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Abstract. Transportation industries are faced to big matters that the scientists focus on, such as 

energy saving and ecologically sustainable products. Therefore, many innovative solutions are 

delivered that will support environmental preservation but meet industries’ requirements for 

greater productivity and minimized operational costs. Aluminum alloys have successfully 

contributed to meet the rising demand for lightweight structures. Recently, notable developments 

in aluminum welding techniques have resolved many welding related problems, although some 

problems need to be addressed. In this paper, 5083 aluminum alloy T-lap-joints were 

successfully fabricated by friction stir welding with various welding regimes. The defects 

morphology in the T-joints was experimentally observed and analyzed by a high magnification 

microscope. The role of the grain microstructure and the effects of defects morphology in the 

mechanical behavior of the T-joint were investigated. In addition, the fracture locations and the 

fracture surface of the failure specimens were observed and discussed as well. Results indicate 

that the fracture of T-joints along the stringer is attributed to the bonding line defects, kissing 

bond defects and the tunnel defects. The result also shows that, in the T-joints of 5083 aluminum 

alloy, the welding parameters influence significantly on the features and sizes of the defects. 

Keywords: T-joint friction stir welding, defects morphology, microstructure, mechanical 

properties, aluminum alloy 5083.  

Classification numbers: 2.9.1, 5.1.4. 

1. INTRODUCTION 

Aluminum alloys have been one of the primary candidates for material selection in many 

industries, including the commercial and military aircraft and marine sectors, for more than 80 

years, mainly due to their well-known mechanical behavior, design ease, manufacturability and 

the existence of established inspection techniques [1]. Increasing utilization of aluminum alloys 

in various industrial sectors is the main driving force in the search for a viable and efficient 

technology for joining aluminum alloys that does not cause deterioration in the desirable 

mechanical, chemical and metallurgical performance of the material [2]. Aluminum alloys are 

classified as materials difficult to weld or welded with fairly low strength by traditional welding 
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methods. This is one of the major difficulties in making aluminum alloy structures. Friction-stir 

welding (FSW), invented in 1991 by the United Kingdom Welding Institute, is a solid state 

welding technique. The friction-stir welding has emerged as a key technology for joining the 

alloy with high strength, economic efficiency, friendly environment compared to the quality of 

traditional welding methods, such as Tungsten Inert Gas welding, Metal Inert Gas welding and 

Laser Welding [3-5]. This is one of the key techniques to weld aluminum alloys [6-9]. However, 

this welding process is a complex thermal-mechanical interaction of the metal flow, thus several 

unsolved issues remain and need to be addressed. Study on the morphology of defects and 

effects of them on weld quality is a matter of concern to scientists around the world in FSW. 

Along with that trend, this study focused on analyzing and clarifying the forms of defects arising 

in friction welds of 5083 aluminum alloy T-lap-joints, thereby giving the appropriate welding 

parameters and welding tools to minimize defects and to improve weld quality.  

2. MATERIALS AND EXPERIMENTS  

2.1. Materials  

The material used for the experiment is 5083 aluminum alloy (denoted as AA5083) plate 

having dimension 250×160×3 (mm) for wing plate and 250×50×3 (mm) for string plate (Figure 

1). The chemical composition and mechanical properties of AA5083 aluminum alloy are given 

in Tables 1 and 2 [10]. 

 

 

 

 

 

 

Figure 1. T-lap joint welding. 

Table 1. The chemical composition of AA5083 aluminum alloy. 

Element Al Mg Mn Cu Si Zn Mn Ti Cr 

Percentage (%) balance 4.0-4.9 0.4-1 Max 0.1 Max 0.4 Max 0.25 Max 0.3 Max 0.15 0.05-0.25 

Table 2. The mechanical properties of AA5083 aluminum alloy. 

