
 
 
Vietnam Journal of Science and Technology 57 (3) (2019) 381-400 

doi:10.15625/2525-2518/57/3/13521 

 

ELASTOSTATIC BENDING OF A 2D-FGSW BEAM UNDER 

NONUNIFORM DISTRIBUTED LOADS 

Nguyen Van Chinh
1, *

, Le Cong Ich
1
, Le Thi Ngoc Anh

2, 3
, Nguyen Dinh Kien

3, 4
 

1
Le Quy Don Technical University, 236 Hoang Quoc Viet, Ha Noi 

2
Institute of Applied Information and Mechanics, 291 Dien Bien Phu, Ho Chi Minh City 

3
Graduate University of Science and Technology, VAST, 18 Hoang Quoc Viet, Ha Noi 

4
Institute of Mechanics, VAST, 18 Hoang Quoc Viet, Ha Noi 

*
Email: ngchinhhd@gmail.com 

Received: 31 December 2018; Accepted for publication: 18 April 2019 

Abstract. Elastostatic bending behavior of a two-directional functionally graded sandwich (2D-

FGSW) beam under various types of nonuniform distributed load is studied. The beam is 

considered to be formed from a pure ceramic hardcore and two-directional functionally graded 

(2D-FG) skin layers. Based on a 3D-quasi shear deformation theory, a finite element model is 

derived and employed in the study. Elastostatic response of the beam is computed for the beam 

with different boundary conditions and aspect ratio. The effects of the material distribution and 

the loading type on the deflections and stresses distribution are investigated and highlighted.  

The influence of the aspect ratio on the behavior of the beam is also examined and discussed. 

Keywords: 2D-FGSW beam, 3D-quasi theory, elastostatic bending, nonuniform distributed load, 

finite element model. 

Classification numbers: 2.9.4, 5.4.2, 5.4.3. 

1. INTRODUCTION 

Functionally graded materials (FGMs), a new type of advanced composites initiated by 

Japanese researchers in mid-1980, are increasingly used as structural components in aerospace, 

energy and automotive reactor industries. FGMs are formed by continuously and smoothly 

varying constituent materials, usually ceramics and metals, in one or more desired spatial 

directions. The physical and mechanical properties of the resulted materials are continuous 

functions of the spatial coordinates, and this feature enables the materials to overcome the 

drawbacks such as delaminating and stress concentration which are often seen in conventional 

laminated fiber reinforced composites. 

Beam as a major part in many structures are often subjected to various types of external 

loads. In order to improve the performance of beam, FGMs are widely employed to fabricate this 

kind of structural component for use in severe environment. Comprehending the mechanical 

mailto:ngchinhhd@gmail.com


 
 

Nguyen Van Chinh, Le Cong Ich, Le Thi Ngoc Anh, Nguyen Dinh Kien 

382 

behavior of FGM beams under different types of loading is crucial for efficient design of 

structures. Many investigations on free vibration [1-5], forced vibration [6-10], bending [11-15], 

buckling [16-18] behavior of FGM beam have been reported in recent years. The material 

properties of the beams in the above cited references are considered to vary in only one 

direction, the thickness or the longitudinal direction of the beams. 

In many practical circumstances where the conventional one-directional FGMs (1D-FGMs) 

are not sufficient for optimizing the structures [19]. For example, the temperature and stress 

distribution of an aerospace craft vary in both the thickness and length of the craft. The 

development of FGMs with material properties varying in two or three directions is, thus of 

great importance in practice. Investigation on vibration and bending behavior of two-directional 

functionally graded (2D-FGM) beams has been extensively carried out in recent years. Lü et al. 

[20] studied bending of a 2D-FGM beam by considering its Young’s modulus varying  in the 

thickness and length directions by an exponential law. A semi-analytical elasticity solution was 

derived by the authors to show the effects of material distribution on the deflection and axial 

stress of the beam. Also assuming an exponential-law variation for the material properties in the 

beam length and thickness, Simşek [21] studied dynamic behavior of a 2D-FGM beam due to a 

moving load. The numerical result obtained by the author reveals that the 2D-FGM beam can be 

tailored to meet the design goals of optimizing the dynamic response. The dynamic stiffness 

method was employed by Hao and Wei [22] to study free and forced vibration of 2D-FGM 

Timoshenko beams with the material properties being graded in axial and thickness direction by 

an exponential law. The natural frequencies and dynamic response of the beams under a moving 

harmonic load were obtained in the work by the Wittrick-William algorithm and modal 

superposition method, respectively. Lezgy-Nazargah [23] employed the NURBS isogeometric 

finite element method to examine the thermal stress in exponential 2D-FGM beams subjected to 

different types of non-uniform temperature field. The free vibration of a power-law 2D-FGM 

beam was investigated by Wang et al. [24] by an analytical method. The authors showed that a 

critical frequency, which depends on the material indexes, is existed and the natural frequencies 

have an abrupt jump when across the critical frequency. Nguyen et al. [25] studied the dynamic 

response of 2D-FGM Timoshenko beams by a finite element method. The finite element method 

was also employed in [26, 27] to study free vibration of 2D-FDG beams. Displacements and 

stresses of 2D-FGM circular beams due to static bending were obtained by Pydah and Sabale 

[28] using an analytical method. The static bending of 2D-FGM beams with exponential 

variation of Young’s modulus was also studied in [29] by using the smooth particle 

hydrodynamics method. The generalized differential quadrature method was employed by Tang 

et al. [30] to predict vibration modes and nonlinear frequencies of power-law 2D-FGM beams. 

