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Abstract. Universities usually use academic credit systems for holding all training courses. 

They have to establish a suitable timetable for enrollment by students at beginning of every 

semester. This timetable must be met to all hard constraints and it is satisfied to soft constraints 

as high as possible. In some universities, students can enroll to the established timetable so that 

among of their courses is as much as possible. This leads to finish their studying program earlier 

than normally cases. In addition, this also leads to well-utilized resources such as facilities, 

teachers and so forth in universities. However, a timetable usually has so many courses and 

some its courses have same subjects but different time-slots. These may cause difficulties for 

manually enrolling by students. It may be fall into conflict of time when choosing two courses at 

same time-slots. It is difficult for enrollment with high satisfied. In this paper, we design a 

genetic algorithm based method for university timetable with maximal enrollments by using 

maximum matching on bipartite graphs. 

Keywords: university timetables, genetic algorithm, bipartite graph, maximum matching. 
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1. INTRODUCTION 

 

University timetabling is typical scheduling problem and it is also a classical problem. 

Universities usually use academic credit systems for holding all training courses. They have to 

establish a suitable timetable for enrolling by students at beginning of every semester. However, 

this problem has many complicated factors. They may be capable teaching and time inquired of 

teachers, a lot students, many kinds of classrooms and subjects, and especially major constraints 

within these elements. This problem also includes many relevant factors which should be 

considered such as examinations, practice, lecture halls, etc. Authors in [1-5] show that the 

timetabling problem is a kind of NP-hard. Typically, timetabling problems are conducted in 

traditional ways by intuitive and direct calculation of human. Currently, due to diversities and 

many relations between elements, this problem often takes a lot of time and labor. Using 
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computers for dealing with this problem is not only much interesting to researchers, but also 

allowance achieving superior results despite many more constraints. Obviously, this leads to 

save a lot of time and effort. 

Solving methods of this problem have been researched by many authors. In [6], authors 

pointed out that, Hertz proposed using Tabu search with including two stages (TATI / TAG) and 

it is an appropriate method for scheduling problems with large-scale implementation. Nothegger 

[7] suggests ant colony optimization (ACO) for solving this problem. Tassopoulos and 

Beligiannis use swarm optimization to establish a timetable for various schools in Greece. Al. 

Betar et al. [7] propose a hybrid method (HHS) to solve scheduling problems for universities. 

HHS is an integrated algorithm with optimization and climbing hills swarm to balance space 

exploration and searching.  

Due to efficiencies of genetic algorithms (GAs) [8], a lot authors use GAs for timetable 

problems to improve performance of traditional methods [1-7,9-11]. Authors in [3] indicated 

that GAs can be used as a properly universal method for complicated optimization problems, 

which they almost have no deterministic solution. Enhanced GA based methods can achieve 

high performance by adjusting genetic operations. Authors can use an alternative strategy in 

order to avoid falling into local optimum. In facts, M. Abbaszadeh in [3] used GA with changed 

structure of performing gene sequence which allows transferring 15% of better individuals to 

next generation in mutation operators. Moreover, to avoid falling into local optimum, they 

considered impact of their parameters to mutations. They also removed repetitive genes and 

replaced by better gene sequences. Results of this method are high performance and maximum 

accuracy. Authors in [11] proposed a GA with binding elements of this problem to adapt 

practical constraints such as requirements of faculties for time, teaching expertise. They use 

fuzziness measurements in some genetic operations. In [2], we used hedge algebras based 

fuzziness measure for presenting school time of teachers. In [12], we also adjusted some genetic 

operations such as selection, crossover, mutation and replacement by using the temperature 

factor in simulated annealing. This has achievements of improving performance. 

However, the above authors mainly focus on how to improve efficiency of solutions with 

having no violation of hard constraints and maximal satisfied soft constraints. They do not 

consider resulted timetable which it gives the best case of enrollment for every student. There 

are two things that can be treated well. Firstly, how to generate a good timetable so that students 

can have more opportunities of enrollment. Students can enroll as many courses as possible. 

