
 
 

Vietnam Journal of Science and Technology 57 (5) (2019) 645-656  

doi:10.15625/2525-2518/57/5/13338 

 

MODELING AND SLIDING MODE CONTROL FOR A SINGLE 

FLEXIBLE MANIPULATOR 

Nguyen Quang Hoang
*
, Ha Anh Son 

School of Mechanical Engineering, Hanoi University of Science and Technology,  

No. 1, Dai Co Viet, Hai Ba Trung, Ha Noi
 

*
Email: hoang.nguyenquang@hust.edu.vn 

Received: 30 November 2018; Accepted for publication: 29 May 2019 

  

Abstract. Due to material savings and acceleration time reduction, robotic manipulators are 

designed to be more slender. Therefore, the elasticity of the links should be taken into account in 

the dynamic study and control design. This paper concerns modeling and control of a single 

flexible manipulator (SFM). The finite element method (FEM) and Lagrangian equations are 

exploited to establish the dynamic modeling of SFM. Firstly, the Jacobian matrix is built based 

on kinematic analysis. Then it is used in construction of a mass matrix for each element. The 

position and vibration of SFM are controlled by conventional sliding mode controller (CSMC). 

Its parameters are chosen by linearized equations to guarantee the stability of the system. The 

numerical simulation is carried out to show the efficiency of the proposed approach.  

Keywords: flexible manipulator, finite element method, sliding mode control. 

Classification numbers: 5.3.2, 5.3.5, 5.3.7. 

1. INTRODUCTION 

Over the past 30 years, study on dynamics and control of flexible robot manipulators has 

attracted much attention of researchers [1-8]. Several authors summarized the studies on flexible 

robot manipulators [9-16], which have evaluated the development process of flexible 

manipulators from 1983 to 2016. Through these works we can see that the researches mainly 

focused on the method of dynamic model building and the method of control for this kind of 

manipulators. The dynamics of flexible manipulators is often described by partial differential 

equations. In order to facilitate simulation and control design, these partial differential equations 

are often transformed into ordinary differential equations [17, 18]. Five methods used to solve 

this problem include: 1. Lumped parameter method (LPM), 2. Finite difference method (FDM), 

3. Assumed mode method, (AMM) [Ritz-Galerkin method], 4. Finite element method (FEM), 5. 

Rigid finite element method (RFEM), or Multibody system method (MBS). 

This paper presents an application of FEM and Lagrangian equation to establish a dynamic 

model of a flexible manipulator. Based on this model a sliding mode controller is then designed 

for position and vibration suppression. A novelty of this study is the establishment of the Jacobi 
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matrix for the calculation of kinetic energy of elastic beam elements moving in the plane. Based 

on this Jacobi matrix, it is easy to calculate the mass matrix of a flexible planar manipulators. In 

addition, the study proposes a method for choosing parameters of the sliding controller based on 

linearized equation. The proposed approach has been applied to an SFM. The numerical 

simulation results show that the flexible motion is suppressed when the joint variable reaches its 

desired position. 

2. MODELING OF A PLANAR FLEXIBLE LINK BY FEM 

The kinetic and potential energy play an important role in establishing the dynamic model 

by Lagrangian equation. This section presents the deriving of mass and stiffness matrices from 

kinetic and potential energy for a flexible link moving in a plane. 

2.1. Kinematic description – Jacobian matrix  

In general case of planar motion, let’s consider a straight flexible link moving in a plane 

with respect to the fixed coordinate frame O0x0y0. The link is considered slender and has a length 

of L and mass of m0. Motion of this link is described by motion of the floating frame Oxy 

0 0[ , , ]Tr x y q – the so-called rigid motion and the small flexible deformation around its 

straight state. Fig. 1(a) shows a flexible link, fixed frame O0x0y0 and floating frame Oxy. 

Neglecting transverse shear, rotary inertia and gravity, the link is treated as the Euler-Bernoulli 

beam. 

In the FEM formulation, the link is divided into N elements with the same length l = L/N, 

and the same mass m = m0 /N. Each element has six degrees of freedom. Let’s consider the j
th
 

element of the link. Flexible motion of this element is described by displacements of two nodes, 

which are longitudinal, transverse deflection and slopes at the first and second nodes of the 

element j
th
. These displacements are collected in a vector as 

, 3 2 3 1 3 3 1 3 2 3 3[ , , , , , ] , 1,T
j f j j j j j ju u u u u u j N

    
 q . 

   
 

Figure 1. (a) Configuration diagram of a link of manipulator. (b) Typical j
th

 finite element of the link 

in the floating frame Oxy and the fixed frame O0x0y0. 

For the whole link, the elastic deformation of the link is described by a vector: 
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1 2 3 3 1 3 2 3 3[ , , ,..., , , ]Tf N N Nu u u u u u
  

q . 

