, 20-22].  At this time, the energy function L of the stiffened plate with crack is written in the 

following form  
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where s is the gradient of phase-field parameter. In this study, the crack is assumed throughout 

the thickness of the plate, thus, phase-field variation s does not change in the thickness direction, 

it only varies by the width of the crack (s varies smoothly from 0 to 1). 

By minimizing the Lagrange function (12) we have 
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Then, we obtain the eigenvalue equation to determine the natural frequencies and the free 

vibration mode shapes of the stiffened FGM plate with cracks as follows 
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The shape of the crack is defined by function  uL  [23] 

   .
4

JG
L B H x

l
u                                                              (15) 



 
 
Finite element modelling for free vibration response of cracked stiffened FGM plates 
 

123 
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in which B is the coefficient with the value 10
3
, and c is the length of the crack. 

2. RESULTS AND DISCUSSION 

3.1. Verification problems 

Example 1: Firstly, the natural frequencies of this work and those of published papers are 

compared to one another to verify the proposed theory and finite element method for the FGM 

plate with a crack in case of clamped one edge. Consider a square plate a = b = 0.24 m, the 

thickness 0.00275 m, Young’s modulus E = 6.7e10 Pa, Poisson’s ratio 0.33, mass density 2800 

kg/m
3
. The plate has one crack of length 0.1416a at the location x = 9 cm, y= 9 cm. The non-

dimensional natural frequencies from this work, [24] (experiment) and finite element method 

[25] are presented in Table 1. The results show that they meet a good agreement.  

Table 1. The ratio _/crack no crack   of the cantilever plate (
crack  is eigen frequency of the cracked plate 

and _no crack  is eigen frequency of the plate without crack). 

Mode c/H 
Ref. [24] 

theoretical 

Ref.[ 24] 

experiment 

Ref.[ 25] 

FEM 
This work 

1 0.1416 0.9931 0.9917 0.9891 0.9858 

2 0.1416 0.9989 0.9981 0.9985 0.9935 

3 0.1416 0.9837 0.9807 0.9826 0.9987 

Example 2: Consider a fully simply supported rectangular plate with the dimension a = 

0.41 m, b = 0.61 m, the thickness 0.00635 m. The plate has one stiffener along the short edge, 

the width of stiffener 0.0127 m, the height of stiffener 0.02222 m, Young’s modulus E = 211 

GPa, Poisson’s ratio 0.3, the mass density 7830 kg/m
3
. The non-dimensional natural frequencies 

are compared in Table 2. The comparison results in Table 2 show that the difference among the 

present results and other references is very small. 

Table 2. The frequencies of the stiffened plate. 

fi (Hz) Ref. [26] Ref. [27] Ref. [28] Ref. [29] Ref. [30] This work 

1 254.94 257.05 253.59 250.27 254.45 255.59 

2 269.46 272.10 282.02 274.49 265.86 261.53 

3 511.64 524.70 513.50 517.77 520.14 519.69 
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Example 3: Finally, we consider a fully simply supported square FGM plate made from 

(Si3N4/SUS304), the dimensions a = b = 0.2 m, h = 0.025 m. The material properties are as 

follows: metal SUS304: Em = 207.79GPa, 
m =0.3176, 

m =8166 kg/m
3
, ceramic Si3N4: Ec = 

322.27GPa, 
c =0.24, 

c =2370 kg/m
3
. The first three vibration frequencies of this work 

compared with the results by analytic methods [31-32], FEM [18] are shown in Table 3. We see 

that the comparison results are similar.  

Table 3.  First three natural frequencies of FGM plate,    2 2/ 1 /  i i m m ma h E   . 

i
 n=0 n=0.5 

[18] [31] [32] This work [18] [31] [32] This work 

1  12.498 12.507 12.495 12.239 8.554 8.646 8.675 8.439 

2  29.301 29.256 29.131 28.691 20.559 20.080 20.262 19.749 

3  45.061 44.323 43.845 43.439 31.088 29.908 30.359 29.861 

3.2. Effects of some parameters on free vibration of stiffened cracked FGM plate 

The following results are calculated for FGM plate made from Si3N4/SUS304 with the 

same material properties as in Example 3 above. The stiffener (made from metal SUS304) is set 

in the surface which is full of metal. The first free vibration frequencies are standardized by the 

formula
 

   2 2

1 / 1 / .  m m ma h E    

stiffener
Crack line

b/2d

c

c

a

 

Figure 2. The geometry of the cracked FG plate with one stiffener.   

