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Abstract. Parallel robots are used increasingly thanks to several advantages as high rigidity and 
accuracy, and small link weight. These advantages are achieved by their closed-loop structure of 
the mechanical system. However, redundant generalized coordinates are often used in dynamic 
simulation and design of controller for parallel robots. A designed controller normally requires 
feedbacks of all redundant coordinates and their derivatives. This requirement is hard to achieve 
in practice, because robots are usually only equipped with sensors for active joints. In addition, 
some coordinates cannot be easily measured by sensors like encoder. In this paper, a novel 
method is introduced to estimate three auxiliary generalized coordinates and motion of the 
moving platform. A kinematic error feedback technique is exploited to ensure the estimated 
motion converge to the actual motion of the robot. Numerical simulations are performed on a 
3RRR parallel robot model with nine generalized coordinates to confirm the reliability and 
efficiency of the proposed method. 

Keywords: dynamic modeling, motion control, 3RRR planar parallel robot, kinematic 
estimation, numerical simulation. 

Classification numbers: 5.3.2, 5.3.5, 5.3.7.  

1. INTRODUCTION 

Nowadays, parallel robotic manipulators are used widely in industrial applications due to 

its advantages such as higher accuracy and rigidity, higher loading rates on robot weight than 

those of serial robots. However, parallel robots have some major disadvantages such as small 

workspaces and many singularities in the workspace due to their closed loop structure [1, 2]. 

This kind of robots has attracted numerous researchers. Most of them deal with the dynamic 

modeling and the controller design. For dynamic modeling of parallel robots, residual 

generalized coordinates are normally used, and dynamics of parallel robots are described by 

differential algebraic equations (DAEs). A number of methods for constructing dynamic 

equations include: Lagrangian equations with multipliers, Newton - Euler equation, Jourdain 

principle or Kane dynamic equations [3–10]. 

Similar to serial robots, there are several control laws designed for parallel robots [11–17] 
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such as: proportional–derivative controller (PD) plus gravity compensation, exact linearization, 

sliding mode control, adaptive control, fuzzy control, neural networks based control, etc. These 

controllers often require the feedback of all generalized coordinates and their derivatives. This 

requires the robot to be equipped with a variety of sensors to measure not only the actuated joint 

variables, but also the auxiliary coordinates as well as the position and velocity of the moving 

platform. This requirement is not always met and will certainly increase the cost of the robot. To 

overcome these limitations, this paper proposes the use of the kinematic estimator to determine 

the dependent generalized coordinates and their derivatives. This approach has been applied in 

[18] where the connecting links of the robot are modelled by two particles at the ends of the 

links and the system state is described by only six generalized coordinates. Meanwhile, the 

connecting links are considered as a rigid body in this paper. Therefore, nine redundant 

generalized coordinates are used for the robot. The designed kinematic estimator has been 

integrated with conventional PD and proportional–integral–derivative (PID) controllers. In 

addition, kinematic error feedback techniques are exploited to ensure that the estimated motion 

tracks the actual motion of the robot.  

The remaining of the paper is structured as follows: Section 2 shows the dynamic model of 

a parallel robot driven by electric motors. Sections 3.1 and 3.2 present the design of a controller 

based on a dynamic model with the assumption that all generalized coordinates are measured. 

Section 3.3 presents the kinematic estimator to determine dependent coordinates. The numerical 

simulation results are presented in Section 4. Finally, the conclusion in Section 5. 

2. DYNAMIC MODEL OF PARALLEL ROBOT DRIVEN BY ELECTRIC MOTORS 

Let’s consider a parallel robot of n degrees of freedom driven by n electric motors. For 

parallel robot dynamics, the residual generalized coordinates are often used, as it allows easier in 

establishing differential equations and is also more convenient to simulate on computers. 