Secondly, once a timetable is generated, how can students enroll suitable courses by their self so 

that they enroll courses as many as possible. In this paper, we propose enhanced GA based 

method for timetabling problems with maximal capability of enrollment. We use maximum 

matching on bipartite graphs to get maximal enrollment of every student. This article consists of 

5 sections, Part 1 is introductions to universities timetabling problems. Part 2 is detail of genetic 

algorithms based method for this problem. Part 3 proposes an enhanced GA based method with 

using maximum matching on bipartite graphs. Part 4 is about computer program and testing on 

real data in the Hanoi Open University. The final section is conclusion. 

 

2. GENETIC ALGORITHS BASED METHOD FOR TIMETABLING PROBLEMS  

 

In general, course-based timetabling problems (CTP) consists of assigning appropriate 

time-slots, teachers and rooms to all given courses. This is done to ensure that all hard 

constraints are met and take satisfactions of soft constraints as high as possible. However, in 

academic credit training systems, it depends on characteristics of each university. CTP will be 
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deployed with certain differences. Some universities let students enroll subjects firstly. Then 

they use these enrollments as parameters of the problem. They divide students into each class 

and fix them in every class. These classes are treated as resources and we assign classes to 

courses. So, all students of each class will be assigned to such courses. In this case, students 

cannot enroll for any further courses and they are always fixed in a class. This is not flexible for 

students and it does not give many choices for them such as time-slots, lecturers. In this paper, 

we use resources including time-slots, teachers and classrooms. This would be appropriate to the 

case that a timetable will be implemented before students enroll. 

Steps for solving CTP can be described as follows: At the beginning of a semester, from 

learnable subjects of students, we propose all possible courses. Then we establish a timetable by 

assigning resources (time-slots, teachers and rooms) to every course. We announce generated 

timetable to students for enrolling. So, CTP problem consists of assigning teachers, time-slots, 

rooms to courses so that all hard constraints (H) must be met and soft constraints (S) can be 

satisfied as much as possible. 

In universities, hard and soft constraints are composed of various factors. They can be 

following requirements: 

(H1) Each teacher or room is not assigned to more than one course at a time-slot. 

(H2) Rooms must be assigned to appropriate courses. A practical room cannot be assigned 

to a theory course and vice versa, a hall room should not be assigned to small courses, etc. 

(H3) Each teacher must be assigned to courses so that he or she has sufficient knowledge 

and capability of teaching for courses. 

(H4) Teachers must be assigned to courses with time-slots so that they are present at the 

school. Each teacher has a list of time-slots for presenting at school. 

(S1) Teachers are assigned to courses so that their expertise of courses is as high as 

possible. 

(S2) Teachers are priority assigned to theirs expected time-slots as high as possible. 

(S3) It should be to balance number of courses for every teacher, i.e., the minimum and 

maximum number of courses of every teacher should be taken. 

(S4) It should be given priority courses with prerequisite of a subject to same time-slot. 

This aims to increase abilities of enrollments on the timetable. 

(S5) Abilities of enrollment for every student on the timetable is as high as possible. 

In this paper, we assume that it is not necessary to design curriculums with fixed 

mandatory subjects of every semester. Instead, we design a diagram of pre-requisite subjects for 

curriculums. When students want to choose subjects for learning in a semester, he or she must be 

passed all pre-requisite subjects belonging to the chosen subjects. For this case, soft constraints 

S4 and S5 have significant meanings. Soft constraint S4 means the more courses of same time-

slot, the more chance of enrollment for students. However, these courses must be together pre-

requisite. For S5 constraint, when students choose more subjects for learning then they can early 

graduated. In addition, if we reach high satisfied S5 then we many students at school in a 

semester. This means that school financing will be increasing, facilities are much used, etc. 

Depending on particular academic credit training systems of a university, soft constraints 

can be adjusted some parameters for suitable reality. CTP can be formalized as an optimization 

problem model and we now describe its input data. In this model, we use following symbols: 
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- {             } denotes set of courses,    is number of courses; 

- {             } denotes set of teachers (lectures),    is number of teachers; 

- {             } denotes set of rooms,    is number of rooms; 

- {             } denotes set of time-slots,    is number of time-slots; 

- {             } denotes set of students,    is number of students. 

Normally, in universities, CTP should have weekly time-slots. A day of week can be 

divided into two sessions such as morning and afternoon. We assume that there are 6 days of a 

week from Monday to Saturday, then we have 12 time-slots of a week. However, we can also 

divide a day into many periods of time and weekly time-slots can be more than 12. 

