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Abstract. Mesoporous silica nanoparticles (MSNs) have attracted significant attention from 

researchers thanks to their high surface area and pore volume, which can increase drug loading 

capacity. Moreover, MSNs, with their biocompatibility and ease of surface functionalization, are 

seen as potential drug delivery system. However, the loading of drug into MSNs system still 

needs further improvement. In this study, hollow mesoporous silica nanoparticles (HMSNs) 

were fabricated in order to increase the drug loading capacity of nanosilica materials. The 

synthesized HMSNs possessed inner hollow cores that could remarkably raise the total pore 

volume and thus improve the capacity for cargo loading. HMSNs were synthesized according to 

the hard-template method with three main steps: (1) forming of solid SiO2 nanoparticles as 

templates, (2) forming of core-shell structure by coating MSN layers onto the templates, and (3) 

forming of hollow core structure by etching away the solid template. The HMSNs product was 

characterized by TEM, XRD, TGA and FTIR. In addition, drug loading capacity of the material 

was evaluated with doxorubicin as model drug. The results indicated remarkable improvement in 

drug loading capacity, compared to MSN sample. These results demonstrated the potential of 

HMSNs in the delivery of anticancer agents.  
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1. INTRODUCTION 

One of the most researched approach in cancer treatment that has attracted tremendous 

attention from scientists is targeted therapy using nanoparticles as “delivery system” to ensure 

site-specific delivery and release of drugs [1-3]. Compared to traditional chemotherapy with 

non-specific distribution of drugs throughout the body, the use of nanocarriers could reduce 

undesired side effects and improve therapeutic outcome [4]. 

In recent years, inorganic nanomaterials have received lots of attention as drug carriers 

thanks to their stability and ease of surface modification [5]. Mesoporous silica nanoparticles are 
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among the materials with high potential in application [6]. Mesoporous nanomaterials have a 

great number of advantages, including physicochemical stability and biocompatibilicy [7, 8]. 

Moreover, porous structure provides room for carrying of active molecules [9, 10]. Researchers 

have been able to control the particle sizes to apply in anticancer drug delivery. However, the 

loading capacity of these systems has not been desirable, so a novel material with porous 

structure and a hollow inner core has been under development. 

In this study, hollow mesoporous silica nanoparticles (HMSNs) were synthesized following 

the hard-template method. Particles morphology and size were evaluated by transmission 

electron microscope (TEM). Drug loading efficiency and capacity were determined with 

doxorubicin (DOX) as model drug. The results showed that HMSNs are a potential carrier for 

anticancer drugs. 

2. EXPERIMENT 

2.1. Materials and equipment  

 

Tetraethyl orthosilicate (TEOS, 98%), Doxorubicin (DOX) were purchased from Sigma–

Aldrich (USA), cetyltrimethylammonium bromide (CTAB, 99 %), ethanol and ammonia (NH3  

28 %) solution were bought from Merck. Deionized water  (deH2O) was used throughout the 

experiment. 

TEM images were taken on Jem-1400 (Japan) at University of Technology – Ho Chi Minh 

city. XRD patterns were obtained by D2 Phaser (Bruker, German) at Customs Branch of Goods 

Verification No. 3 – Ho Chi Minh city. Surface area was evaluated by BET method (Barrett-

Emmet-Taller) on Tristar 3020 at Tra Vinh University – Tra Vinh province. Surface charge was 

obtained on Zetasizer Nano ZS100 (Horiba, USA), UV-Vis spectrum was measured by UV 1800 

(Shimazu, Japan), and FTIR spectra was measured by PerkinElmer Frontier (USA) at Institute of 

Applied Materials Science – Ho Chi Minh city. 

2.2. Synthesis of HMSNs 

HMSNs were synthesized via three steps: (1) Formation of solid silica nanoparticles (SiO2) 

by Stober method [11]. In brief, ethanol (13.5 M) and NH3 (0.38 M) were stirred in deH2O for 

30 min at 50 
o
C. Then, TEOS (0.29 M) was added to the mixture and continued stirring for 6 h at 

50 
o
C. The product was dialyzed (12-14 kDa membrane) and lyophilized. (2) Coating of MSN 

layers onto SiO2 template (SiO2-L). Briefly, a mixture of CTAB 0.05 M, ethanol/ammonia 

(1.43:0.05 M/M) and SiO2 templates were stirred for 30 min at 50 
o
C. TEOS (0.27 M) was added 

to the solution and stirred for 6 h, followed by dialysis. (3) Etching of the core template to 

produce hollow structure (HMSN). In brief, Na2CO3 0.2 M was used as etching agent by stirring 

together with SiO2-L solution for 9 h at 50 
o
C. The product was dialysed against acetic 

acid:ethanol (1:1, v/v) and washed with deH2O, followed by freeze drying. 

2.3. Encapsulation of DOX 

To evaluate the amount of encapsulated drug, dialysis method was utilized. Doxorubicin 

loaded nanocarriers (HMSN-DOX, 1:4 m/m) were put into dialysis membrane, then let diffuse in 

an appropriate media. At pre-determined intervals, samples of dialysis media were taken to 

quantification by UV-Vis spectrophotometry at wavelength 544 nm. 
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Drug loading efficiency –  DLE and drug loading capacity – DLC were determined via the 

following equations: 

DLE (%) = 
 mount of encapsulated drug

 nitial amount of drug for loading
 × 100 %  (1) 

 

DLC (%)= 
 mount of encapsulated drug

 otal amount of drug and carriers
 × 100 %  (2) 

 

The products from each synthesis step were evaluated by TEM imaging and the final HMSN 

product was further characterized by FTIR, XRD and TGA.  