Defining 
1 2

[ , ,..., ] [ , ] [ , , ] ,T T T T T T T T
m

q q q  q y x  m n  is the residual generalized 

coordinates vector for the robot, in which - active joint variables, x - coordinates of moving 

platform and - auxiliary joint variables. The establishment of equations of motion for this 

system has been presented in numerous references [1, 6, 14, 19, 20]. With Lagrangian 

multipliers the differential equations of motion for the system are written in the following form:  

 ( ) ( , ) ( ) ( )T
s s s s s q

    M q q C q q q D q g q B u q  ,    

 (1) 

 ( ) q 0 ,  ( ) /  q q      (2) 

where 
2( ) ( )

s m
r M q M q BJ Z  is mass matrix, ( , )

s
C q q  - Coriolis and centrifugal matrix is 

calculated by Christoffel symbol [4, 7] or using Kronecker product [21], 
1 2( )

s m m a e
r D B D K R K Z  - damping matrix, ( )

s
g q  - generalized force due to gravity, 

1

s m a
rB BK R  - input matrix related to configuration of actuators. The parameters of n electric 

motors are collected in some matrices including: 
,1 ,2 ,

diag( , ,..., )
m m m m n

J J JJ  -moment of 

inertia of rotors, 
,1 ,2 ,

( , ,..., )
a a a a n
diag R R RR  - motor coil resistances,  

,1 ,2 ,
( , ,..., )

e e e e n
diag K K KK  - back-emf constants, 

,1 ,2 ,
( , ,..., )

m m m m n
diag K K KK  - torque 

constants, and r  - the ratio of the gearbox. The details of the equations of motion are presented 
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in the articles [11,12,19].   

To design a controller based on dynamic models, the differential algebraic equations (1) 

and (2) will be transformed into active joint coordinates. By using the matrix, ( ) m nR q  is 

defined as follows: 

 
1

( )
y 


 
  

  

E
R q

 
,     (3) 

where ( ) /


  q   , ( ) /
y

  q y  are Jacobian matrices of the constraint equations 

with respect to (w.r.t) the active and dependent generalized coordinate vector. The dynamic 

equation of the parallel robot is transferred to the form 

 ( ) ( , ) ( ) :T

s    
    M C D g R B u  ,   (4) 

with   

( ) ( ) ,T n n

s

 M R M q R  ( , ) ( ) ( , )T n n
s s

    C R M q R C q q R   

  , ( ) ( )T T

s s 
 D R D R g R g q , 

n


g . 

In the equation (4) the following properties are still guaranteed: ( )

M  is a symmetric and 

positive and ( ) 2 ( , )
  
 N M C  is a skew-symmetric matrix. These properties are very 

important for control design shown in the following section. Dynamic model (4) is base for 

control design. 

Noting that in case of modeling the connecting links by two masses at two ends the 

auxiliary joint variables  do not appear in the above equations. This case has been solved in 

the work [18]. In this paper, the connecting links are modeled by rigid bodies, so that the 

auxiliary joint variables are needed to describe motion of these links. Therefore, the number of 

generalized coordinates increase, and the problem becomes more complex than the problem 

solved in the previous work [18]. 

3. CONTROLLER DESIGN WITH A KINEMATIC ESTIMATOR 

The objective of the control problem is to find the law of the motor voltage so that the 

motion of the moving platform tracks the given trajectory defined by ( )
d
tx . A control law can 

be designed in actuated joint space such that e 0
d

   or in operational space such that 

0
x d
  e x x . In this section, the methods of control design in active joint space are 

presented. This approach requires to solve inverse kinematics to find ( )
d
t  from ( )

d
tx . The 

basis for the design of controller in joint space is equation (4).   

3.1. Position control by PD controller plus gravity compensation 

For position control problem, we can apply the law PD + gravity compensation as follows: 

   1( ) ( )T
s p d s 

   u R B K e K e g   (5) 
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where 
d

 e . 

