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Abstract. Massive multiple-input multiple-output (MIMO) networks support QoS (Quality of 

Service) by adding a new sublayer Service Data Adaption Protocol on the top of Packet Data 

Convergence Protocol layer to map between QoS flows and data radio bearers. In downlink for 

Guaranteed Bit Rate (GBR) flows, the gNB guarantees the Guaranteed Flow Bit Rate (GFBR) 

that defines the minimum bit rate the QoS flow can provide. So, one of the most important 

requirements is the minimum rate. The channel aging helps to improve the sum-rate of Massive 

MIMO systems by serving more users to increase the spatial multiplexing gain without incurring 

additional pilot overhead. In this paper, a novel scheduler, termed QoS-Aware scheduling, is 

designed and proposed for Massive MIMO to use the channel aging to increase the sum-rate but 

guarantee the minimum bit rate per user to support QoS. We investigate how many users are 

enough to serve to maximize the sum-rate while keeping the data rate per user meeting a given 

threshold. Through the numerical analysis we confirmed that QoS-Aware scheduling can 

guarantee a minimum rate per user and get a higher useful through-put (goodput) than 

conventional channel aging schedulers. 

Keywords: Massive MIMO, scheduling, QoS, channel aging. 

Classification numbers: 4.3.1, 4.3.3. 

1. INTRODUCTION 

Massive multiple-input multiple-output (MIMO) is a key technique to achieve high 

throughput for 5G networks. The idea of Massive MIMO is using a very large number of 

antennas at the base station (BS) to serve multi-users (MU-MIMO) with few antennas per one. 

Normally, each base station has hundreds of antennas providing the connection for tens of 

single-antenna users. The optimal performance can be achieved when a coding scheme called 

dirty paper code (DPC) is used [1]. The throughput of the Massive MIMO system increases with 

the number of antennas at the BS and users [2]. Furthermore, the optimal performance can be 

nearly achieved by using linear precoders of maximum ratio transmission (MRT) or zero-forcing 

(ZF) when the number of antennas at the BS is very large [3], [4]. Although the advantage of 

Massive MIMO is clear, it still has some challenges to solve to get the optimal performance.  
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In order to increase the throughput of Massive MIMO systems, it is required for the BS to 

acquire an accurate channel state information (CSI) for precoding before transmission. In 

frequency division duplex (FDD) operation, the training overhead is proportional to the number 

of antennas, while in time division duplex (TDD), it is only scaled with the number of scheduled 

users. Therefore, many previous works have adopted TDD operation in Massive MIMO systems 

[5– 8]. In the TDD operation, the CSI is estimated in the uplink training period. The BS will 

select a subset of users in the cell to serve in the downlink transmission period. This scheduling 

process has a lot of algorithms aiming for different purposes. 

To increase the data rate of users as well as maximize the throughput of the whole system, 

the scheduling can select users with the best channel gains and the least requirement in transmit 

power in each time frame to serve [9–11]. It is termed as Maximum Rate method. The issue of 

Maximum Rate is that the users with bad channel gains are almost never served so it is not 

acceptable from customer’s perspective. Another way to improve the throughput is optimization 

of the power control, which increases the power for user with low channel gain and vice versa 

[12]. Another paper concerns about the total power when researching about the energy and 

spectral efficiency rather than to optimize the power of each user [13]. To solve the issue of 

Maximum Rate, Proportion Fairness takes into account users’ past average data to provide an 

equal rate for all users. The goal of this algorithm is to maintain a fairness among users [14]. 

Because the number of pilot users is limited comparing to the number of antennas [15–17] 

to maximize the spectral efficiency so the number of scheduled users is also limited. To save 

resources, antenna grouping, and user grouping are considered to improve the spectral efficiency 

[18–20]. Authors in [21], [22] save resources by reusing pilot sequences. Another way to 

improve the throughput of the whole system is adding more users to serve without resources to 

extra CSI estimation. The current CSI of these users are estimated by the amount of channel 

variation of each user according to aged CSI samples. This channel aging effect in massive 

MIMO has received a lot of attention from researchers [23–26]. 