Motion of j
th
 element and the motion of the link are described by ,[ , ]T T T

j r j fq q q  and 

[ , ]T T T
r fq q q , respectively. 

Consider a point M belonging to the j
th
 element on the manipulator at a distance x=xj+ξ 

from O at undeformable state, when the link deforms, the position of the point M in the floating 

frame is 

 j f l,( ) , 0d x S q+     ,    (1)  

where T
jx[ , 0]x    and a matrix S containing mode shapes as [20, 21] 

1 2

1 2 3 4

( ) 0 0 ( ) 0 0

0 ( ) ( ) 0 ( ) ( )

g g

h h h h

 

   

 
  
  

S  

with 

1 2

3 2 3 3
1

3 2 2 2
2

3 2 3 3 2 2
3 4

(1 / ), / ,

(2 3 ) / ,

( 2 ) / ,

( 2 3 ) / ,  ( ) / .

g l g l

h l l l

h l l l

h l l h l l

 

 

  

   

  

  

  

    

 

Thus, position of point M’ in the fixed frame with (1) is 

0 0 ,( ) ( )( )j f     r r A d r A x Sq ,  (2) 

where   

cos sin
( )

sin cos

 


 

 
  
  

A .    (3) 

is a rotation matrix of the floating frame respect to the fixed frame, and 0 0 0[ ]Tx yr  is a 

position vector of the origin O of the floating frame in the fixed frame. 

Velocity of the point M is obtained by differentiating (2) with respect to time 

 0 , ,( )( ) ( )j f j f    r r A x Sq A Sq     (4) 

From (3) we get  

sin cos
( ) ( )

cos sin

 
   

 

  
  

  

A A  

Putting above equation into (4) one obtains  

 0 , ,'( )( ) ( )j f j f     r r A x Sq A Sq     (5) 

By rearranging the derivative variables, equation (5) becomes  

 ( )j jr J q q       (6)   
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The Jacobian matrix of element j
th
 is determined as:  

 2 ,( )( ) ( )( ) j fj
   

 
I A x Sq A SJ q     (7) 

with I2 is a 22 identity matrix. The matrix j( )J q  plays an important role in calculating the mass 

matrix of the element and the link. 

2.2 Kinetic energy and mass matrix   

Kinetic energy of j
th
 element of the link is given by: 

0.5 T
j e
T dm  r r  

with the mass dm = m0l
-1

dξ  and r  from (6) one obtains  

  1
0 0

0.5 ( ) ( )

0.5 ( )

lT T
j j j

T
j

T m l d



q qJ q J q

q M q q
       (8) 

Substituting the Jacobian matrix from (7) into (8), the mass matrix of the j
th
 element is 

given by 

 ( )
rr r rf

fj

ffsym



 

 
 

  
 
 

m m m

m mM q

m

     (9) 

The elements of mass matrix (9) have following form: 

 

   

 

l l

rr rf

l

r j f

l
T T T

j fj f

l l
T TT T T

f ffj f

m l d m l d

m l d

m l d

m l d m l d

1 1
0 2 00 0

1
0 ,0

1
0 ,,0

1 1
0 0,0 0

,  ( ) ,

'( ) ,

,

,

m I m A S

m A x Sq

m x Sqx q S

m I S m S Sx q S







  

 



 

 





 

 

 

 

 

 





 

 

where ( ) ( )T T   I A A . 

In case of having concentrated masses at two ends, kinetic energy of these masses must be 

added. Denote mass and moment of inertia at two ends of the link are mA, IA and mB, IB. The 

kinetic energy of the mass at the end A is given by:  

2 2
30.5 0.5 ( )A A A AT m r I u   1 10.5 T

A q M q  

where 1, 0 1, 0
T

A A j j Am     
 M J J H   and   22

1 13
/0.5A AI q   H q q . Similarly, kinetic 

energy of the mass at the end B is given by:  

0.5 T
B N B NT  q M q  

where , ,
T

B B j N l j N l Bm     
 M J J H  and   22

3 3
/0.5B N NB N

I q


   H q q . 
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In order to get the mass matrix of the whole link, matrices Zj are introduced such that it 

satisfies the relation j jq Z q . Hence, mass matrix of the link has following form: 

1 1
1

( )
N

T T T
A j j j N B N

j 

  M Z M Z Z M q Z Z M Z . 