The stability of the closed system is proven by selecting the following Lyapunov function 

 
1 1

( )
2 2

T T

p
V

  
 q e eM K .    (6) 

Differentiating of V  with respect to (w.r.t.) time, under consideration of equation (4) and 

skew-symmetric property of matrix [ 2 ]
 
M C , one obtains 

 
 

1
2

( ) ( )

( ) 0

T T T

p

T

d

V
   



 

   



K

M M K

D

e e
 (7) 

3.2. PID controller with inverse dynamics 

For tracking control, the method based on inverse dynamics, exact feedback linearization, 

or computed torque control can be applied. The control law is chosen as follows: 

 
1( ) ( ) ( , ) ( , )T

s   

     u R B M v C b    (8) 

where   

0
( )

t

d D P I
d

  
     v K e K e K e .   (9) 

Substituting (8) into (4) yields  

 ( )( )


 v 0qM .     (10) 

Due to matrix ( )

qM  is positive definite, from equation (10), one obtains 

  v 0 .      (11) 

Combining with equation (9), one obtains 

 
0

( )
t

d D P I
d

  
     K e K e K e 0    (12) 

or  

 
0

( )
t

D P I
d

   
     e 0K e K e K e .   (13) 

By differentiating (13) w.r.t. time one gets  

 
D P I   

  e 0K e K e K e  .    (14) 

If the positive definite matrices , ,
D P I
K K K  are selected as the diagonal one, from (14) we 

obtain the third order linear differential equations as follows  

  0
i i i iDi Pi Ii
e k e k e k e
   

   ,  i = 1,2, …    (15)  

Characteristic equation (15) has the form 

 
3 2 0
i i iDi Pi Ii
k k k      , i = 1, 2, 3   (16) 

According to Hurwitz criterion, the conditions for the characteristic equation (16) have 

negative real parts as follows: 
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 0, 0,   1, 2, 30,   0,    
Di Pi Ii Di Pi Ii

ik k k k k k       (17) 

Thus, if we choose the coefficients ,,
Di Pi Ii
k k k  satisfy the condition (17), the solution of the 

system (15) will converge asymptotically to zero. This leads to ( ) ( )
d

t t  and 
d

 xx . 

3.3. Design of a kinematic estimator based on constraint equations  

Control laws (5) and (8) require not only active joint variables ,  but also auxiliary 

variables ,y y . In order to get these variables for feedback, it is required to equip more robots 

with more sensors in addition to the active encoder variable encoders. To avoid this cost, the 

paper proposes to estimate these variables from kinematic constraint equations. This section 

presents the construction of an estimator that meets the above requirements.  

The constraint equations at the position level are rewritten as follows 

 ( ) ( , ) 0 q y   .     (18) 

By differentiating w.r.t time one gets the constraint equations at the velocity 

 ( ) ( ) ( , ) ( , )
q y

  q q q y y y          (19) 

Assuming that the robot does not cross singular region, it means det ( , ) 0
y

y , from 

(19) one gets  

 
1 1( ) ( ) ( , ) ( , )
y y 

y q q y y            (20) 

By integrating equation (20) with the initial condition (0)y  one gets the value of variables 

( )ty . The values ( )ty  obtained after integrating the equation (20) may no longer satisfy the 

constraint equation (18) due to the cumulative errors in the calculation. Due to the error of the 

constraint equation, it is possible to lead to position and velocity drift in the numerical 

simulation. To eliminate this drift, kinematic error feedback techniques is proposed in this study. 

The idea of the method is that instead of solving y  from equation (19), we use the equation 

 ( ) ( ), q K q       (21) 

where K is a positive matrix chosen by the designer, 0K . 

So equation (19) is modified as  

 ( ) ( ) ( , ) ( , ) ( )
q y

    q q q y q y y K q      (22) 

and one gets 

 
1ˆ ˆ ˆ ˆ( , ) ( , ) ( , )
y 

     y y y K y     .   (23) 

In equation (23) the notations ŷ  and ŷ  have been used to distinguish the variables in the 

generalized coordinates of the robot are y  and y . Note that, equation (21) is equivalent to 

 e Ke 0 , so that with positive diagonal matrix K , its solution has the form 

( ) (0)exp( )
i i ii
e t e k t  . Obviously, these solutions will converge to zero, it means the error of 

the constraint equation is guaranteed to converge to zero. Thus, the constraints are still 

guaranteed without being broken.  

From the theoretical basis mentioned above, we have a parallel robot control scheme using 
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the above kinematic estimation as depicted in Figure 1. 

 

Figure 1. The control diagram in joint space with a kinematic estimator. 