In [27], the authors proposed an Opportunistic User Scheduling using channel aging to 

increase the spatial multiplexing gain by serving more and more users without incurring 

additional pilot overhead. In 5G, physical layer in radio network will support QoS to guarantee 

the quality of service from the core network to end users [28]. Especially, in both downlink and 

uplink, the BS guarantees the Guaranteed Flow Bit Rate (GFBR) for Guaranteed Bit Rate (GBR) 

flows [29]. 

Motivated by this, we propose a novel scheduling using aged CSI, termed QoS-Aware that 

exploits the aged CSI to not only maximize the throughput of the system but also support the 

QoS by guaranteeing the minimum rate per user using GBR flow. The performance of QoS-

Aware is investigated in terms of goodput (the total throughput of all users who have rates 

higher than the minimum rate), badput (the total throughput of all users who have rates lower 

than the minimum rate), the number of goodput and badput users in comparison with the 

scheduler in [27]. Our results show that our algorithm can guarantee the minimum rate per user 

and get a higher goodput than the algorithm in [27]. 

Notation: We use normal letters (e.g., a ) for scalars, lowercase and uppercase boldface 

letters (e.g., h  and H ) for column vectors and matrices. NI  and N0  are the identity matrix and 

all-zero matrices of size N N . For a matrix A , 
T

A  is the transpose matrix, 
*

A  the conjugate 

transpose, and tr( )A  the trace. [ ]  is the statistical expectation operator. 
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2. SYSTEM MODEL  

We consider a single-cell multi-user massive MIMO consisting of one BS and many single 

antenna users. Let a a{1,2, , }K  be the index set of these users, where aK  is the total 

number of users. The BS is equipped with M  antennas, where aM K . For simplicity, it is 

assumed that the BS has been aware of all the users that want to be served keep unchanged in the 

considered frames. The system operates in TDD mode and has perfect channel reciprocity. Let 

T be the duration of a frame in terms of symbols. In each frame the first p  symbols are used for 

uplink training then the remaining ( pT  ) symbols are used for downlink data transmission. 

We assume that the channels are frequency-flat and that the channel coefficients keep 

constant during each frame. Let 
1[ ] M

k n g  be the fast fading channel coefficients, which 

vary independently frame-by-frame. For analytical tractability, we consider Rayleigh fading 

channel model where the entries of 
1[ ] M

k n g  are independently identically distributed 

(i.i.d.) according to the Gaussian distribution with zero mean and unit variance. Let k  be the 

large-scale fading channel coefficient from user ak  to the BS, which does not change in the 

considered frames. The uplink channel coefficients from user ak  is determined as      

1[ ] [ ] M

k k kn n  h g . 

In this paper, we assume that the channel coefficient vectors vary from frame to frame due 

to the channel aging effect. For analytical convenience, the relationship between the channel 

coefficient vectors in two consecutive frames is characterized by an auto-regressive model of 

order 1 such that [27] 

[ ] [ 1] [ ]k k k kn n n  h h e                                            (1) 

where k  is the temporal autocorrelation factor for user k , [ 1]k nh  is the channel coefficient 

vector in the previous frame of user k , and [ ]k ne  is the uncorrelated channel coefficient 

innovation due to channel aging. In principle, k  depends on propagation geometry, velocity of 

the user, and antenna characteristics [30]. For simplicity, however, it is assumed that k  remains 

unchanged in the considered frames for all ak . 

2.1. Uplink training 

In the training stage of frame n , the BS selects randomly a fixed number of pK  users out 

of the aK  users in the round-robin manner for training purpose. Let p a[ ]n   be the set of 

indices of these selected users in frame n . After being informed, the selected users 

simultaneously transmit predetermined mutually orthogonal pilot sequences of length 

p pK  using the same transmit power of pp . Note that pp  may vary frame-by-frame and that 

power control during the training stage is left for future work. Let p1
[ ]H

k n


v  be the pilot 

sequence sent by user p[ ]k n . The received training signal at the BS is 
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p

r p p[ ] [ ] [ ] [ ]H

k k

k

n p n n n


 Y h v Z                                  (2) 

where pp  is the average transmit power at each user, p[ ]
M

n


Z  is additive white Gaussian 

noise matrix with i.i.d. entries of 
2

r(0, )M I . The MMSE estimate of [ ]k nh  is given by [31]: 

p p

r2

r p p

[ ] [ ] [ ].k k

p
n n n

p



 



h Y v                                       (3) 

Moreover, due to the orthogonality principle of MMSE estimation, [ ]k nh  can be 

decomposed into two uncorrelated components as follows 

[ ] [ ] [ ]k kk n n n h h h                                              (4) 

where [ ]k nh  is the uncorrelated estimation error vector. The [ ]k nh  is a vector with i.i.d. entries 

2

p p

2

p p

(0, ),
k

k M k

k r

p

p

 
 

  



I . 