In [2], we analysized these constraints in details, then H3, S1 and S3 constraints can be 

easily met by manually assigning teachers to every course based on experts. H1 constraint can 

be only obtained during progress of CTP by checking this constraint on a timetable. The 

remaining constraints are represented by matrices as the following: 

(H2)     {                     }  defines constraints between rooms and 

courses. The value of this matrix is {0,1},         implies that    room can be assigned to    
course and 0 is not. 

(H4, S2)     {                     }  defines constraints between teachers and 

time-slots. We integrate H4 and S2 constraints. In which, H4 is strictly priority of time-slots for 

assigning with teachers and S2 is as high as possible. Therefore, this matrix will receive values 

in the form of language. For example, NO, NORMAL, GOOD, VERY GOOD, etc. NO value 

denotes a teacher being not present at schools during at that time-slot.  

(S4)     {                          } describes prerequisite subjects between 

courses. It will receive binary values, 0 if there are not prerequisite of two subjects or 1 if there 

is a prerequisite subject of another. Courses with prerequisite subjects should be assigned at the 

same time-slots in order to increase ability of enrollment. 

(S5)     {                      }  describes constraints between students and 

courses. It receives binary values, 1 if student    can learn course    and 0 is not. 

Now we represent a timetable as the following Table 1. For this table, columns are courses 

and rows are lecturers, time-slots and rooms, correspondingly. 

 
Table 1. Representation of the timetable. 

 

Courses       ...         

Lecturers         …           

Rooms         …           

Time-slots         …           

 

In this table, as above mentioned, we assign lecturers to every course in order to certainly 
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satisfy requirements of H3 constraint. This is also to balance number of courses for every 

teacher. However, a course can only continue running if number of its enrolled students is 

enough large. This is a dynamic factor, so universities should take somehow to ensure that the 

number of deployed courses is as high as possible. 

Underlying this, CTP could be condensed in a shorten form. We just need assigning time-

slots and rooms to courses on a timetable. In [2], we use linguistic terms of hedge algebras for 

    matrix values. If x denotes a term, then semantic quantitative function of x - (x) can be 

the following triangle for satisfying measurement of H4 and S2 constraints. For example, Figure 

1 describes satisfying measurement of three time-slots for a teacher. 

 

Figure 1. Selection of priority-time-slots of a teacher. 

 

In [2], for S2, we set   
  being total time-satisfaction measure of    teacher by evaluating 

satisfaction of assigned time-slots. S4 can be easily obtained by counting number of same time-

slot assigned courses which they are together prerequisite. We set    being totally this counting 

for measurement of S4 constraint. For S5, we evaluate it based on capability of enrollments 

according to     matrix. Once a timetable is generated, each student    can enroll some 

courses for learning. Therefore, we can automatically build an enrollment solution for every 

student from     matrix and generated timetable. This solution can be obtained by applying 

optimal method which its objective is satisfaction of S5 as high as possible. However, this is a 

quite difficult sub-problem because of many factors and relations between elements. We will 

describe details in next section. From here, we just denote   
  being satisfaction of enrollments. 

It is now can be stated a model of CTP as a formalization of multi-objectives optimization 

problems as follows: 
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which jliz ,,  
is a binary variable for defining course Ci be assigned to timeslot Tl and classrooms 

Rj if its value is 1 or otherwise. ω(.) is a function to determine values of LT matrix, it may be 

NO (ω = 0) or other linguistic terms (ω = 1). lkiw ,,  
is a binary variable for determining course Ci 

be assigned to teacher Lk and timeslot Tl or not? 

In [2], we proposed a genetic algorithm based method for solving CTP. This method uses 

temperature factors from simulated annealing (SA) as parameters for increasing convergence of 

the algorithm, and avoiding fall into local optimum as well.  

a) Chromosome encoding 

In general, for applying GA, we have to encode problem solutions into an appropriate gene 

sequence. By using directly encoding method, each gen of chromosome represents a parameter 

of solutions as a real number. For a timetable as in Table 1, as mentioned above, we manually 

assign teachers to every course by user expertise. Then, it need to encode parameters of rooms 

and time-slots, thus, a chromosome has     length of gens as in Figure 2. 

