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Abstract. Electrolyte films based on poly(methyl methacrylate) (PMMA) and poly(vinyl 

chloride) (PVC) were prepared by using casting method with the addition of 100 wt.% to 240 

wt.% of dioctyl phthalate (DOP), propylene carbonate (PC) as plasticizers and Mg(ClO4)2 as an 

electrolytic salt. The Fourier infrared spectra (FTIR), tensile, electrical properties, and surface 

morphology of electrolyte films were investigated. The FTIR spectra of plasticized PMMA/PVC 

blends indicated that there were secondary interactions between plasticizers and PMMA/PVC 

matrix. There were also molecular interactions between Mg(ClO4)2 and the blends, which 

indicated that Mg(ClO4)2 was well dissolved and solvated in the blends. Tensile results showed 

that Mg(ClO4)2 improved the elongation at break and the reduced tensile strength and Young’s 

modulus of the blends due to this salt can act as an internal lubricant for the blends. The SEM 

and EDX-mapping micrographs showed the wrinkled surface morphology of the electrolyte 

film, all raw materials were dispersed regularly into each others at molecular and ionic levels. 

For the electrolytes containing 10 wt.% of Mg(ClO4)2, the ionic conductivity increased with 

increasing plasticizer content and achieved in the range of 1.80 × 10
-4 

÷ 1.03 × 10
-3

 (S/cm). For 

the electrolyte containing 200 wt.% of the plasticizer, the ionic conductivity increased with 

increasing magnesium salt content and achieved in the range of 2.31 × 10
-4 

÷ 4.57 × 10
-3

 (S/cm).  

Keywords: polymer electrolytes, PMMA, PVC, magnesium perchlorate, ionic conductivity.  

Classification numbers: 2.9.3, 2.5.2, 2.2.2. 

1. INTRODUCTION 

Currently, polymer electrolytes are considered as one of the most promising materials for 

applications in electrochemical devices, such as: rechargeable batteries, fuel cells, super 

capacitors [1]. Gel polymer electrolytes are ionic conductive materials, which are often made by 

introducing electrolytic salts into a suitable polymer matrix in the presence of plasticizers by 

different methods [2, 3]. Many types of polymers have been employed for gel polymer 
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electrolytes such as: poly(ethylene oxide) or polyethylene glycol [4, 5], poly(methyl 

methacrylate) (PMMA) [6], methyl ether methacrylate [7], polyacrylonitrile [8], polyvinyl 

chloride (PVC) [9], and poly(vinylidene fluoride-co-hexafluoropropylene) [10]. PMMA has 

been previously used as a polymer host for plasticized electrolytes [11-13]. However, the gel-

like properties made the PMMA based electrolytes was not able to form free-standing film at 

high level of plasticizer. Therefore, there are some studies reported the blending of PMMA with 

other polymers, among them PVC has been more often used for improving mechanical strength 

of plasticized PMMA gel electrolytes [14-16].  

As mentioned above, polymer gel electrolytes have been applied for lithium battery 

electrolytes and thus can also adopted for rechargeable magnesium batteries [17]. Nevertheless, 

as far as we know, there is no any report on gel polymer electrolytes based on plasticized 

PMMA/PVC with magnesium salts. Therefore, in this paper, we report. a study on preparation 

and characteristics of electrolyte films based on PMMA, PVC, plasticizers and magnesium 

perchlorate salt. The Fourier transform infrared (FTIR) spectroscopy, electrical conductivity, 

tensile properties and surface morphology of electrolyte films were investigated, the obtained 

results were also reported and discussed.  

2. EXPERIMENTAL 

2.1. Materials 

Polyvinyl chloride (PVC, SG-660, k index of 65-67) was supplied by Plastic & Chemical 

Corp., Ltd., (TPC Vina, Vietnam). Ethyl alcohol (ethanol, 99.7 %), methyl alcohol (methanol, 

99.7 %), dioctyl phthalate (DOP, 95 %) were provided by Duc Giang Chemical and Detergent 

powder Joint Stock Company, Viet Nam. PMMA (MW = 120000), propylene carbonate (PC, 

99.7 %) were purchased from Aldrich (USA). Tetrahydrofuran (THF, 99.7 %) and Mg(ClO4)2 

are analytical grade products of Xilong Co., Ltd., China. Mg(ClO4)2 powder was dried in a 

vacuum oven at 120 °C for 24 h and stored in a sealed glass bottle before use. Other chemicals 

were used as received without further purification.  