Sandwich structures with the advantage of high strength-to-weight ratio are widely 

employed in aerospace application such as skin of wings, aileron, and spoilers. To improve the 

performance of these structures in thermal environment, FGMs can be incorporated in the 

sandwich fabrication. Investigations on mechanical behavior of functionally graded sandwich 

(FGSW) beams have been carried out by several authors in recent years. In this line of works, 

Bui et al. [31] employed the mesh free radial point interpolation method to study dynamic 

response of sandwich beam with a power-law FGM core. The authors employed Mori-Tanaka 

scheme to evaluate the effective material properties and the penalty technique to treat the 

discontinuities between the layers.  Based on Reddy-Birkford shear deformation theory, Vo et 

al. [32] presented a finite element model for studying free vibration and buckling of FGSW 

beams. Natural frequencies and buckling loads were evaluated for the beams formed from a 

homogeneous core and two power-law functionally graded skin layers. In [33, 34], the vibration 

and static bending of FGSW beams were studied by a quasi-3D shear deformation theory, a 
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theory extended from the Reddy-Birkford theory by including the thickness stretching effect. 

Based on a co-rotational finite element formulation, Nguyen and Tran [35] investigated bending 

behavior of FGSW beams and frames undergoing the large deformations. Free vibration of the 

first-order shear deformable FGSW beams resting on Pasternak foundation was considered by 

Su [36] by a modified Fourier series method. Both Voigt model and Mori-Tanaka scheme have 

been employed by the author to evaluate the effective material properties of the beams. 

Recently, Karamanli [37] adopted the qusi-3D theory to derive the equilibrium equations for 

bending of a two-directional functionally graded sandwich (2D-FGSW) beam under uniform 

distributed loads. The response of the beam has been computed with the aid of the symmetric 

smoothed particle hydrodynamics method to compute the deflections and stresses. 

The above literature review shows that there is only one study on behavior of the 2D-

FGSW beams carried out by Karamanli in [37] by using the symmetric smoothed particle 

hydrodynamics method so far. In this paper, the elastostatic bending behavior of a 2D-FGSW 

beam under various types on nonuniform distributed loads is further considered by the finite 

element method. The beams considered in the present work is assumed to be formed from a 

homogeneous ceramic hardcore and 2D-FG skin layers. The material properties of the skin 

layers are assumed to vary in both the thickness and longitudinal directions by a power law. 

Based on the quasi-3D shear deformation theory, a two-node finite element formulation with six 

degrees of freedom per node is derived and employed to compute the deflections and stresses of 

the beam. It is necessary to mention that, in addition to the nonuniform distributed loads 

considered herein, the finite element method used in the present paper are the two main features 

which are different from that of Ref. [37]. Numerical results in terms of deflections and stresses 

are given in tabular and graphics, and the effects of material distribution, the loading type as 

well as the skin-core-skin thickness ratio on the behavior of the beams are investigated and 

discussed. 

2. 2D-FGSW BEAM 

Figure 1 shows a 2D-FGSW beam with length L, rectangular cross section (bxh) in a 

Cartesian coordinate (x, z), where x-axis is chosen in the mid-plane. The beam is assumed to be 

formed from a homogeneous ceramic hardcore and two 2D-FG skin layers. Denoting z0, z1, z2 

and z3 are, respectively, the coordinates of the bottom surface, layer interfaces and top surface, in 

with z0 = -h/2 and z3 = h/2. 

The FGM of the two skin layers is assumed to be formed from ceramic and metal whose 

volume fraction varies in both the thickness and longitudinal directions according to [37]. 
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Figure 1. A 2D-FGSW in a Cartesian coordinate system. 



 
 

Nguyen Van Chinh, Le Cong Ich, Le Thi Ngoc Anh, Nguyen Dinh Kien 

384 

 

 

 

 

1
0 1

0 1

1 2

2
2 3

3 2

1 for ,
2

0 for ,

1 for ;
2

z x

z x

p p

m

p p

z z x
z z z

z z L

V z z z

z z x
z z z

z z L

   
     

   


 

   

        

    (1)

   and , 1 ,c mV x z V x z         (2) 

In the above equations, Vm and Vc  are, respectively, the volume fraction of  the metal and 

ceramic; px and pz are the material grading indexes, defining the variation of the constituents in 

the x- and z-direction, respectively. Noting that when px = 0 the beam deduces to the 

conventional 1D-FGSW beam with the material properties vary in the thickness direction only. 