3. RESULTS AND DISCUSSION 

 

3.1. TEM imaging 

 

 
Figure 1. TEM images and size distributions from TEM of  

SiO2 ( ,  ’), SiO2-L (B, B’) and HMSN (C, C’). 

Particle morphology and size were observed by transmission electron microscope (TEM). 

The results indicated that in all three steps of synthesis, the nanoparticles were in spherical shape 
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and had narrow distribution. According to TEM imaging, SiO2 core templates were 104 ± 0.7 

nm. The silica coat on the templates, formed via hydrolysis and condensation reactions of the 

precursor TEOS in presence of CTAB, was about 60 nm thick. In the last step, Figure 1 (C, C’) 

showed that the core templates were successfully etched away to form hollow structure of 

around 134.0 nm. 

3.2. Zeta potential 

Surface charges from all synthesis steps were shown in Figure 2. Zeta potential indicates 

the surface charge and stability of the system. Larger value in zeta potential means higher 

electric repulsion between particles, thus reducing aggregation and improving the stability and 

dispersion of the particles. The charges of SiO2 templates and HMSN with surface hydroxyl 

groups were found to be negative, -44.3 ± 0.6 mV and -25.0 ± 0.9 mV, respectively. At the 

second step when the coating required the presence of CTAB surfactant with positively charged 

CTA+ groups. 

 

 
Figure 2. Zeta potential of SiO2, SiO2-L and HMSN. 

 

3.3. FTIR spectrum analysis 

 

 
Figure 3. Fourier transform infrared spectrum of hollow mesoporous silica nanoparticle.   

 

As can be seen from the FTIR spectrum of HMSN (Fig. 3), an absorption band from 3300 – 

3500 cm
-1

 was to the silanol group on the surface of silica material. Other signals were assigned 

to Si-O-Si (1100 cm
-1

), OH stretching of water in HMSN (1635 cm
-1

), asymmetric bending and 
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stretching of Si–OH (960 cm
-1

 and 800 cm
-1

) , respectively, proving the presence of inorganic 

SiO2 [12]. 

3.4. TGA curve analysis  

The heating process of HMSN (Fig. 4) was ranged from 25 
o
C to 80 0

o
C [13]. At 

temperature lower than 170 
o
C, a loss of 12 % was from the evaporation of water physically 

adsorbed to the sample and part of the dehydroxylation of silanol groups on the surface of the 

material. A following 5 % loss at 170 
o
C – 500 

o
C was due to the degradation of trace organic, 

the evaporation of physically bonded water and the dehydroxylation of part of silanol groups 

within the material. At temperature over 500 
o
C, slight weight loss was attributed to the 

dehydroxylation of part of silanol groups within the structure. Raising the temperature to 800 
o
C 

did not completely break down the silanol groups. 

 
Figure 4. Thermogravimetric analysis (TGA) diagram of hollow mesoporous silica nanoparticle. TGA 

was performed in air with the temperature ramped from 25 – 800 °C at a rate of 10 °C/min.    

3.5. Surface area via BET method 

The surface area of the material was evaluated by nitrogen adsorption-desorption and BET 

method  to be 983.7 m
2
/g. As can be seen from Fig. 5, the nitrogen adsorption-desorption 

isotherms of HMSN belongs to type IV and hysteresis loop of H4 type, according to IUPAC 

classification. Capillary condensation occurring at the relative pressure of 0.42 indicates that the 

outer layer of HMSN had small to average capillary structure. 

3.7. Drug loading efficiency and capacity 

DLE and DLC are essential parameters in design of drug delivery system since they have a 

direct impact on the effectiveness of the system. These parameters were determined directly 

from the amount of DOX encapsulated within the particles via aforementioned equations. The 

DLE and DLC of synthesized HMSN were 22.70 ± 0.77 % and 5.40 ± 0.17 %, respectively. In 

comparison with other studies, Cheng et al. developed novel pH-sensitive delivery vehicles, 

DOX-loaded folic acid-conjugated polydopamine modified HMSN, to improve their long-term 

blood circulation. The results showed that the DLE of HMSNs-DOX was 10.53 ± 0.3 % [14]. In 

another previous study by Moghaddam et al., the tunable glutathione (GSH)-sensitive hollow 

mesoporous silica nanoparticles (HMSiO2 NPs) were synthesized and DOX is loaded into the 
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pores of HMSiO2 NPs. The GSH-sensitive DOX-loaded HMSiO2 NPs were successfully 

prepared with DLE for GSH-sensitive and TEOS HMSiO2 NPs were 12 ± 0.7 % and 11 ± 0.5 %, 

respectively [15]. These results demonstrated that the prepared HMSN with the high DLE has 

the potential to be delivered more efficiently to cancer cells. 

 
Figure 5. Nitrogen adsorption-desorption isotherms of HMSN. 

4. CONCLUSION 

In this study, hollow mesoporous silica nanoparticles were successfully synthesized via 

hard-template method with three steps. TEM imaging showed that the synthesized particles had 

spherical shape and possessed a hollow core structure after the etching of SiO2 templates. This 

hollow structure was the key to the high drug loading capacity of HMSN. It is also important to 

note that HMSN retains the advantages of mesoporous silica nanoparticles (MSN), such as high 

drug loading capacity, physicochemical stability, etc. and thus is a potential material for 

biomedical application as drug delivery system. 
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