- Consider a cracked plate with one stiffener (see Figure 2), a/b=1, h = a/100, the stiffener 

is in the center of the plate and parallel to one edge, the width of stiffener bs = h, the height of 

stiffener hs. The plate is fully simply supported. The distance from one edge to the crack is dc, 

the length of the crack c = 0.3a and parallel to one edge of the plate. 
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In order to see more the effect of the location of the crack on the free vibration of the 

plate, we change the dc so that dc/a = 0.2-0.5, it means that the crack tends to move to the center 

of the plate. The normalized fundamental frequencies of the structure are shown in Table 4. 
From the results in this table, we find that when the crack is closer to the center of the plate, the 

plate becomes weaker, so the vibration frequencies of the plate decrease. 

At the same time, when increasing the volume fraction index n, it will reduce the 

fundamental frequencies of the plate, this is because when increasing n will increase the metal 

proportion in the plate, the metal (SUS304) has a smaller elastic modulus than that of the 

ceramic (Si3N4), but the density of the metal is higher than the density of the ceramic, which 

leads to a reduction in the fundamental frequencies when n increases. Figure 3 shows the first 

four vibration mode shapes of cracked plate with different dc/a ratios. From here we see that the 

crack has a great influence on both the fundamental frequencies as well as on vibration mode 

shapes of the plate. 

 

Table 4. The normalized fundamental frequency ( ) of cracked FGM plate with one stiffener as a 

function of the distance  dc, hs/h ratios and gradient indexes n (c/a = 0.3). 

dc/a hs/h 
n 

0 0.2 0.5 1 2 5 10 

- 0 12.840 10.368 8.869 7.810 7.0371 6.413 6.1174 

0.3 

1 12.157 9.905 8.510 7.514 6.783 6.189 5.905 

2 12.065 9.923 8.571 7.595 6.872 6.282 5.999 

3 12.027 9.968 8.646 7.682 6.964 6.374 6.089 

4 11.921 9.945 8.656 7.708 6.999 6.413 6.127 

0.

4 

1 12.024 9.789 8.406 7.420 6.695 6.107 5.825 

2 11.830 9.718 8.386 7.426 6.715 6.135 5.856 

3 11.656 9.649 8.360 7.423 6.725 6.152 5.873 

4 11.445 9.538 8.295 7.383 6.700 6.137 5.862 

0.

5 

1 11.976 9.749 8.370 7.386 6.664 6.078 5.796 

2 11.749 9.649 8.324 7.369 6.663 6.086 5.808 

3 11.537 9.546 8.269 7.340 6.649 6.081 5.805 

4 11.298 9.413 8.184 7.283 6.609 6.053 5.780 

 

-  In this section, we examine the effect of the length of the crack. Consider an FGM plate 

with two parallel stiffeners (they also parallel to one edge of the plate) as shown in Figure 4. 

There is one crack where it is parallel to stiffeners as shown in Figure 3. Let vary the length of 

the crack c so that c/a = 0-0.6. The fundamental frequencies are listed in Table 5. From the 

computed results we understand that when increasing the length of the crack, the plate becomes 

softer, thus, the fundamental frequencies of the structure reduce. 
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c/a=0.3 

1 

    

2 
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Figure 3. First four mode shapes of stiffened FG plate with one crack for different dc/a ratios (n = 0.5, hs = 2h). 

a

d

stiffener

stiffener

c

a/2

b/2

 
Figure 4. The geometry of the cracked FG plate with two stiffeners.   
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Table 5. The normalized fundamental frequency ( ) of cracked FG plate with two stiffeners as a function 

of the crack length c, hs/h ratios and gradient indexes n (d/a = 0.5, 0o  ). 