The effective property, P(x,z), evaluated by Voigt model is of the forms 
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where Pm and Pc are the properties of the metal and ceramic, respectively. 

3. MATHEMATICAL MODELS 

Based on the quasi-3D shear deformation theory which includes both shear deformation 

and thickness stretching effects, the displacements in the x- and z-directions, u1(x,z) and u3(x,z), 

respectively are given by [33, 34] 
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where u0, wb, ws and wz are unknown displacements of a point on the mid-plane, and 
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In Eq. (4) and hereafter, a subscript comma is used to denote the derivative with respect to 

the followed variable, e.g. , ,/ , /b x b s x sw w x w w x      . Noting that if g(z)=0 the displacement 

field given by Eq. (4) returns to the displacements of Reddy-Bickford theory [38, 39]. 

 The strain components resulted from Eq. (4) gives are of the forms 
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Based on Hook’s law, the constitutive equations are given by 
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where v is the Poison’s ratio, which assumed to be constant. 

The strain energy of the beam is given by 
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with V is the volume of the beam. Substituting Eqs. (6) and (7) into Eq. (9), one gets the 

expression for the strain energy of the beam in the form 

 

2 2 2

11 , 12 , , 22 . 23 , , 44 , ,4 2 2

0

2

66 , 12 , 22 , 44 ,4 2 2

2

11 22 44 , ,2 4

1 64 8 8
2

2 3 3

16 16 4

9 3

8 16

[

]

L

x x b xx b xx z x s xx b xx s xx

s xx x z b xx z s xx z

b x s x

U A u A u w A w w A u w A w w
h h h

A w B u w B w w B w w
h h h

C C C w w dx
h h

 
      

 

 
     

 

 
    
 



     (10) 

In the above equation, A11, A12, … C22, C44  are the beam rigidities, which are defined as  
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with A is the cross-sectional area.  

The work done by the distributed load q(x) has a simple form 

0 0

( ) ( ) ( )

L L

b s zV wq x dx w w w q x dx            (14) 

A system of equilibrium equations can be obtained by applying the potential energy 

principle to Eqs. (10) and (14). However, due to the rigidities A11, A12, …C22, C44 as defined by 

Eqs. (11)-(13) are function of x, and a closed-form solution for such equations is very difficult to 

obtained.  A finite element model is developed herein to compute the response of the beam. 
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4. FINITE ELEMENT FORMULATION 

A two-node beam element with length of  is derived in this section for computing the 

response of the 2D-FGSW beam. The element contains six degrees of freedom per node, and the 

vector of nodal displacements has twelve components as 

  1 1 1 1 1 1 2 2 2 2 2 2{ }T

b s z b s b s z b su w w w u w w w   d                      (15) 

where, in addition to the axial and transverse displacements, the rotations stemming from the 

bending and shear deflections are introduced as 

 
, ,,b b x s s xw w         (16) 

In Eq. (15) and hereafter, a superscript ‘T’ is used to indicate the transpose of a vector or a 

matrix. The displacements and rotations inside the element are interpolated from the nodal 

values according to 
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T T

b s z b su w w w    N d      (17) 

where N is the matrix of interpolation functions with the following form. In the present work, 

linear functions are employed for the displacements u and wz, while cubic Hermite polynomials 

are used for wb and ws. In this regard, the matrix N can be written as 
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The use of the above cubic Hermite polynomials to interpolate the transverse 

displacement prevents the element from the shear locking.  Using the interpolation scheme (17)-

(19), one can write the strain energy of the beam given by Eq. (10) in the form 

nELE1

2

TU   d k d      (20) 

where ‘nELE’ is the total number of the elements used to discrete the beam, and k is the element 

stiffness matrix with the following form  
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 In the above equation, N
(i)

 denotes the i
th
 row of the matrix of the interpolation matrix N. The 

work done by the distributed load can be rewritten as  

  
nELE

TV   d f        (22) 

with f is the consistent nodal load vector with the following form 

   

(2) (3) (4)

0

( )T q x dx    f N N N     (23) 

The derived element stiffness matrix and nodal load vector are assembled into structural 

matrix and vector to form the equilibrium equation which can be written in the form [40] 

                                                  

KD F       (24) 

where K is the structural stiffness matrix; D and F are the structural nodal displacement and load 

vectors, respectively. Having the nodal displacements D obtained from Eq. (24), the normal and 

shear stresses are then determined. 

5. NUMERICAL RESULTS AND DISCUSSION 

This section reports the bending behavior of the 2D-FGSW beam under various type of 

distributed load, namely uniform, linear, parabolic and sinusoidal as illustrated in Figure 2. To 

this end, a beam formed from Alunina and Aluminum with the geometric and material data 

given in Ref. [35] is employed herewith. Three types of boundary conditions, namely simply 

supported at (SS), clamped (CC) at both ends and clamped at the right end and free at the other 

(CF) are considered herewith. 
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Figure 2. Type of distributed loads. 
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To facilitate the numerical discussion, the following dimensionless parameters are 

introduced for the deflection and stresses 

 
3

* * * *

4

0 0 0 0

100
,0 , , ,m

x x z z xz xz

E bh bh bh bh
w w x

q L q L q L q L
           (25) 

where w(x,0), σx, σz and τxz are the mid-plane deflection, normal and shear stresses, respectively. 