2.2. Preparation of samples 

The electrolyte films were prepared by dissolving the polymers, plasticizers and Mg(ClO4)2 

with predetermined amounts as indicated in Table 1 in THF for 2 hours. Solutions with 

predetermined weights were then cast onto release paper as films, so that the thickness and area 

of dried films were about 0.2 mm and 50 cm
2
, respectively. Evaporation of THF solvent was 

allowed at room temperature in a fume hood for 24 hours, followed by drying in vacuum oven at 

40 °C for 24 hours. All samples were stored in a desiccator before testing.  

2.3. Characterizations 

The tensile properties including the Young’s modulus (YM), tensile strength (TS) and 

elongation at break (EB) of electrolyte films were conducted using Zwick Tensile V.2.5 

Machine (Germany) with crosshead speed of 50 mm/min, according to ASTM D882 for thin 

plastic films. 
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The FTIR spectra of electrolyte films were recorded using a Nicolet/Nexus 670 Fourier 

Transform Infrared spectrometer (USA) in the wave region between 4000 and 400 cm
-1

 at 4 cm
-1 

resolution and 32 scan signal averaging, at room temperature.  

The surface morphology of electrolyte films was observed using a Scanning Electron 

Microscope (SEM, JSM-6510LV JEOL, Japan) combined with Energy Dispersive X-ray (EDX) 

spectroscopy and elemental mapping technique at electron acceleration voltage of 15 kV. The 

films were coated with a platinum layer before morphology testing.  

The AC conductivity (σAC) and AC impedances (real part - Z’ and imaginary part - Z”) of 

electrolyte films were measured by using an Agilent E4980A precision RLC meter and 16451B 

test fixture as described in Scheme 1, the electrodes are all made from stainless steel, according 

to the literature [18], in the frequency range of 25 Hz ÷ 1 MHz, with peak amplitude of 1.0 V 

and applied voltage to the reference electrode of 0 V.  

 

Scheme 1. Three-electrode system of the 16451B and block diagram for AC conductivity measurement. 

DC conductivity of electrolyte films was evaluated using a three-electrode test fixture and a 

TR-8401 electrometer (Takeda Riken, Japan), DC applied voltage of 1.0 V. The electrode 

system and DC conductivity measurement system are similar to Scheme 1, but diameters of 

measuring, guard and unguarded electrodes are of 50, 70 and 100 mm, respectively. 

Table 1. Compositions used for the preparation of plasticized PMMA/PVC electrolyte films. 

Sample 

code 

PMMA  

(g) 

PVC  

(g) 

DOP  

(g) 

PC  

(g) 

Mg(ClO4)2  

(g) 

THF (g) 

P100 0.45 0.45 0.45 0.45 - 5.1 

P160 0.45 0.45 0.72 0.72 - 5.1 

P200 0.45 0.45 0.90 0.90 - 5.1 

P240 0.45 0.45 1.08 1.08 - 5.1 

P100.10 0.45 0.45 0.45 0.45 0.200 5.1 

P160.10 0.45 0.45 0.72 0.72 0.260 5.1 

P200.10 0.45 0.45 0.90 0.90 0.300 5.1 

P240.10 0.45 0.45 1.08 1.08 0.340 5.1 

P200.10 0.45 0.45 0.90 0.90 0.300 5.1 

P200.20 0.45 0.45 0.90 0.90 0.450 5.1 

P200.30 0.45 0.45 0.90 0.90 0.771 5.1 

P200.40 0.45 0.45 0.90 0.90 1.200 5.1 
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3. RESULTS AND DISCUSSION  

3.1. The tensile properties of plasticized PMMA/PVC/Mg(ClO4)2 electrolyte films 

Table 2 presents the results of tensile properties of plasticized PMMA/PVC blends and 

plasticized PMMA/PVC/Mg(ClO4)2 electrolyte films with the compositions as shown in Table 1. 