2.2. Downlink Transmission 

After training period, the BS selects the scheduling user set s s p( )K K  to transmit the 

data signals. Let s 1
[ ]

K
n


x  is the signal vector for sK  users and  2|| [ ] || 1n x . 

The BS uses a linear precoding matrix sM K
F  which is a function of channel estimate 

[ ]nH  to map [ ]nx  to its transmit antennas. The power is allocated for k -th user is [ ]kp n  with 

the power constraint 
s

2

1

[ ] [ ]
K

k k

k

n p n P


 f . The received signal at the k -th user can be written as 

s

s

1,

1

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

{ [ ] [ ]} [ ] [ ] [ ] [ ] [ ] [ ]

{ [ ] [ ]} [ ] [ ]

K
T T

k k k k k k l l l k

l l k

K
T T

k k k k k l l l

l

T

k k k k k

n n n p n x n n n p n x n

n n p n x n n n p n x n

n n p n x n

 



  

 

 





y h f h f n

h f h f

h f n

       (5)                        

where [ ]k nh  is the channel vector for the k -th user, and [ ]k nf  is the k -th column of matrix 

[ ]nF . 

The instantaneous SINR for the k -th user can be written as: 

s

2

2 2 2

1

[ ]
[ ]

[ ] { [ ] [ ] } [ ]

k k

k K
T

l k l k k

l

p n
n

p n n n p n




 




  h f

                          (6) 

where { [ ] [ ]}T

k k kn n  h f . 

The achievable rate of the k -th user is 

2[ ] log (1 [ ])k kn n R                                          (7) 
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The sum-rate of the system is: 

        
s

2

1

[ ] (1 [ ])
K

sum k

l

n log n


 R                                    (8) 

2.3. Channel aging 

Channel variation occurs to the remain user set r a p[ ] \ [ ]n n  due to the time 

difference between channel estimation and channel use in downlink period. We define the 

channel variation coefficient [ ]k n  which measures the channel variation between the last time 

slot kl  when the channel of user k -th is estimated and the current time slot n  

[ ]

[ ] [ ] [ ] [ ]

kn l

k k

k kk k k

n

n n l n

 






 h h e
                                         (9) 

where, [ ] [ ] [ ] [ ]kk k k kn n l n e h e  is. i.i.d with zero mean and variance 
2[ ]k k kn   . 

3. ACHIEVABLE SUM-RATE UNDER CHANNEL AGING 

We investigate the achievable downlink sum-rate of when using aged CSI for scheduling. 

The current estimated CSI [ ]k nh  of user k -th is derived from the last estimated [ ]k klh  at time slot kl . 

[ ] [ ]k kk kn lh h                                                   (10) 

Then the received signal of user k -th is 

s

1,

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

{ [ ] [ ]} [ ] [ ]

T

k kk k

K
T T

k k kk k k l l l k

l l k

T

k k k k k

n n n n n n n n

n n p x n n n p x n n n n

n n p x n n

 

  

   

 



y h F Px e F Px n

h f h f e F Px n

h f

     (11) 

where 
s

1

[ ] [ ] [ ] [ ] { [ ] [ ]} [ ] [ ] [ ] [ ] [ ]
K

T T

k k kk l l l k k k k

l

n n n p x n n n p x n n n n n


   h f h f e F Px n  

3.1. Maximum ratio transmission  

The precoding matrix is given as 
*

*
2

*
2 2 4 2

*
2 2 2

*
2 2

[ ] [ ]

{ [ ] [ ]} [ ]

{| [ ] [ ] | } [ ]( )

{| [ ] [ ] | } [ ] [ ]

{| [ ] [ ] [ ] | } ( [ ] )

S

T

k k k k

T

k k k k

T

k l k k l l

Sk k k k

n n

n n n M

n n n M M

n n n n M

n n n n

 