Mechanical 

properties 

Yield strength 

(MPa) 

Tensile strength 

(MPa) 

Elongation (%) Hardness 

(HRB) 

Elastic module 

(GPa) 

Poisson ratio 

Value 190 300 16 50 70.3 0.33 

2.2. Experiments  

AA5083 T-lap-joint was fabricated by friction stir welding process, using NTU-FSW 

machine in Nha Trang University. Welding tool, after designing and manufacturing, was 
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tempered at 1030 
o
C and annealed at 600 

o
C. After heat treatment, hardness of welding pin 

achieved 47 HRC. Two 5083 aluminum alloy panels are fixed on the table thanks to specially 

designed jigs. The welding pin is tilted 2 degrees from the plane containing the centerline of tool 

and the centerline of welding (Figure 2). The main dimensions of welding tool are shown in 

Table 3. 

 

 

 

 

 

 

 

 

 

 

Figure 2. T-lap joint welding install. 

Table 3. The description of welding tool. 

Description Pin height 

(mm) 

Average diameter 

of pin (mm) 

Shoulder 

diameter (mm) 

Pin shape Tool material 

Value 5 5 16 Cone Steel H13 

Several T-joints were fabricated by various welding regimes by combining the tool rotation 

(at 600 rpm) and various welding speeds (from 100 mm/min to 200 mm/min). After welding, we 

observed the microstructure of the weld after etching with solution 150 ml H2O, 3 ml HNO3,               

6 ml HF and 6 ml HCl [3] using the Electromet 4. The tensile strength of the weld is performed 

on the machine Instron 3366 with a speed of 5 mm/min. Specimens are fabricated according to 

ASTM E8 [11] (Figure 3). The fracture surfaces were observed by the Scanning Electron 

Microscope (SEM). The weld hardness was measured on Rockwell equipment with HRB scale 

using ball bearing with 100 kg load.  

3. RESULTS AND DISCUSSION 

3.1. Microstructure of the weld  

3.1.1. The cross-section of the weld 

Figure 4 displays the cross-section of the specimens in different welding regimes. The size 

of defects seems to be proportional to the welding speed. At low welding speed, the joint might 

be obtained without defects (at 600/100 rev/mm). 
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Figure 3. The shape and dimension of specimens. 

3.1.2. The grain structure of the weld 

Observing the microstructure in the stirring zone (SZ), we see that the grain size ranges 

from 4 ÷ 8 µm and is much more uniform than the base material (Figure 4). The thermo-

mechanically affected zone (TMAZ) has an average grain size of about 15 ÷ 20 µm. The heat 

affected zone (HAZ) has a larger grain size compared to base materials, grain size ranges from 

15 ÷ 45 µm. The base material (BM) has an irregular grain size of about 10 ÷ 35 µm (Figure 5). 

3.2. Investigation of defect types  

From Figure 6, tunnel defects always appear at the advancing side (AS) corner of the weld, 

significantly reducing the cross-sectional area of the welding. Bonding lines tend to move to the 

SZ, represented by a curve connecting the aluminum oxide that exists inside the weld. The 

results showed that the kissing bond defects seem to be disappeared in both sides of the wing 

skin but formed in the AS corner of the T-weld. With the welding regime 600/150 (rev/mm) on 

the surface appears too many ribbon flash defects that will reduce the amount of material in the 

welding area. At a high welding speed, regime 600/400 (rev/mm), the cracks on the surface of 

the weld are unavoidable due to lacking of the filled material. 
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Figure 4. The cross section of specimens at various welding regimes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

          BM                                    HAZ                              TMAZ                               SZ 

Figure 5. Grain microstructure in welding regime of 600/100 (rev/mm). 
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Figure 6. The defect types in welding. 

3.3. Influence of welding regimes on the formation of defects  

Figures 7 and 8 show that when the transverse speed (v) of the tool increased, the area of 

tunnel defects and length of bonding line increased significantly and leaded to the low weld 

quality. 

3.4. Investigation of correlations between defect types with tensile strength   

 

 

 

 

 

 

 

 

 

Figure 7. Influence of transverse speed on tunnel defect area in welds. 
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Figure 8. Influence of transverse speed on bonding line length in welds. 