The results show that when increasing plasticizer content from 100 to 240%, the YM of 

PMMA/PVC (1:1) blend strongly reduces from 15.08 MPa down to 1.32 MPa and the TS of 

blend reduces from 3.81 MPa down to 0.68 MPa, and the strong decrease in TS is observed with 

the P200 and P240 samples (from 1.15 MPa to 0.68 MPa). Meanwhile, the EB of blends slightly 

increases from 46% to 61%. These variations of tensile properties of the blend are due to the 

introduction of plasticizers into PMMA/PVC blends. The plasticizer molecules can penetrate 

between the polymeric chains to form secondary bonds which reduce the molecular interactions 

between polymer chains (PVC-PVC, PMMA-PVC and PMMA-PMMA), thus, the EB of 

PMMA/PVC blends increases, while their TS and YM values decrease [19, 20].  

For the electrolyte films containing 10 wt.% of Mg(ClO4)2, the TS and YM of the 

electrolyte films strongly decrease. Meanwhile, their EB increase significantly in comparison 

with the neat plasticized samples, it reaches a maximum value (195% for P200.10 sample) and 

then tends to decrease when higher plasticizer content was introduced (121% for P240.10 

sample). It has been reported that Mg(ClO4)2 with low molecular weight can be soluble in the 

plasticizers inside the blends [21], therefore, it can act as an internal lubricant for the blends and 

facilitates the flow ability of polymer chains under tensile force, leading to the remarkable 

improvement of EB of the blends. 

Table 2. Tensile properties of the plasticized PMMA/PVC electrolyte film without Mg(ClO4)2. 

Sample codes 

 

Young’s modulus  

(YM, MPa) 

Elongation at break 

(EB, %) 

Tensile strength 

(TS, MPa) 

P100 15.08 46 3.81 

P160 8.72 55 1.72 

P200 1.75 58 1.15 

P240 1.32 61 0.68 

P100.10 0.81 142 0.83 

P160.10 0.40 189 0.65 

P200.10 0.36 195 0.48 

P240.10 0.23 121 0.30 

P200.10 0.36 195 0.48 

P200.20 0.34 178 0.40 

P200.30 0.26 94 0.22 

P200.40 0.23 90 0.20 

In comparison with P200.10 sample, the TS, YM and EB of P200/Mg(ClO4)2 are all 

decreased by increasing salt contents from 20 to 40 wt.% (compared to total weight). It is 

interesting to know that the EB of the electrolyte films containing magnesium salt are all higher 

than that of P200 sample. 
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3.2. The FTIR spectra of plasticized PMMA/PVC/Mg(ClO4)2 electrolyte films 

Figure 1 shows the FTIR spectra of pure PC, DOP, Mg(ClO4)2 and two selected electrolyte 

films, which are P200, P200.10 (with 10 wt.% Mg(ClO4)2). The FTIR spectrum of pure DOP 

shows some remarkable characteristic bands: CH(1, 2, 3) stretching vibrations (ν) in the region 

from 2800 to 3000 cm
-1

, ν(C=O) at 1728 cm
-1

, ν(C-C) of aromatic ring at 1600 cm
-1

 and 1581 

cm
-1

. The FTIR spectrum of PC also shows its characteristic bands: ring deformation (δ) band at 

777 cm
-1

,
 
ν(C-O) at 1791 cm

-1
. In the spectrum of Mg(ClO4)2, the peaks at 1145, 1112, 1089 cm

-1
 

are assigned for ν(ClO) vibration modes and the peak at 627 cm
-1

 is assigned for asymmetric 

bending (δas) of ClO4 tetrahedrals [15, 22-25]. It is experienced that PC and Mg(ClO4)2 can 

absorb moisture from air when loading samples into FTIR instrument [19, 26]. Therefore, strong 

absorption bands in the region of 3000 - 3600 cm
-1

 and the bands at 1634 cm
-1

 are observed in 

their FTIR spectra (Figure 1b, 1c).   