4. SIMULATION RESULTS AND DISSCUSION 

Control laws and kinematic estimator presented in the previous section will be applied to a 

3RRR planar parallel robot moving in the horizontal plane. This robot has a fixed and a moving 

platform are equilateral triangle 
1 2 3
OOO  with side 

0
L  and 

1 2 3
B B B  with side a , and the same 

three legs are composed of two corresponding lengths, 
1i i

OA l , 
2i i

AB l . Active joints are 

driven by DC electric motors through gearbox transmission (Figure 2.). 

 

Figure 2. Model of 3RRR parallel planar robot and DC motor with gearbox. 
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4.1. The dynamic model of a 3RRR parallel robot 

For this model, the following vectors have been used: 

[ , ] [ , , ]T T T T T T T q y x  
1 2 3 1 2 3

[ , , , , , , , , ]T
C C
x y       . 

The equation of motion is derived with the kinetic and potential energy: 

 
7

2 2

1

1
( , ) ( ), ( ) 0

2 k Ck Ck k
k

T m v Jq q q . (24) 

The constraint equations of the manipulator are given as follows  

 ( ) ( , , )q x 0  : 

 O C

O C

x l l x b

y l l y b
1 1 1 2 1 1 1

1 1 1 2 1 1 1

cos cos( ) cos( )

sin sin( ) sin( )
 

 O C

O C

x l l x b

y l l y b
2 1 2 2 2 2 2

2 1 2 2 2 2 2

cos cos( ) cos( )

sin sin( ) sin( )
 

 O C

O C

x l l x b

y l l y b
3 1 3 2 3 3 3

3 1 3 2 3 3 3

cos cos( ) cos( )

sin sin( ) sin( )
 

The mass matrix 
s
( )M q  is obtained as 

 
c c r

r Jm J J m l m l2 2
11 1 2 1 1 2 1

21

4
, m m l l

12 2 1 2 1 1

1
cos( )

2
,m m

21 12
,  

 m m l 2
22 2 2

1

4
, 

rc
r Jm J m l m l

1

2 2
33 1 1 2

2
1

1

4
,  m m l l

34 2 1 2 2 2

1
cos( )

2
,  

 m m
43 34

  ,  
c

m J m l
2

2
44 2 2

1

4
 ,  

rc
r Jm J m l m l

1

2
55 1 1

2
2

2
1

1

4
,  

  m m l l
56 2 1 2 3 3

1
cos( )

2
,  m m

65 56
,  

c
m J m l

1

2
66 2 2

1

4
,  

 m m
77 3

,   m m
88 3

,   
c

m J
399
. 

the other elements are zero. 

The Coriolis and centrifugal matrix 
s
( , )q qC  is given with  

 c m l l
21 2 1 2 1 1 1

1
sin( )

2
,     c m l l

12 2 1 2 1 1 1

1
sin( )

2
,   

 c m l l
43 2 1 2 2 2 2

1
sin( )

2
,     c m l l

34 2 1 2 2 2 2

1
sin( )

2
,  

 c m l l
65 2 1 2 3 3 3

1
sin( )

2
,     c m l l

56 2 1 2 3 3 3

1
sin( )

2
,  

the other elements are zero. 

The damping matrix 
s

D  is given with  

s a m e
R r K K diag1 2 ([1, 0,1, 0,1, 0, 0, 0, 0])D . 
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The control input matrix 
s

B  is given with zero elements except for: 

s s s a m
B B B R rK1(1,1) (3,2) (5, 3) . 

Some simulations with a 3-DOF planar parallel manipulator which moves in the horizontal 

plane driven by 3 actuators are implemented. The numerical simulations are carried out in 

Matlab. Here the Baumgarte’s technique is applied in the simulation [22]. The model of the 

robot is shown in Fig. 1. The mechanical parameters of the robot are given as follows [12, 14, 

23]. 

Base:  L = 1.2 m,  

Two links of the legs:  

  
i
l

,1
0.581 m, 

i
m

,1
2.072 kg, 

C
J

1
= 0.13 kg.m

2
,  

  
i
l

,2
0.620 m,

i
m

,2
0.750 kg, 

C
J

2
0.03 kg.m

2
, 

Platform:  a 0.2 m, m
7

 0.978 kg, 
C
J

7
0.007 kg.m

2
, 

i
 [ 7

6
, 1

6
, 1

2
]. 