5.1. Formulation verification 

Before computing the elastostatic response of the beam, the convergence and  accuracy of 

the derived finite formulation and the developed computer code are firstly verified. The 

convergence of the formulation is shown in Table 1, where the maximum dimensionless  

deflections of the SS beam with L/h = 20 under the uniform load obtained are given for different 

number of the elements and various values of the material indexes and layer thickness ratio. In 

the tables and hereafter, the numbers in the brackets are employed to denote the skin-core-skin 

thickness ratio as used in [32], for example (2-2-1) = (h1:h2:h3), with hi = zi-zi-1 (i = 1, 2, 3). The 

convergence rate of the formulation, as seen from Table 1, depends on the material indexes and 

the layer thickness ratio as well. The convergence is a bit slower for the beam associated with 

the odd indexes and asymmetric layers, but it can be achieved by using twenty elements, 

regardless of the material indexes and the layer thickness ratio. In this regard, twenty elements 

are used to discrete the beam in all computations reported below.  

Table 1. Convergence of the formulation in evaluating maximum dimensionless deflection (w*) of                     

SS beam with L/h = 20  under uniform distributed load. 

(px,

pz) 

nELE (1-1-1) (1-2-1) (1-8-1) (2-2-

1) 

 

 

 

(0.5,

0.5) 

10 6.2346 5.4019 3.8073 5.76

60 

12 6.2346 5.4019 3.8073 5.76

62 

14 6.2346 5.4019 3.8073 5.76

64 

16 6.2346 5.4019 3.8073 5.76

65 

18 6.2346 5.4019 3.8073 5.76

66 

20 6.2346 5.4019 3.8073 5.76

66 

 

 

(2,2) 

4 3.7283 3.5399 3.1634 3.63

41 

6 3.7285 3.5400 3.1634 3.63

44 
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8 3.7285 3.5400 3.1634 3.63

45 

10 3.7285 3.5400 3.1634 3.63

45 

The maximum dimensionless deflections of the SS and CC beams subjected to the uniform 

distributed load obtained in the present work are compared with the result of Ref. [37] in Tables 

2 and 3. Very good agreement between the finite element solution of the present work with the 

result of Ref. [37] can be seen from the tables, regardless of the material indexes, the skin-core-

skin and aspect ratios.  

5.2. Deflections 

    Tables 4-6 list the dimensionless mid-span deflections of the SS beam under the linear, 

parabolic and sinusoidal loads for various values of the material indexes, the skin-core-skin 

thickness ratio and the aspect ratio, respectively. The effect of the material indexes, the skin-

core-skin thickness ratio and the aspect ratio on the deflection of the beam under the nonuniform 

loading is similar to that of the beam under uniform load as reported in [37]. The mid-span 

deflection increases with an increase of the thickness index pz and decreases with an increase of 

the length index px.  

Table 2. Comparison of maximum dimensionless deflection of SS beams under uniform load. 

 

px  

 

pz  

 

Source 

L/h = 5 L/h = 20 

1-1-1 1-8-1 2-2-1 1-1-1 1-8-1 2-2-1 

 

 

 

0.1 

0.1 
Ref. [37] 10.7054 4.7401 10.9470 10.3994 4.4818 9.1047 

Present 10.8634 4.8064 9.4128 10.4116 4.4848 9.1096 

0.5 
Ref. [37] 7.5039 4.2112 9.5412 7.2199 3.9561 6.5597 

Present 7.6124 4.2698 6.8473 7.2273 3.9586 6.5680 

1 
Ref. [37] 6.0343 3.9030 6.9428 5.7613 3.6501 5.3608 

Present 6.1185 3.9570 5.6327 5.7667 3.6525 5.3658 

2 
Ref. [37] 4.8871 3.6275 4.6673 4.6274 3.3772 4.4070 

Present 4.9572 3.6775 4.7321 4.6313 3.3793 4.4101 

 

 

 

0.5 

0.1 
Ref. [37] 8.4793 4.4862 5.7112 8.1706 4.4143 7.3680 

Present 8.6148 4.5492 7.6764 8.1964 4.2298 7.3839 

0.5 
Ref. [37] 6.5069 4.0580 7.7882 6.2253 4.2331 5.7569 

Present 6.6011 4.1143 6.0408 6.2338 3.8040 5.7660 

1 
Ref. [37] 5.4735 3.8004 6.1257 5.2055 3.8068 4.9004 

Present 5.5523 3.8534 5.1692 5.2114 3.5490 4.9064 

2 
Ref. [37] 4.6040 3.5666 4.4251 4.3451 3.3169 4.1669 

Present 4.6689 3.6155 4.4873 4.3491 3.3190 4.1706 

 