 

   

  





 



 

F H

h h

h h

h h

e H Px

                                (12) 
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hence, 

          
s

2 4 2

2 2 2 2

1

[ ]
[ ]

[ ] [ ] ( [ ] )

MRT k k k
k K

k k l l l k k k

l

p n M
n

n p n M n

 


       




  
                            (13) 

3.2. Zero-Forcing 

For the Zero-Forcing, the precoding matrix is 

 

* *
1

* *
1

2
* *

1 2

2

s

2
* *

1 2

2

s

2

[ ] [ ]( [ ] [ ])

{ [ ] [ ]( [ ] [ ]) } 1

( )
{| [ ] [ ]( [ ] [ ]) | } 1

( )

( )
{| [ ] [ ]( [ ] [ ]) | } ,

( )

{| [ ] [ ] [ ] | }

 

T

S S S

T T

k k k k

T T
k k k

k k k k

k k

T T
k k k

k l l l

l l

k

n n n n

n n n n

n n n n
M K

n n n n l k
M K

n n n

  

 

  

 














 




 



F H H H

h h h h

h h h h

h h h h

e F Px
2( [ ] )k k kn   

                    (14) 

Hence, 

2 2s

2

s2
1

( )
[ ] , ( [ ] )

( [ ] )
( )

[ ]

s

zf k
k k k kK

l k k k

l l l

p M K
n n

p n
M K

n

     
  


 


   


 

        (15) 

3. QOS-AWARE DESIGN 

Using aged CSI can increase multiplexing gain but it leads the average rate of user to go 

down and it may not meet the minimum rate from QoS requirement. To alleviate this problem, 

we propose an opportunistic user scheduling algorithm that not only schedules more users to 

achieve higher multiplexing gain but also guarantee the minimum rate per user to support QoS. 

The key idea in QoS-Aware design is checking the achievable rate for all selected users and the 

candidate user if adding this candidate to the scheduled group still meet the minimum rate from 

QoS requirement.  

Let us formulate the scheduler’s objective and the constraints. The BS gathers the channel 

state information H , the total transmit power P  and the minimum rate T  for scheduled users 

from the QoS requirement. Based on the collected information, the scheduler maximizes the 

sum-rate of the whole system by selecting the best user subset s[ ]n  from the pilot user set 

p[ ]n  and aged CSI in each time frame. 

 

s

s a

s

2
[ ]

1

2

1

2

max log (1 [ ])

.

log (1 [ ])

K

k
n

k

K

k k

k

k

n

s t p P

n T














 



 f                                                 (16) 
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As can be seen in Figure 1, the scheduling consists of four parts: 

estimation of channel variation coefficients  which helps the BS estimate the amount of 

channel variation for each user from the last CSI training, pilot user selection which selects a 

subset of users p[ ]n   for pilot training, uplink training will update channel state information 

for group p[ ]n  , and valid user selection for transmission which allows more users not only to 

be scheduled with aged to increase the spatial multiplexing gain but also guarantee their 

minimum rates. 

After every uplink training procedure and updating the channel state information for users 

in group p[ ]n , the BS has to choose the valid users precisely who help to improve 

performance of the whole system but still keep the minimum rate per user. We denote the 

s[ ]n  is the scheduled group and the c[ ]n  is the candidate group. To determine whether user 

k  to be scheduled or not, at timeslot n  the rate lR  per user s{ [ ]}l k n  have to be higher 

than the minimum rate T . If all users satisfy this QoS requirement then we check if adding the 

user k  will help to increase the throughput or not s  >( [ ])pc

sumR k n R . Lastly, if there is the 

best user k  in c[ ]n  meets both these conditions then the user k  will be moved to group 

s[ ]n : 

s s

c c

[ ] [ ]

[ ] [ ] { }

best

best

n k n

n n k




 

 

Figure 1. The overview of QoS-Aware method. 
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The BS will loop these procedures until there is no user meeting the conditions. These 

procedures are described in Algorithm 1. 

 

4. SIMULATION RESULTS 

To measure the effect of QoS-Aware scheduling, various case studies have been done 

based on Massive MIMO system to compare the following scheduling policies: 

 Non-QoS Scheduler (OpSac in [27]). 