 

Figure 2. Chromosome of gene encoding of solution. 

 

Value of each gene (  ) is real number in [0,1], thereby we determine value of real domain 

of time-slots and rooms as well, by the following functions (   and   ): 

   [   ]  [    ]     
 (  )  ⌈     ⌉ 

   [   ]  [    ]     
 (  )  ⌈     ⌉ 

in which, symbol . is the nearest upper integer of values. 

b) Fitness function designing 

We design a fitness function by integrating hard constraints and soft constraints. In directly 

encoding, we use penalty coefficients in fitness function to avoid violations hard constraints and 

get high satisfaction of soft constraints. Objectives of problems can be converted to 

minimization. In this case, we divide fitness function into two parts of soft and hard constraints. 

First part is satisfying measurement of soft constraints, it can be formulated as the following 

function: 

      (
 

  
∑(    

 )

  

   

)    ( 
 )      ( 

 )   

where,   ,    and    are weights of soft constraints in objective function.  

Second part is measurement of violation hard constraints, it is can be formulated as the 

following function: 

      (  
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where, c(.) is a function of counting violations number of hard constraints H1, H2, H4. 

The fitness function is weighted sum of HF  and SF  as the following: 

              

In this case, hard constraints can be met and fulfilled by setting weight of HF  is much 

greater than others ( SF ). It means that soft constraints may be satisfied after eliminating 

violations of hard constraints. 

c) Genetic operators implementation 

We use genetic operations with integrated temperature    as an additional parameter 

(where k is the index of current generation). The probability for selection and mutation 

operations is changed through each generation by applying this temperature [2]. Genetic 

operations of selection, crossover, mutation and replacement are designed in [12] for generating 

new chromosomes during evolution. 

In facts, the better timetable, the more enrollments of students. In order to get a good 

timetable, beside partly    and    of fitness function, we should consider details of    because 

it causes the satisfaction of enrollments on a timetable. Thus, in next section, we apply 

maximum matching on bipartite graph for solving sub-problem of maximum enrollment. 

3. MAXIMIZE ENROLLMENTS USING MAXIMUM MATCHING ON BIPARTITE 

GRAPH 

In objectives of CTP, we have to maximize enrollments on a timetable. In [2], our method 

could reach high results of these objectives during evolution. However, there was an optimal 

sub-problem in the last objective of CTP. It was not solved in our method because of quite 

difficult. In facts, once a timetable is generated, every student enrolls courses based on subjects 

that he or she can learn. This sub-problem becomes determining maximal courses that each 

student can enroll.  

In general, at the beginning of a semester, we get all subjects which can be enrolled for 

every student. For each subject, we get number of students which can enroll for learning. Then, 

we propose all possible courses of every subject and put them into Table 3 as the following: 

Table 2. Proposed courses with corresponding subjects. 

Courses       ...         

Subjects           …             

where, a subject can belong to more than one course, i.e.                  . Students want 

to learn a subject, they can enroll a course belonging to this subject. Constraints between 

students and courses are represented in     matrix. Since   
  denotes number of enrolled 

courses by a student   , we have to generate a timetable so that every student can get maximum 

  
 .  

For each student   , we build a bipartite graph which left side of vertices are subjects and 

right ones are time-slots (Figure 3). Firstly, we determine subjects that student    can learn 

based on generated timetable. Then, each of these subjects is connected to time-slots which they 
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are assigned to courses of this subject. These connections are edges of the bipartite graph as the 

following picture:  

 

Figure 3. Bipartite graph for enrolling of a student. 

 

A time-slot may be assigned to more than one course in a timetable, so we have 

connections between a time-slot and many subjects. Furthermore, a subject may belong to more 

than one course and a time-slot is assigned to one course, we also have connections between a 

subject and many time-slots. For example, in Figure 3, time-slot    is connected to three 

subjects of     ,      and       or       is connected to two time-slots of    and    because 

of subject      belongs to two courses of    and   . 

Based on this bipartite graph, enrollments of a student can be reached by finding a set of 

edges which each edge indicates an enrollment of a subject and the corresponding time-slot. 