Referring to our previous study, three ν(C-Cl) vibration modes of pure PVC were reported, 

appearing at 692, 636 and 614 cm
-1

 [27]. In this study, only two vibration modes of ν(C-Cl) at 

637 and 616 cm
-1

 in spectra of P200 sample are observed, the next peak (at 651 cm
-1

) is 

attributed to aromatic ring bending (ring) of DOP. The vibration band of ν(C=O) in the region 

1700-1808 cm
-1

 is widened, in addition, the band of ν(C=O) and δ(C=O) are shifted to higher 

wavenumber (at 1732 and 747 cm
-1

) in comparison with that of DOP (1728 and 743 cm
-1

). This 

shift also happens with δ(C=O) of PC in spectra of P200 sample (1791 cm
-1

 and 1808 cm
-1

 for 

pure PC and P200 samples, respectively). In our previous study, the strong hydrogen bonds and 

polar interactions between PMMA-PMMA, PMMA-PVC and PVC-PVC macromolecules were 

elucidated by FTIR study. In this case, the introduction of DOP and PC molecules screens and 

weakens the polar interaction and hydrogen bonds between polymer chains. Also, secondary 

polar interactions between the plasticizers and the polymers have been formed, therefore, the 

materials become more flexible.  

 

Figure 1. FTIR spectra of (a): pure DOP; (b): pure PC; (c): pure Mg(ClO4)2;  

and the electrolyte films of (d): P200, (e): P200.10. 
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In the FTIR spectrum of P200.10 (Figure 1e), there are some different absorption bands 

compared with the spectrum of P200. The first difference is the strong absorption band in the 

3000-3600 cm
-1

 due to moisture absorbed on surface of the P200.10 electrolyte film. The second 

one is the shift to lower wavenumber of ν(C=O) at 1782 cm
-1

, in accordance with the widened 

absorption band of ν(C=O) from 1700-1782 cm
-1

, which may arise from the strong molecular 

interaction between Mg(ClO4)2 and the plasticizers such as: Mg
2+

 with O=C-O groups of PC, 

DOP and PMMA. The third one is the appearance of a single and wide peak at 627 cm
-1

, instead 

of 3 peaks at 657 (δring), 637, 616 cm
-1

 (ν(C-Cl) as shown in Figure 1.d. The reason can be 

explained by the overlap of the two absorption bands: ν(ClO4) of paired and free (ClO4)
-
 ions 

and ν(C-Cl) of PVC. In addition, the solvation of Mg(ClO4)2 in the plasticizer and polymer 

matrices (PMMA, PVC) may contribute to the peak widening at 627 cm
-1

. It is worthy to note 

that Mg(ClO4)2 is more soluble in PC than DOP, however, DOP is more often used as a 

plasticizer for PVC. That is the reason why both DOP and PC are used in this study. 

3.3. The morphology of plasticized PMMA/PVC/Mg(ClO4)2 electrolyte films 

Figure 2 displays the SEM micrographs of the plasticized PMMA/PVC (P200) film and the 

P200.20 electrolyte film (with 20 wt.% of Mg(ClO4)2 over total weight of the electrolyte 

sample). It can be seen the wrinkles on the surface of the P200, P200.20 films, which are caused 

by the high flexibility of the films and the random deformations of the material when the THF 

solvent was evaporated. In comparison, the surface morphology of P200.20 sample is more 

smooth. This indicates that Mg(ClO4)2 has lessen the driving force for the deformation of 

plasticized PMMA/PVC film due to the high solubility of Mg(ClO4)2 into plasticizers at ionic 

and molecular levels [15].  

  

Figure 2. SEM micrographs of (a): plasticized PMMA/PVC (P200) film and (b): P200.20 electrolyte film 

(with 20 wt.% of Mg(ClO4)2). 

Figure 3 shows (a): the origin SEM micrograph of P200.20 film and elemental mapping of 

(b): oxygen; (c): chlorine and (d): magnesium using SEM/EDX technique. Figure 3a also shows 

the wrinkled morphology on the surface of P200.20 films. Nevertheless, uniform distribution of 

chlorine and magnesium in the investigated area of the sample can be easily observed. In Figure 

3b, an area with high concentrated dots is detected, that may be attributed to the oxygen of 

PMMA phase. This indicates that the wrinkles are not interface of PMMA and PVC phases, 

because at these wrinkles, there are all elements appeared with relatively uniform distribution. It 

can be suggested that magnesium salt is regularly dispersed in the plasticized PMMA/PVC 

matrix at ionic and molecular levels. 
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Figure 3. (a): Origin SEM micrograph of P200.20 film; and elemental mapping of (b): Oxygen atoms;          

(c): Chlorine atoms; and (d): Magnesium atoms on surface layer of the film. 