 

 

1 

0.1 
Ref. [37] 6.9827 4.2462 6.4602 6.6753 3.5515 6.1562 

Present 7.0975 4.3050 6.5600 6.7054 3.9922 6.1781 

0.5 
Ref. [37] 5.7178 3.9088 5.3861 5.4388 3.9943 5.1050 

Present 5.8019 3.9608 5.4616 5.4499 3.6551 5.1153 
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1 
Ref. [37] 4.9904 3.6976 4.7624 4.7252 3.6570 4.4948 

Present 5.0598 3.7487 4.8272 4.7288 3.4477 4.5000 

2 
Ref. [37] 4.3387 3.5031 4.1978 4.0816 3.2549 3.9396 

Present 4.3982 3.5514 4.2549 4.0843 3.2566 3.9434 

The increase of the mid-span deflection by increasing pz can be explained, as seen from Eq. 

(1), by the higher content of metal in the FGM skin layers, and this leads to the lower rigidities 

of the beam. Eq. (1) also shows a lower content of metal in the FGM skin layers when px is 

higher, and this leads to the decrease in the maximum deflection of the beam associated with a 

higher index px. Table 4-6 also show the effect of the loading type on the maximum deflection of 

the beam, and among the three types of the loading shown in the tables, the sinusoidal load gives 

the highest mid-span deflection while the parabolic results in the lowest one. The influence of 

the loading type on the maximum deflection of the 2D-FGSW beam can also be seen clearly 

from Figures 3-5, where the deformed configurations of (1-2-1) 2D-FGSW beam with (px = 0.5, 

pz = 1) are illustrated for SS, CC and CF beams, respectively. Regardless of the boundary 

conditions, the beam deforms more significantly under the uniform load while it does the least 

under the parabolic load. Moreover, the deformed configurations of the SS and CC beams are 

unsymmetrical with respect to the centerline of the beam. Thus, it is necessary to note that the 

maximum deflections of the SS and CC beam are not always attained at the mid-span. 

 

Table 3. Comparison of maximum dimensionless deflection of CC beams under uniform loads. 

 

px  

 

pz  

 

Source 

L/h = 5 L/h = 20 

1-1-1 1-8-1 2-2-1 1-1-1 1-8-1 2-2-1 

 

 

 

0.1 

0.1 
Ref. [37] 2.4305 1.1824 2.2046 2.0753 0.9077 1.8245 

Present 2.4371 1.1837 2.1761 2.0791 0.9056 1.8231 

0.5 
Ref. [37] 1.7642 1.0686 1.6311 1.4620 0.8030 1.3356 

Present 1.7678 1.0706 1.6338 1.4496 0.8010 1.3195 

1 
Ref. [37] 1.4552 1.0026 1.3714 1.1650 0.7422 1.0883 

Present 1.4565 1.0043 1.3742 1.1601 0.7401 1.0808 

2 
Ref. [37] 1.2108 0.9424 1.1653 0.9378 0.6891 0.8983 

Present 1.2135 0.9446 1.1673 0.9346 0.6857 0.8908 

 

 

 

0.5 

0.1 
Ref. [37] 1.9858 1.1265 1.8104 1.6482 0.8572 1.4934 

Present 1.9899 1.1277 1.8232 1.6492 0.8547 1.4873 

0.5 
Ref. [37] 1.5574 1.0352 1.4622 1.2333 0.7726 1.1470 

Present 1.5596 1.0364 1.4634 1.2530 0.7702 1.1599 

1 
Ref. [37] 1.3351 0.9794 1.2733 1.0580 0.7224 1.0167 

Present 1.3373 0.9813 1.2748 1.0488 0.7195 0.9886 

2 
Ref. [37] 1.1506 0.9288 1.1123 0.8825 0.6835 0.8826 

Present 1.1516 0.9307 1.1145 0.8777 0.6734 0.8424 

 

 

 

1 

0.1 
Ref. [37] 1.7019 1.0774 1.5903 1.3804 0.8127 1.2779 

Present 1.7041 1.0786 1.5903 1.3777 0.8096 1.2680 

0.5 
Ref. [37] 1.4053 1.0046 1.3330 1.1099 0.7451 1.0410 

Present 1.4074 1.0051 1.3364 1.1096 0.7417 1.0413 
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1 
Ref. [37] 1.2405 0.9571 1.1924 0.9476 0.7051 0.9078 

Present 1.2420 0.9598 1.1933 0.9597 0.7000 0.9131 

2 
Ref. [37] 1.0965 0.9153 1.0674 0.8389 0.6555 0.7934 

Present 1.0977 0.9174 1.0679 0.8277 0.6614 0.7995 

Table 4. The dimensionless mid-span deflection of SS beams under linear load. 

xp

 

zp

 