Figure 9 shows the effect of transverse speed on tensile strength of wings and stringer in 

weld. At three regimes of tool transverse speed of 125, 175, 200 mm/min, the strength of wings 

approximates 86 % compared to the strength of the base material.  

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Influence of transverse speed on weld strength. 

 

 

 

 

 

 

 

 

 

 

Figure 10. Correlation between stringer strength and bonding line length. 
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Figure 10 describes correlation between bonding line defect and tensile strength in stringer 

depending on transverse speed of tool. Here, the bonding line length is inversely proportional to 

the stringer tensile strength. Because of this, to increase the strength of stringer we need to 

remove bonding line defects by reducing the transverse speed. 

3.5. Destruction position 

Table 4. Comparison of destruction position on wings and stringer in tensile experiment. 

Regimes (rev/mm) Wing tensile experiments Stringer tensile experiments 
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Table 4 displays a comparison of the destruction positions on wings and stringer in the 

tensile experiments. 

In the wing tensile experiments, most of specimens were fractured in the HAZ. The results 

showed that the wing tensile properties were not affected by bonding line defects, kissing bond 

defects and tunnel defects. 

In stringer tensile experiments, the crack positions appear along the bonding line defects. 

Therefore, bonding line defects play an important role in cracking source during the springer 

tensile test. For the weld specimen at regime 600/100 (rev/mm), the wing is deformed 

remarkably and the destructible surface is oblique to the vertical. 

Figure 11 shows SEM images of fail wing surfaces in various welding regime. On 

destructive surfaces, large and deep dimples appear. It shows that nucleation and crystallization 

are not different in welding areas and base materials. This indicates that the main factor affecting 

the wing tensile properties is not from tunnel defects or bonding line defects but here, the main 

reason is that the grain size in the HAZ is rougher and larger than the ones in other zones. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. SEM images of fail wing surfaces in various welding regimes. 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. SEM images of stringer fracture surfaces in regime of 600/125 (revolving/mm). 
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Figure 12 shows SEM images of the stringer fracture surface in welding of 600/125 

(rev/mm). We can see that on the AS the weld appear small and shallow dimples, which proves 

that in this position, the material flow unmixed into each other due to existing kissing bond 

defects. Observing the central area, the large and deep dimples occupy, showing a dominant 

plastic deformation characteristic in this area. On retreating side (RS) due to strong metal 

bonding process, but mixing with aluminum oxide and temperature is not enough to soften 

metal, therefore the surface is scratched and the material here is quite brittle.  

3.5. Micro-hardness of the weld 

In five welding regimes, the results show that the position with the smallest micro-hardness 

is the HAZ (about 5.0 ÷ 15.0 mm from the center of the weld, Figure 13). At the positions 0.0 – 

2.0 mm from the center of the weld, the micro-hardness value increased significantly. The 

results showed that the lowest hardness value was found in the HAZ about 3.9 mm from the 

surface of the skin (Figure 14). 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Hardness distribution of welding regimes when measured on the wings 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Hardness distribution across the stringers of welds. 
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4. CONCLUSIONS 

In this study, the T-lap friction-stir welding of AA5083 aluminum alloy plates was 

fabricated successfully. Kissing bond defects, tunnel defects, and bonding line defects are the 

main factors that affect on the stringer tensile properties of welds. The destruction of specimens 

when skin tensile testing is due to the formation of grain structure, grain boundaries during 

recrystallization. The results of this study indicated that, to eliminate bonding line defects and 

tunnel defects, the transverse speed need to reduce to enhance the weld temperature and material 

flows.  

The study also showed that the weld in regime of 600/100 (rev/min) does not appear the 

tunnel defects, reaching the skin and stringer tensile strength of 82 % and 83 %, respectively. In 

this experiment, the HAZ has the lowest hardness when measured along the centerline of the 

skins. In subsequent studies, we need to focus on studying and investigating cracks, predicting 

the fatigue life of the weld. 
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