However, these edges have no common vertices, i.e. a student can only enroll a subject and a 

time-slot at once in a semester. For example, in Figure 3, if a student enrolls subject      with 

corresponding    (the bold line) then he or she cannot enroll      and    any more. This 

suggests that we can apply maximum matching methods on bipartite graphs to solve this sub-

problem, the more edges we find, the more subjects that student    can enroll for learning. 

We now can let   
  be number of possible enrolled subjects by student   . With maximum 

matching of every student, we can get total satisfactions of enrollments for all students as the 

following: 

   ∑   
   

   . 

In maximum bipartite matching, a set of edges with no common vertices is called a 

matching -  , thus this problem become finding   with maximum cardinality. We apply 

Hopcroft-Karp algorithm for this problem [#1]. A vertex has two statuses of matched and 

unmatched, and an edge is also matched or unmatched. It is said that an alternating path of   is 

a path of a graph so that it has interleaved matched edge and unmatched edge in turn of  . We 

also call an augmenting path with respect to   if it is an alternating path of   with two endmost 

unmatched edges. For example, in Figure 4, the red edges are matched, we have three alternating 

paths but there is only one augmenting path at the middle (4.b) of this Figure.  
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Figure 4. Alternating paths and augmenting paths. 

It is known that If   is a matching and   is an augmenting path with respect to  , then 

    is a matching containing one more edge than  . In which, we use notation     to 

denote symmetric difference of two sets A and B, i.e. a set of all elements so that each element 

belongs to only one of two sets. For example, the augmenting path (4.b) with respect to   (two 

red edges), we can get new one     with one more edge than   (on the right of Figure 5). 

 

Figure 5. The new augmenting path with one more edge. 

In addition, a matching   in a graph   is a maximum cardinality matching if and only if it 

has no augmenting path. 

The Hopcroft-Karp algorithm is based on that each time for searching augmenting paths, 

instead of finding an augmenting path, we find a blocking set of augmenting paths with respect 

to   which called {          } so that they are vertex-disjoint. Then we extend   by applying 

           . This procedure is repeated until no augmenting path exists. 

Next section, we develop a computer program for our proposed method, then it is tested on 

an examples and real data sets in Faculty of Information Technology - Hanoi Open University. 

4. COMPUTATIONAL EXPERIMENTS 

4.1. Experiment with sample problems 

We assume that a generated timetable in the following Table 3 with 6 courses, 3 subjects, 4 

teachers, 3 time-slots, 3 rooms and 3 students. 

Table 3. The sample timetable with corresponding subjects. 

Subjects                               

Courses                   

Teachers                   

Time-slots                   

Rooms                   

 

For illustrating maximum number of possible enrollments, we leave out all constraints matrix 

unless     matrix (Table 4). Three students   ,    and    can learn {         } , 
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{              } and {         }, respectively. 

Table 4. Constraints between students and courses (   ). 

Subjects                               

Courses 

Students 
                  

   0 1 0 0 1 1 

   1 1 1 1 1 1 

   1 0 1 1 1 0 

 

We build three bipartite graphs as in Fig. 6, Fig. 7 and Fig. 8 for students   ,    and   , 

respectively.  

 
Figure 6. Bipartite graph for student     

 

 
Figure 7. Bipartite graph for student    . 
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Figure 8. Bipartite graph for student      

 

For maximum matching of these graphs, in this simple case, we manually determine 

   {(       ) (       )},    {(       ) (       ) (       )} 
and 

   {(       ) (       )} 
for students   ,    and    respectively.  

In facts, in Fig. 6, if we choose an edge of (       ) then there is no more edge can be 

chosen, so it is not a maximum matching for student   . Similarly, in Fig. 7 and Fig. 8, if we 

choose the edge of (       ), then there is no more edge can be chosen for      subject, in this 

case, we cannot reach to a maximum matching for student    and   . In Table 5, we give all 

matching of each student, it shows that which one is maximum matching. The largest number of 

possible learning subjects for a student is number of edges in maximum matching. The 

maximum matching also indicates subjects and time-slots for enrollments of corresponding 

student. 

Table 5. Matching with its size for each bipartite graph of students. 