L/h = 5 L/h = 20 

1-1-1 1-2-1 1-8-1 2-2-1 1-1-1 1-2-1 1-8-1 2-2-1 

0.1 

0.1 5.4184 4.3008 2.4070 4.7622 5.1900 4.1058 2.2440 4.5439 

0.5 3.8048 3.1908 2.1391 3.4715 3.6099 3.0131 1.9814 3.2818 

1 3.0613 2.6651 1.9829 2.8582 2.8831 2.4971 1.8285 2.6832 

0.5 

0.1 4.2506 3.5917 2.2712 3.8504 4.0432 3.4098 2.1114 3.6497 

0.5 3.2756 2.8554 2.0569 3.0429 3.0929 2.6849 1.9013 2.8634 

1 2.7634 2.4705 1.9281 2.6114 2.5918 2.3065 1.7752 2.4417 

1 

0.1 3.4776 3.0698 2.1439 3.2228 3.2843 2.8964 1.9871 3.0342 

0.5 2.8648 2.5744 1.9766 2.7014 2.6902 2.4106 1.8230 2.5295 

1 2.5091 2.2946 1.8732 2.3961 2.3445 2.1356 1.7218 2.2332 

2 

0.1 2.7146 2.5083 1.9737 2.5817 2.5372 2.3449 1.8221 2.4072 

0.5 2.4008 2.2370 1.8645 2.3067 2.2361 2.0799 1.7137 2.1436 

1 2.1994 2.0690 1.7944 2.1298 2.0415 1.9157 1.6450 1.9731 

Table 5. The dimensionless mid-span deflection of SS beams under parabolic load. 

xp

 

zp

 

L/h = 5 L/h = 20 

1-1-1 1-2-1 1-8-1 2-2-1 1-1-1 1-2-1 1-8-1 2-2-1 

0.1 

0.1 3.2164 2.5547 1.4314 2.8277 3.0818 2.4397 1.3350 2.6990 

0.5 2.2607 1.8965 1.2726 2.0630 2.1458 1.7917 1.1790 1.9510 

1 1.8196 1.5845 1.1799 1.6991 1.7145 1.4853 1.0881 1.5958 

0.5 

0.1 2.5040 2.1222 1.3483 2.2717 2.3809 2.0140 1.2541 2.1524 

0.5 1.9384 1.6922 1.2218 1.8021 1.8296 1.5913 1.1300 1.6954 

1 1.6382 1.4658 1.1459 1.5486 1.5368 1.3692 1.0555 1.4487 

1 

0.1 2.0386 1.8062 1.2711 1.8930 1.9261 1.7033 1.1787 1.7817 

0.5 1.6888 1.5217 1.1731 1.5946 1.5851 1.4242 1.0825 1.4924 

1 1.4840 1.3593 1.1124 1.4184 1.3860 1.2650 1.0231 1.3214 

2 
0.1 1.5874 1.4717 1.1688 1.5122 1.4849 1.3757 1.0788 1.4108 

0.5 1.4113 1.3189 1.1055 1.3581 1.3137 1.2255 1.0167 1.2613 

1 1.2976 1.2235 1.0648 1.2580 1.2037 1.1322 0.9768 1.1648 

Table 6. The dimensionless mid-span deflection of SS beams under sinusoidal load. 

xp

 

zp

 

L/h = 5 L/h = 20 

1-1-1 1-2-1 1-8-1 2-2-1 1-1-1 1-2-1 1-8-1 2-2-1 

0.1 

0.1 8.5760 6.7981 3.7972 7.5330 8.2097 6.4857 3.5364 7.1831 

0.5 6.0111 5.0376 3.3738 5.4830 5.6989 4.7532 3.1216 5.1791 

1 4.8325 4.2054 3.1270 4.5112 4.5473 3.9366 2.8802 4.2312 

0.5 

0.1 6.7983 5.7226 3.5942 6.1471 6.4594 5.4264 3.3380 5.8197 

0.5 5.2127 4.5338 3.2511 4.8379 4.9149 4.2586 3.0019 4.5462 

1 4.3855 3.9139 3.0453 4.1411 4.1092 3.6510 2.8005 3.8687 



 
 

Nguyen Van Chinh, Le Cong Ich, Le Thi Ngoc Anh, Nguyen Dinh Kien 

392 

1 

0.1 5.5982 4.9186 3.4012 5.1757 5.2808 4.6354 3.1494 4.8666 

0.5 4.5797 4.1023 3.1298 4.3118 4.2946 3.8353 2.8836 4.0313 

1 3.9962 3.6466 2.9626 3.8129 3.7280 3.3893 2.7200 3.5478 

2 
0.1 4.3877 4.0352 3.1387 4.1622 4.0955 3.7678 2.8930 3.8752 

0.5 3.8532 3.5769 2.9576 3.6952 3.5835 3.3207 2.7156 3.4285 

1 3.5138 3.2964 2.8419 3.3979 3.2564 3.0467 2.6024 3.1425 

 

Figure 3. Deformed configurations of (1-2-1) SS beam with (px = 0.5, pz = 1) under different types of 

distributed load (L/h = 5). 