 

Figure 4. EDX spectrum of P200.20 electrolyte film and the table of compositions at right comer. 

Figure 4 presents the EDX spectrum of P200.20 electrolyte film and the table included (at 

right corner) shows the qualitative elemental analysis on the surface of the electrolyte film. The 

peaks of major elements such as C, O, Mg and Cl are all appeared. The detectable concentrations 

of these elements are showed in Table 3, where weight percentages are in ascending order as: C 

(65.37 %) > O (22.36 %) > Cl (10.07 %) > Mg (1.85 %). Supposing that all raw materials are 
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regularly distributed, the weight percentages of the P200.20 sample can be calculated as: C 

(48.20 %) > O (34.69 %) > Cl (14.79 %) > Mg (2.31 %). This comparison indicates that 

magnesium ions are appeared on the surface of the electrolyte films with lower concentration 

than those in the bulk, however, it may be within the acceptable margins of error.  

3.4. The electrical properties of plasticized PMMA/PVC/Mg(ClO4)2 electrolyte films 

The Figure 5 depicts the variations of AC conductivity of the electrolyte films with and 

without Mg(ClO4)2 as functions of frequency. It can be observed that AC conductivity of all 

samples increases with frequency, because at low frequencies, conductivity is only contributed 

by the flow of free electrons and/or ions. When frequency increases, contributions of ionic, 

electronic and electrode polarizations are increased, which causes higher displacement current 

“flowing” in electrolytes [28]. At low frequency region, the low conductivity of  P100 and P200 

blends (2.7×10
-11

 ÷ 3.1×10
-10 

S/cm at 25 Hz) is attributed to the very low concentration of free 

electrons in the films. However, by adding 10 wt.% of Mg(ClO4)2 electrolytic salt, the AC 

conductivities of the P100.10 and P200.10 electrolyte films (1.0×10
-8

 ÷ 6.0×10
-8 

S/cm at 25 Hz) 

are strongly higher than those of P100 and P200 blend films. Figure 5a indicates that those 

increments in conductivities of the P100.10 and P200.10 electrolyte films compared with that of 

P100 and P200 blend films are attributed to ionic conduction of Mg(ClO4)2 electrolytic salt. In 

other words, this elucidates the ionic conductivity of electrolyte films containing Mg(ClO4)2 salt.  

 

   Figure 5. The AC conductivity of electrolyte films with and without of Mg(ClO4)2. 

 Figure 5b also shows that the conductivities of electrolyte films containing the same 10 

wt.% of Mg(ClO4)2 increase with increasing the plasticizer contents, because plasticizers can 

improve the solubility and solvation of the salt, thus, increasing mobility of Mg
2+

 and (ClO4)
-
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ions. Figure 5c indicates that the conductivities of electrolyte films increase with increasing 

Mg(ClO4)2 salt contents from 10 to 40 wt.%. However, it should be noted that the higher salt 

content causes the lower mechanical properties of electrolyte films.  

Figure 6a (the left) and 6b (the right) depict the plots of complex impedance components 

(Z’ and Z”) of plasticized PMMA/PVC/Mg(ClO4)2 electrolyte films with the variation of 

plasticizer and magnesium salt contents, respectively. The schema of equivalent circuit for the 

electrolyte-electrode system is also depicted inside Figure 6a, where Rb is the bulk resistance of 

gel electrolyte film; Rct and Cp are the charge transfer resistance and capacitance of electrolyte 

film, respectively, Zw is interfacial impedance related to some processes at low frequency region 

[19, 25, 29]. It can be observed that the experimental points (unfilled legends like , , ) can 

be fitted well with semicircles (the dash curves) in high and middle frequency regions, which are 

related to Rct and Cp components. The experiment points of the tails at low frequency region, 

which are attributed to the interfacial impedance (Zw), do not lie on these semicircles. When 

completing the semicircles, the total of resistances (Rx = Rct + Rb) of electrolyte-electrode system 

and bulk resistance (Rb) can be evaluated by the intercepts of the semicircles with real part axis 

at low and high frequency regions, respectively [30]. For more accurate calculation, Rb values 

were evaluated via linear extrapolation from the last three points at highest frequencies. Rct and 

ionic conductivity (σion) of electrolyte film can be determined as: Rct = Rx – Rb; σion = 

(t/A)×(1/Rb), where t is thickness of sample, A is area of measuring electrode [31, 32]. Figure 6 

shows that the radius of the Z’-Z” fitted semicircle (or Rct) of the complex impedance plot is 

reduced by increasing plasticizer content as well as increasing magnesium salt content. The 

evaluations of Rb, Rct and calculated electrical conductivities of electrolyte films are shown in 

Table 3. For comparison, the results of DC conductivity measurement of electrolyte films are 

also represented.  