 QoS-Aware scheduler 

We mainly compare the goodput that is the total rate of users who get the rate higher than 

the minimum rate T and vice versa for the badput. In all cases, we set the training sequence 

length p pK  , and 20r   dB, 30   dB. 

Figure 2 compares the goodput of QoS-Aware and Non-QoS  according to the number of 

BS antennas when 40aK   for the minimum rate 0.1,1T   and 2 . All of them are using 

MRT precoding. It can be seen that the goodput of the system increases when the number of 

antennas M  goes up. Moreover, the goodput of QoS-Aware is always higher the one of Non-

QoS. If the T decreases than the difference of the goodput will be smaller. Especially, with 
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0.1T   the goodput for both QoS-Aware and Non-QoS are almost the same. Lastly, when the T 

decreases, the goodput of both two methods increases. 

 

 

Figure 2. The comparison of goodputs when using MRT. 

Figure 3 shows that the badput of QoS-Aware is less than the one of Non-QoS with the 

same T. The higher the minimum required rate T is, the bigger the badput is. The worst of badput 

is the case T = 2 with Non-QoS method. It is obviously that Non-QoS should not be applied for 

the deployment of wireless network where there are applications requiring high speed rates. 

 

Figure 3. The comparison of badputs when using MRT. 

Figure 4 shows the goodput of system according to the number of users aK  when 

128M  . Normally, adding more users will increase the goodput of system. However, if using 

Non-QoS and the T  is high then the goodput will go down as the case 2T  . It means if using 

the Non-QoS then serving more users can lead to most of them will have badput. This happens 

when the average rate of users is smaller than the minimum rate expected T . However, with 
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2T   it is very good for QoS-Aware that the goodput still increases even when adding more 

users because the scheduling will only select the best users while monitoring the total number of 

them to satisfy the QoS requirement. 

 

Figure 4. The goodput of system using MRT when 128M  .  

Figure 5 shows the goodput of QoS-Aware and Non-QoS with ZF precoding when 

40aK   as M  increases for the minimum rate 9,10,T   and 11. It can be seen that normally 

the goodput of QoS-Aware are always higher than the one of Non-QoS. However, if the T is less 

than the average rate per user then the goodput of QoS-Aware will be smaller than the one of 

Non-QoS, for example with 9T  . It means if the minimum rate T is too low, the QoS-Aware 

scheduling is not needed. Lastly, when the number of antennas increases, the goodput of two 

methods goes up. 

 

Figure 5. The comparison of goodput when using ZF with 40aK  . 
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Figure 6 shows that the badput of both methods with ZF precoding. QoS-Aware also most 

has no badput because the interference is vanished when M  increases. For Non-QoS, if the T is 

less than the average rate of users then the badput of system also goes down to zero, for example 

with 9T  . It is confirmed again if the T is low it is better not to use QoS-Aware method. 

 

Figure 6. The comparison of badput when using ZF with 40aK  . 

Figure 7 show the number of scheduled users in the case of ZF precoding. As normal, the 

Non-Qos will serve the biggest number of users and QoS-Aware will serve fewer and fewer 

users if the T goes up. Moreover, MRT always server more users than ZF with the same T. For 

Non-QoS using MRT, almost of users will be scheduled even though many of them will have 

badput. On other hand, for Non-QoS using ZF only selects the users with good condition of 

current channel or channel aging. 

 

Figure 7. The number of scheduled users when using ZF and MRT. 



 
 

Hung Pham, Bac Dang Hoai, Ban Nguyen Tien 
 

 

628 

5. CONCLUSIONS 

In this paper, we proposed a novel scheduling algorithm, termed QoS-Aware, that exploits 

aged CSI with concern about the minimum rate per user to support QoS. We analyzed the sum 

rate as well as the achievable rate for the downlink when MRT and ZF are employed. According 

to the analytical results, we provided a scheduler that improves the sum rate by serving more 

users but still satisfies the minimum rate per user to guarantee the QoS. It was shown that even 

in the traffic jam condition for example there are too many users in the cell, the QoS-Aware will 

only select enough users to be scheduled to avoid the case a user experiences a low rate 

connection. It is really promising to deploy multi-media services efficiently on 5G wireless 

network.  
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