 Fig. of student 

Number of edges 
Fig. 6 of    Fig. 7 of    Fig. 8 of    

1 (       ) (       ) (       ) 

2 
(       ) 
(       ) 

(       ) 
(       ) 

(       ) 
(       ) 

3 

 (       ) 
(       ) 
(       ) 

 

4.2. Experiment with a real-world problem 

In [2], we used a real-world dataset of Faculty of Information Technology - Hanoi Open 

University. The detail of this dataset is also showed in [2]. In this paper, we summarize dataset 

and parameters for running in Table 6. We establish an experiment running with plugged 

maximum bipartite matching into fitness function of GA for getting the largest number of 

possible learning subjects. 



 
 
An enhanced genetic algorithm based courses timetabling method for maximal enrollments…  

745 

Table 6. Summary dataset of running experiments. 

Name of parameters Values 

Number of lecturers 75 

Number of time-slots 20 

Number of rooms 15 

Number of students 1044 

Number of subjects 42 

Number of courses 86 

𝜶 – Temperature decreasing factor in genetic operations 0.7 

𝜸max  – Maximal temperature in genetic operations 9 

Npop – Population size 250 

Gmax – Maximal generation in evolution 1000 

pc – Crossover probability  0.9 

pm – Mutation probability 0.1 

(w1, w2, w3, w4) – Weights of components in fitness (0.9, 0.01, 

0.01, 0.08) 

 

 
 

Figure 9. Number violations of hard constraints decreasing in generations. 
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By directly encoding, an individual is represented for a timetable. We use maximum 

bipartite matching for counting number of learnable subjects based on individuals. So, values of 

   is evaluated for fitness function. Then, we compute the total number of subjects for all 

students and get maximum, minimum and average of them in all individuals of each generation. 

These are compared with the version of no applying maximum bipartite matching in [2]. 

We run this experiment in three times which are denoted by Run1, Run2, Run3. The 

number violations of hard constraints are decreasing from about nearly 100 down to zero at 

about 850
th
 generation for all three running times (Figure 9). We set high weighting for avoiding 

violations of hard constraints, it is set by 0.9. Number violations of hard constraints are much 

decreasing at early generations of evolution, then it is kept decreasing in priority to zero. 

Number of all possible enrollments of the best individual in every generation is showed in 

Figure 10. For early generations, this number is quite high due to there are some violations of 

hard constraints. It is also quite much changed at each generation after that, and stability of this 

number is reached at about 800
th
 generation. 

 

 
Figure 10. Number of possible enrollments of the best individual in generations. 

 

The most important result in this paper is number of possible enrollments of the best 

individual in each experiment running. In all running, this number is higher than our method in 

[2] which it does not apply maximal bipartite matching for evaluating possible enrollments of 

students on timetables. In Figure 11, this number of first, second and last running is higher than 

those in [2] by 51, 144, 143, respectively.  

For this result, it shows that the good performance of our enhanced method in number of 

possible enrollments for students. This can make decreasing number of canceled courses when a 

generated timetable is used for enrolling by students, because, it gives more chances for 

enrolling and we use maximal enrollments of every student for suggestion in reality. 
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 Figure 11. Number of enrolling ability of the best individual in generations. 

5. CONCLUSIONS 

In this paper, we propose a genetic algorithm based method for timetable problems in 

credits training at universities. Especially, we utilize maximal matching on bipartite graph for a 

sub-optimization problem in genetic algorithms, which is maximal enrollments of students.  

The results of experiments in practice at the Faculty of Information Technology - Hanoi 

Open University show effectiveness of our proposed method. Running time of this algorithm is 

much faster than before, in comparing to traditional methods, it reduces much time to obtain the 

final timetable. It takes about 15 minutes while traditional method takes about 2 weeks by 

manually done. Moreover, results of this method show that final timetable gives much more 

opportunities for enrollments by students. Students also easily enroll courses for learning based 

on suggestions of maximal enrollments which is outputted by this algorithm. These also show 

potential effectiveness of this algorithm in practical application. 

The proposed method in this paper can be extended to apply for practicing in many 

situations of credit courses training in universities. However, hard constraints and soft 

constraints may be considered more different assessments to show suitable of each assessment. 

Especially, we can use fuzzy parameters with more suitable for purpose of actual use, thereby 

efficiency is potentially increased. These will be studied further and announced in next research. 
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