 

Figure 6. Impedance plot of (a): electrolyte films containing 10 wt.% of Mg(ClO4)2 with different 

plasticizer contents (the left); (b): electrolyte films containing different Mg(ClO4)2 contents                     

and same 200 wt.% of plasticizers (the right). 
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Table 3 shows that ionic conductivity as well as AC conductivity at 25 Hz of the 

electrolytes increase with increasing plasticizer and magnesium salt contents. The lower values 

of DC conductivity compared to AC conductivity may be due to the formation of polarization 

layers near the electrodes, which restrict the directed movement of ions. The conductivity 

enhancement of plasticizer can be explained by the better dissociation of electrolytic salt at the 

higher concentration of plasticizer and salt itself [20]. It is also reported that the higher dielectric 

constant of plasticizer results in stronger enhancement of electrical conductivity of gel polymer 

electrolytes. In our case, dielectric constant of PC is much higher (ε’ = 64.9) [20] than those of 

PMMA, PVC and DOP (about 3-5) [31]. With the PC:DOP ratio of 1:1, the ionic conductivity of 

plasticized PMMA/PVC/Mg(ClO4)2 electrolyte can achieve 4.57 × 10
-3

 (S/cm) at the highest 

investigated magnesium content of 40 wt.%.  

Table 3. The evaluated results of Rb, Rct, ionic conductivity (σion), DC conductivity and AC conductivity 

(at 25 Hz) and of plasticized PMMA/PVC/Mg(ClO4)2 electrolyte films. 

Samples  Rb 

(Ω) 

  σion 

 (S/cm) 

Rct 

(Ω) 

σAC at 25 Hz 

(S/cm)  

σDC   

(S/cm) 

P100.10 565.9 1.80×10
-4

 1.09×10
7
 9.22×10

-9
 3.02×10

-9
 

P140.10 507.1 2.01×10
-4

 4.70×10
6
 1.97×10

-8
 8.05×10

-9
 

P160.10 477.1 2.13×10
-4

 2.23×10
6
 3.82×10

-8
 1.57×10

-8
 

P200.10 441.6 2.31×10
-4

 1.46×10
6
 5.98×10

-8
 2.90×10

-8
 

P240.10 98.90 1.03×10
-3

 1.54×10
5
 5.07×10

-7
 1.24×10

-7
 

P200.10 441.6 2.31×10
-4

 1.46×10
6
 5.98×10

-8
 4.10×10

-8
 

P200.20 354.6 2.87×10
-4

 6.56×10
5
 1.15×10

-7
 1.41×10

-8
 

P200.30 36.00 2.83×10
-4

 4.71×10
5
 1.54×10

-7
 1.98×10

-8
 

P200.40 22.30 4.57×10
-3

 3.15×10
4
 2.27×10

-6
 3.02×10

-7
 

4. CONCLUSIONS 

The mechanical, electrical properties, infrared spectra and surface morphology of 

electrolyte films based on plasticized PMMA/PVC containing Mg(ClO4)2 have been 

investigated. Plasticizers strongly reduced Young’s modulus (YM) and tensile strength (TS), but 

improved elongation at break (EB) of the electrolytes. Mg(ClO4)2 also made reducing YM and 

TS, but significantly made increasing the EB of the electrolytes. The analysis of FTIR spectra, 

SEM micrographs and EDX indicated that Mg(ClO4)2 can be dissolved and solvated well in the 

plasticizer and polymer matrices. The ionic conductivity of electrolyte films has been achieved 

from 10
-4

 to 10
-3

 (S/cm) and increased with plasticizer and Mg(ClO4)2 contents.   
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