 

Figure 4. Deformed configurations of (1-2-1) CC beam with (px = 0.5, pz = 1) under different types of 

distributed load  (L/h = 20). 

5.3. Normal stresses 

Table 7-9 list the values of the dimensionless normal stress 
*

x at the upper point of the 

mid-span section, (x,z) = (L/2,h/2), for the SS beam under linear, parabolic and sinusoidal loads, 

respectively. Different from the deflection, at a given value of the skin-core-skin thickness ratio, 

the normal stress 
*

x  decreases with an increase of pz  but it increases by increasing px. The 

normal stress, as seen from the tables, is significantly influenced by the aspect ratio L/h, and the 
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normal stress 
*

x
 
is higher for the beam having a larger aspect ratio, regardless of the loading 

type. As in case of the deflection, the sinusoidal load results in significantly high normal stress 

comparing the linear and parabolic loads. 

 

Figure 5. Deformed curves of (1-2-1) of CF beam with (px = 0.5, pz = 1) under different types of 

distributed load (L/h = 10). 

Table 7.  The dimensionless normal stress
* ,

2 2
x

L h


 
 
 

 of SS beams under linear loads. 

  
L/h = 5 L/h = 20 

1-1-1 1-2-1 1-8-1 2-2-1 1-1-1 1-2-1 1-8-1 2-2-1 

0.1 

0.1 1.4111 1.1159 0.6102 1.1095 5.6168 4.4366 2.4149 4.4054 

0.5 0.9810 0.8189 0.5387 0.8236 3.8967 3.2489 2.1305 3.2658 

1 0.7835 0.6787 0.4971 0.6855 3.1075 2.6891 1.9650 2.7156 

0.5 

0.1 1.5581 1.3163 0.8152 1.2870 6.1947 5.2288 3.2252 5.1072 

0.5 1.1946 1.0372 0.7333 1.0333 4.7414 4.1131 2.8997 4.0954 

1 1.0012 0.8907 0.6842 0.8940 3.9691 3.5277 2.7046 3.5401 

1 

0.1 1.6604 1.4718 1.0153 1.4307 6.5927 5.8408 4.0160 5.6720 

0.5 1.3698 1.2298 0.9306 1.2186 5.4324 4.8738 3.6793 4.8265 

1 1.1965 1.0906 0.8783 1.0899 4.7405 4.3179 3.4712 4.3140 

2 

0.1 1.7627 1.6424 1.2937 1.6003 6.9862 6.5086 5.1154 6.3352 

0.5 1.5724 1.4692 1.2178 1.4524 6.2280 5.8169 4.8135 5.7473 

1 1.4434 1.3579 1.1687 1.3524 5.7137 5.3728 4.6186 5.3498 

 

The variation of the dimensionless normal stress 
*

x
 
on the thickness and longitudinal 

directions of (1-2-1) SS beam with  px = 0.5,  pz = 1 is shown in Figure 6 for different types of 

loading and an aspect ratio L/h = 20. The corresponding figures for the CC beam and CF beam 

are depicted in Figures 7 and 8, respectively. The effect of the loading type on the stress 

distribution is clearly seen from the figures, where the amplitude of the normal stress is 

significantly altered when the beam is subjected to different types of the distributed load, 

regardless of the boundary conditions. The boundary conditions have also play an important role 

on the variation of the normal stress 
*

x . As seen from Figure 7, the normal stress of the CC 

beam sharply changes in both the thickness and length direction, while the of this stress is 

xp zp
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moderate for the SS and CF beams. For the normal stress 
*

z , as illustrated in Figure 9 for the 

SS beam, its variation is much depend on the loading type. The unsymmetry of the normal stress 
*

z
 
with respect to the mid-line of the beam is clearly seen for the cases of linear and parabolic 

loads. 

Table 8. The dimensionless normal stress 
* ,

2 2
x

L h


 
 
 

 of SS beams under parabolic loads. 

  
L/h = 5 L/h = 20 

1-1-1 1-2-1 1-8-1 2-2-1 1-1-1 1-2-1 1-8-1 2-2-1 

0.1 

0.1 0.8225 0.6503 0.3554 0.6470 3.2761 2.5877 1.4084 2.5708 

0.5 0.5716 0.4771 0.3137 0.4800 2.2728 1.8949 1.2426 1.9055 

1 0.4564 0.3953 0.2894 0.3994 1.8124 1.5684 1.1461 1.5843 

0.5 

0.1 0.9080 0.7670 0.4747 0.7503 3.6132 3.0498 1.8811 2.9803 

0.5 0.6960 0.6042 0.4270 0.6022 2.7655 2.3989 1.6912 2.3895 

1 0.5832 0.5188 0.3984 0.5208 2.3150 2.0575 1.5774 2.0653 

1 

0.1 0.9674 0.8574 0.5912 0.8338 3.8453 3.4068 2.3423 3.3096 

0.5 0.7980 0.7163 0.5419 0.7100 3.1685 2.8427 2.1459 2.8159 

1 0.6969 0.6352 0.5114 0.6349 2.7649 2.5184 2.0245 2.5167 

2 

0.1 1.0269 0.9567 0.7533 0.9324 4.0748 3.7962 2.9835 3.6961 

0.5 0.9159 0.8557 0.7091 0.8461 3.6325 3.3927 2.8074 3.3529 

1 0.8406 0.7908 0.6805 0.7877 3.3325 3.1336 2.6937 3.1208 

 

Table 9. The dimensionless normal  stress 
* ,

2 2
x

L h


 
 
   

of SS beams under sinusoidal loads. 