Gear trans.: r  = 10 (transmission ratio) 

DC motor :  
m
J = 0.01 kg.m

2
, 

m
K  = 3.00 Nm/A, 

e
K  = 0.10 Vs/rad, 

a
R  = 3.00 Ohm. 

The coefficient in the kinematic estimator is chosen K = 100. During numerical simulation 

we need to solve algebraic differential equations. These equations will be implemented in 

MATLAB to simulate the response of the system corresponding to the configuration 

8
( 1, 1, 1)     of the robot [24]. 

4.2. PD controller plus gravity compensation with kinematic estimator 

In this simulation, the moving platform is controlled from initial coordinate 
0
x  = [0.36; 

0.38; 0.2]
T
 to desired coordinate 

d
x  = [0.45; 0.51; 0.0]

T
. The parameters of PD controller plus 

gravity compensation are chosen as: 

 950diag(1,1,1); 120diag(1,1,1).
P D
K K  

 

Figure 3. Actuated joint variables vs time. 

 

Figure 4. Auxiliary joint variables and its estimated 

value vs time. 
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Figure 5. Platform position and its estimated value 

vs time. 

 

Figure 6. Trajectory of moving platform – position 

control. 

The time history of active joint variables, auxiliary variables, the position of the moving 

platform as well as the trajectory of the center of the moving platform are shown in Figs. 3-6. 

Figs. 3-5 indicate that the moving platform reaches its desired position after about 2.5 s. The 

results show that the estimated values converge to their actual values after about 0.5 s (Figs. 4, 5, 

11). 

4.3. PID controller with kinematic estimator based inverse dynamics  

In these simulations, the center of the platform will be moved along a circular trajectory, 

while its orientation is constant, 0  [rad]. The trajectory has a center at ( , )
C C
x y  = (0.30, 

0.40) [m] and radius R = 0.12 [m]. 

The parameters of PID controllers are chosen as 

 2850diag(1,1,1);  100diag(1,1,1); 250diag(1,1,1).
P I D
  K K K  

Simulation results are shown in Figs. 7-10 and 12. The actuated joint variables track the 

desired motion after about 0.5 s (Fig. 7). The estimated values of auxiliary joint variables as well 

as the position of the moving platform converge to their actual values after about 0.4 s (Fig. 8-9). 

The differences between the estimated values and their actual values converge fast to zero (Fig. 

10). Fig. 12 shows that the center of the moving platform tracks the given trajectory.  
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Figure 7. Actuated joint variables and its 

desired value vs time. 

 

Figure 8. Auxiliary joint variables and its 

estimated value vs time. 

 

Figure 9. Platform position and its estimated 

value vs time. 

 

Figure 10. Trajectory of moving platform – 

tracking control. 

 

Figure 11. Differences between estimated 

and actual values (Position control). 

 

Figure 12. Difference between estimated and 

actual values (Tracking control). 

Remarks: In the both cases of position control and trajectory control, the estimated variables ŷ  

track to their true values y . The position error when using the estimated data in the controller is 

nearly zero. This proves that kinematic estimator has generated feedback signals for the 

controller without using sensors to measure the motion of the moving platform as well as the 
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motion of the connecting rods.   

4. CONCLUSION 

This paper has successfully proposed and implemented the approach for estimating 

generalized coordinates that are depended on kinematic constraint equations. The motion of the 

moving platform and the connecting links are successfully estimated for feedback controllers. 

Here the kinematic error feedback technique is included to ensure reducing the effect of 

cumulative errors during the integration process. The designed estimator is also successfully 

integrated with the conventional PD and PID controllers. The numerical simulation results with 

the controller in the joint space show the effectiveness of the proposed method. With this 

approach, we are able to completely create the feedback signals needed for the controller without 

the need to equip more sensors for the 3RRR planar parallel robot even though the dynamic 

model of the system is nonlinear and complicated. Therefore, this approach can also be applied 

for the spatial parallel robot. The problem of combining the kinematic estimator with the modern 

controller in the operational space will be studied in the future. 
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