2.3. Potential energy and stiffness matrix   

Potential energy of the j
th
 element of single link due to elastic deformation is total of strain 

energy, this is given by [19,20]: 

 

2
2

, 0 2

1

2

l

j f
v w dEA EI 
 

    
            

 ,    (10) 

where v, w is longitudinal and transverse deformation at point M, E is the modulus of elastic and 

I is the area moment, A is the cross-sectional area. Longitudinal and transverse deformation at 

point M is given by 

 1 , 2 ,,j f j fv w S q S q     (11) 

where 1 1 1[ ( ) 0 0 ( ) 0 0]g g S  and 2 1 2 3 4[0 ( ) ( ) 0 ( ) ( )]h h h h   S .  

Substituting (11) into (10), one gets   

   ' ' '' ''
, , ,1 1 2 20

0.5
lT T T

j f j f j fdEA EI   q qS S S S , , ,0.5 T
j f j f j f q K q  (12) 

Hence, stiffness matrix of j
th
 element in (12) is determined as:  

 ' ' '' ''
, 1 1 2 20

l
T T

j f dEA EI  K S S S S  

Together with the rigid coordinates, the stiffness matrix of j
th
 element is given by:  

3 3 3 6

6 3 ,
j

j f

 



 
  
  

0 0
K

0 K
 

Hence, stiffness matrix of the single link is given by:  

1

N
T
j j j

j 

K Z K Z . 

3. DYNAMIC EQUATIONS OF TSFM 

The mass and stiffness matrices derived in previous section will be applied to an SFM 

shown in Fig. 2. This manipulator consists of a slider having mass of m0, a flexible beam having 

length L, cross sectional area A, area moment I, made by material with mass density  and 

elastic modulus E, and a payload mass mt at the left end. The beam is clamped to the slider and 

driven by a force  acting on the slider. Motion of the system is defined by motion of the slider 

z(t) and the flexible deformation w(x,t).  
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In order to apply FEM for establishing the equation of motion, let’s introduce some 

assumptions: (i) the flexible beam is considered to be an Euler-Bernoulli beam and the 

longitudinal deformation is neglected; (ii) the gravity effect, actuator dynamics, internal and 

external disturbances are neglected for simplicity; (iii) the payload is considered as a mass point 

attached at the right end of the beam. 

 

 

 

 

 

 

 

 

 

 

 

 

Because the considered link is uniform and has a constant cross section, the number of 

elements can be chosen as one, N = 1. Hence, vector q1 of the element is  

1 0 0 1 2 3 4 5 6[ , , , , , , , , ]Tx y u u u u u uq . 

Additionally, longitudinal and transverse deflection and slopes at the first node are zero due 

to beam be clamped at the left end to the slider, longitudinal deflection of second node also is 

neglected. Because the w axis and z0 axis coincide, angular θ = 0 and the slider moves along y-

axis, so 0 0x    and 0 ( )y z t . Therefore, the vector of flexible coordinates is given by 

5 6[ , ]Tf u uq . The vector of rigid motion coordinates is r zq . The whole vector of rigid and 

flexible coordinates is 5 6[ , , ]Tz u uq . Applying the results of the section 2, mass matrix of the 

flexible system is given by: 

sym

rr rf

ff

 
  
  

m m
M

m
 

with 0 ,rr tAL m m  m  

  20.5 0.5 ,rf tAL m AL    
 

m  

2

2 3

13 11

35 210
11 1

210 105

t

ff

AL m AL

AL AL

 

 

 
  

  
 
  

m .  

Stiffness matrix of flexible beam is given by: 
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w(xEI,
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Figure 2. Flexible Cartesian manipulator. 
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1 2

2 1

0

ff





 
  
  

0
K

0 K
, with 23

12 6

6 4ff

LEI
L LL

 
  

  

K

   

 (13) 

After having mass and stiffness matrix, under the assumptions, and using Lagrange’s 

equation, the dynamic equation of SFM is obtained by: 

  
rr rf r r

fr ff f ff f

1 2

2 1 2 1

m m q 0 0 q

m m q 0 K q 0


 

         
          

                  


.    (14) 

This dynamic equation will be used in designing of a controller and in simulation.  

4. CONTROLLER DESIGN 

In this section, a robust controller is designed by using sliding mode techniques. The 

controller is applied for stabilizing vibration at the tip of beam and accuracy position of SFM. 

The dynamic equation (14) can be decomposed into two sub-systems as:  

 rr r rf fm q m q   ,     (15) 

 fr r ff f ff f  m q m q K q 0 .     (16) 

These dynamic equations (15) and (16) will be used to design CSMC. The objective of the 

controller is to drive the actuated variables qr approaching to desire variable qrd, and un-actuated 

variables qf reaching to desired values qfd asymptotically. In this mathematic model, qrd is 

desired position and qfd is the vibration of tip beam. Objective of controller design is that when 

qr reaches qrd, the flexible motion qfd converges to zero to eliminate vibration of tip beam. 