  
L/h = 5 L/h = 20 

1-1-1 1-2-1 1-8-1 2-2-1 1-1-1 1-2-1 1-8-1 2-2-1 

0.1 

0.1 2.2906 1.8119 0.9920 1.7997 9.1074 7.1938 3.9160 7.1383 

0.5 1.5933 1.3303 0.8759 1.3373 6.3185 5.2681 3.4548 5.2929 

1 1.2729 1.1029 0.8083 1.1136 5.0389 4.3605 3.1865 4.4017 

0.5 

0.1 2.5301 2.1378 1.3251 2.0887 10.0442 8.4783 5.2300 8.2758 

0.5 1.9404 1.6852 1.1923 1.6782 7.6881 6.6694 4.7022 6.6375 

1 1.6268 1.4475 1.1126 1.4524 6.4360 5.7204 4.3858 5.7384 

1 

0.1 2.6968 2.3908 1.6505 2.3229 10.6895 9.4707 6.5123 9.1918 

0.5 2.2254 1.9984 1.5131 1.9794 8.8085 7.9030 5.9663 7.8230 

1 1.9443 1.7726 1.4280 1.7709 7.6867 7.0017 5.6289 6.9930 

2 

0.1 2.8639 2.6688 2.1032 2.5997 11.3277 10.5535 8.2950 10.2683 

0.5 2.5552 2.3878 1.9800 2.3600 10.0986 9.4322 7.8056 9.3165 

1 2.3460 2.2073 1.9004 2.1980 9.2649 8.7122 7.4896 8.6727 

5.4. Shear stress 

The effect of the loading type on the shear stress of the 2D-FGSW beam can be seen 

from Figure 10, where the variation of the dimensionless shear stress 
*

xz
 
along the beam length 

and the thickness directions is illustrated for the SS beam with L/h = 20 under different types of 

the distributed loads. As seen from the figure, the amplitude of the shear stress is changed 

considerably by the loading type, and the surfaces of the stress for the uniform and sinusoidal 

loads are similar, but they are significant different from that of the linear and parabolic loads. 

xp zp

xp zp
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Figure 6. Variation of stress 
*

x on the thickness and longitudinal directions of (1-2-1) SS beam with                

L/h = 20 under different loading types: (a) uniform, (b) linear, (c) parabolic, (d) sinusoidal. 

  

  

Figure 7. Variation of stress 
*

x on the thickness and longitudinal directions of (1-2-1) CC beam with               

L/h = 20 under different loading types: (a) uniform, (b) linear, (c) parabolic, (d) sinusoidal. 
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Figure 8. Variation of stress 
*

x on the thickness and longitudinal directions of (1-2-1) CF beam with              

L/h = 20 under different loading types: (a) uniform, (b) linear, (c) parabolic, (d) sinusoidal. 

  

  

Figure 9. Variation of stress 
*

z on the thickness and longitudinal directions of (1-2-1) SS beam with                        

L/h = 20 under different loading: (a) uniform, (b) linear, (c) parabolic, (d) sinusoidal. 
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Figure 10. Variation of stress 
*

xz
 
on thickness and longitudinal directions of (1-2-1) SS beam with                   

L/h = 20 under different loading type: (a) uniform, (b) linear, (c) parabolic, (d) sinusoidal. 

6. CONCLUSIONS 

    The elastostatic behavior of a 2D-FGSW beam under various types of nonuniform 

distributed load has been investigated by a finite element procedure. The beam is considered to 

be formed from a homogeneous hardcore and 2D-FGM skin layers. Based on the quasi-3D shear 

deformation beam theory, a finite element model has been derived and employed to compute the 

elastostatic response of the beam. The accurate of the derived formulation in evaluating the 

bending characteristics of the beams has been confirmed though an comparison study. The 

obtained numerical results reveal that in addition to the thickness material index, the gradation of 

the longitudinal exponent also pay an important role in the elastostatic behavior of the beams. 

The elastostatic response, in terms of maximum deflection and stresses, of the beams under the 

nonuniform loading is not significant comparing to that of the beam due to uniform loading, 

regardless of the boundary conditions. A parametric study has been carried out to illustrate the 

influence of the material distribution, the skin-core-skin thickness and aspect ratios on the 

response of the beams. The effect of the loading type on the deflections and the distribution of 

the normal and shear stresses has also been examined and highlighted. 
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