c/a hs/h 
n 

0 0.2 0.5 1 2 5 10 

0 0 12.840 10.368 8.869 7.810 7.0371 6.413 6.117 

0.2 

1 12.455 10.160 8.740 7.717 6.972 6.368 6.088 

2 13.001 10.748 9.327 8.293 7.530 6.910 6.628 

3 14.382 12.054 10.562 9.458 8.635 7.964 7.671 

4 16.486 13.974 12.337 11.106 10.181 9.424 9.107 

0.4 

1 11.891 9.677 8.308 7.334 6.618 6.038 5.762 

2 12.462 10.275 8.900 7.910 7.174 6.577 6.297 

3 13.842 11.568 10.114 9.054 8.256 7.607 7.311 

4 15.905 13.433 11.828 10.644 9.742 9.006 8.678 

0.5 

1 11.593 9.421 8.081 7.128 6.428 5.862 5.591 

2 12.176 10.025 8.676 7.704 6.984 6.399 6.125 

3 13.556 11.312 9.880 8.837 8.054 7.417 7.126 

4 15.600 13.151 11.565 10.397 9.509 8.785 8.462 

0.6 

1 11.330 9.188 7.874 6.940 6.256 5.703 5.442 

2 11.925 9.797 8.471 7.517 6.811 6.239 5.975 

3 13.308 11.078 9.667 8.641 7.872 7.246 6.970 

4 15.342 12.894 11.327 10.174 9.300 8.587 8.284 

Table 6. The normalized fundamental frequency ( ) of cracked FG plate with two stiffeners as a function 

of the distance between two cracks d, hs/h ratios and gradient indexes n (c/a = 0.5). 

d/a hs/h 
n 

0 0.2 0.5 1 2 5 10 

-  0 12.840 10.368 8.869 7.810 7.0371 6.413 6.117 

0.2 

1 11.567 9.435 8.122 7.198 6.515 5.960 5.695 

2 12.555 10.563 9.271 8.321 7.603 7.015 6.745 

3 14.896 12.798 11.397 10.343 9.528 8.857 8.561 

4 18.082 15.771 14.185 12.968 12.009 11.213 10.869 

0.4 

1 11.557 9.426 8.103 7.158 6.464 5.900 5.631 

2 12.323 10.224 8.891 7.925 7.204 6.617 6.344 

3 14.077 11.878 10.452 9.401 8.604 7.953 7.659 

4 16.620 14.210 12.615 11.422 10.502 9.748 9.417 

0.5 

1 11.493 9.421 8.081 7.128 6.428 5.862 5.591 

2 12.176 10.025 8.676 7.704 6.984 6.399 6.125 

3 13.556 11.312 9.880 8.837 8.054 7.417 7.126 

4 15.600 13.151 11.565 10.397 9.509 8.785 8.462 

0.6 

1 11.422 9.414 8.058 7.097 6.394 5.826 5.553 

2 12.028 9.831 8.468 7.493 6.775 6.193 5.919 

3 13.019 10.746 9.319 8.291 7.527 6.907 6.620 

4 14.527 12.082 10.533 9.408 8.564 7.879 7.568 
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Finally, we investigate the effect of the distance between 2 stiffeners. First, changing the 

distance between them so that the dc/a ratio gets values from a range of 0.2 to 0.6 (c/a=0.5), the 

natural frequencies are listed in Table 6. We can easily see that, the higher the distance dc 

reaches, the softer the structure becomes. Therefore, the natural frequencies will reduce. The 

vibration mode shapes in 4 cases (plate with and without stiffeners, plate with and without 

cracks) are presented in Figure 5. Then, we can see that the crack, stiffener, and location of 

stiffener effect strongly on the free vibration of the structure. 

Mode 

c/a = 0, hs = 0 

(Plate with no 

crack and 

stiffener) 

d/a = 0.2 

c/a = 0.5, hs = 2h 

d/a = 0.4 

c/a = 0.5, hs = 2h 

d/a = 0.6 

c/a = 0.5, hs = 2h 

1 

    

2 

    

3 

    

4 

    

Figure 5. First four vibration mode shapes of FG plate with one crack and two stiffeners for different 

d/a ratios (n = 0.5). 

4. CONCLUSIONS 

This paper uses phase-field theory to establish the calculation equations of free vibration 

problems of stiffened FGM plate with cracks based on first order shear deformation Mindlin 
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plate theory and finite element method. The proposed method is verified through comparing 

with other published papers with three cases: FGM plate, FGM plate with stiffeners, FGM plate 

with cracks. In this work, we carry out the vibration responses of cracked FGM plate with one 

and more stiffeners. Effects of some parameters such as the distance between two stiffeners, the 

location of the stiffener, the length of stiffener, etc., on the free vibration of the structure are 

investigated. From the numerical results we have some remarkable conclusions as follows: 

- When increasing the length of the crack, the plate becomes softer, thus, the natural 

frequencies of the structure decrease. The same phenomenon also appears when the crack tends 

to extend near the center of the structure. 

- In case of the plate has 2 stiffeners, when increasing the distance between them, the plate 

also becomes softer and the natural frequencies will decrease, correspondingly. 

- In addition, the appearing of the crack and the interaction between the crack and stiffener 

will effect strongly on the vibration mode shapes of the structure. 
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