Unactuated dynamics (16) can be rewritten as 

 1( )f ff fr r ff f
  q m m q K q .    (17) 

Substituting (17) into (15), one obtains the reduced form of system dynamics: 

 r fmq Kq   ,      (18) 

where 1
rr rf ff fr

 m m m m m  and 1
rf ff ff

 K m m K . 

From (18), actuated dynamics is modified as: 

1( )r f
 q m Kq  

with m  being a positive definite matrix. 

Define the errors er and ef such that er = qr – qrd and ef = qf – qfd = qf. Thus, the sliding 

surface is defined by  

 r r f r r f     s e e e q e e        (19) 

In (19), α and β are the sliding surface parameters. Derivative of s with respect to time is 

determined by 

 r r f  s q q q       (20) 
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when the system states on the sliding surface (19), 0s  so 0s , exists and the equivalent 

control law is applied to the SFM control system. 

Considering the case 0s , from (20) ones gets r r f  q q q  . Then substituting rq  

into (18), the equivalent control is given by 

 ( )eq r f f   m q q Kq         (21) 

The equivalent control (21) can guarantee all state trajectories on the sliding surface (19) 

when they reach this surface. To verify the system stability, a Lyapunov function candidate is 

defined as 0.5 TV  s s . The derivative of V with respect to time is defined as TV  s s . To keep 

these system states on the sliding manifold, we choose sgn( )n  s Ks k s , with K > 0 and  

kn > 0. So sgn( ) 0T
nV    s Ks sk s  when 0s . 

with 0V  , in the sense of Lyapunov, 0V   should exist to make the SFM system 

asymptotically stable. As a result, define: 

  sgn( )n n  m Ks k s      (22) 

Finally, the CSMC law of the SFM can be deduced from (21) and (22): 

 sgn( )
eq n

r f n f

 

     m q q Ks k s Kq

  

 
     (23) 

with the CSMC (23), the sliding surface s converges to zero as time goes to infinity. When s = 0 

the controller parameters of the CSMC law are selected to make r r rdlim lim( ) 0e q q    as 

t  , which implies that rq  converges to rdq . Also, f flim lim 0e q   as t  , which 

implies that qf converges to zero. Therefore, all the states of the SFM system converge to their 

desired values as t goes to infinity. Note that the desired values of fq are zero. From (17), s = 0 

and 0s , we have the following equations 

 

 
 

1

1

f ff fr r ff f

ff fr r f ff f

r r f





  

     
 

  

q m m q K q

m m q q K q

e e q

 

 

    (24) 

By introducing two variables 1 fz q  and 2 fz q , equations (24) is rewritten as 

    
1 2

1
2 1 2 1

1.

ff fr r ff

r r





       
 

  

z z

z m m e z z K z

e e z

   

 

   (25) 

By rearrangement (25) one obtains   

 x Ax=       (26) 

where 1 2[ ]Trx z z e    and  
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 1 1 1
ff fr ff ff fr ff fr
  

 
 

    
  
 

0 I 0

A m m K m m m m

0

  

 

. 

Matrix A in (26) must be a Hurwitz matrix to guarantee the stability of the linearized 

systems (26). Hence ,f fq q  converge to zero and qr converges to qrd as t goes to infinity. 

Therefore, if A is Hurwitz matrix then the linear system given by (26) is asymptotically stable 

[23]. It can be concluded that the CSMC given by (23) when applied to the SFM system 

guarantees the asymptotic convergence of the states of the system to desired values.  

To reduce chattering due to sgn(s)-function, this function will be replaced by a continuous 

smooth function as  

1sgn( ) 2 atan( ), 1   s s  

Now, the control law (23) is modified as 

  12 atan( )r f n f      m q q Ks k s Kq   .    (27) 

5. NUMERICAL SIMULATION AND RESULTS 

In this section, the dynamic model (15) and (16) are simulated by mean of Matlab to verify 

the efficiency of the controller design approach. In the simulation, the system parameters of the 

SFM are set as follows [22]: 

9 2 12 4

3 5 2

0

69 10 N/ m , 4.1667 10 m ,

7850kg/ m , 5 10 m ,

0.3m, 0.01kg, 0.455kg.t

E I

A

L m m







   

  

    

The dynamics (15) and (16) of SFM is respectively driven by the CSMC input (27). The 

system parameters of controllers used for simulation are depicted in below. The sliding surface 

parameters ,  1 2[ , ]   also are selected based on the conditions for stability that are 

obtained by using the Routh-Hurwitz criterion. These conditions guarantee that A is a stable 

matrix. Substituting the system parameters of the SFM into matrix A, one gets the conditions 

2 2 1 20, 0, 4.7 33          . 

Hence, the controller parameters are chosen as  

6.8,     1.2,   1.2,

[ 40.8 3.6],       50
n



  

  

K k


 

In the simulation, the desired state of the SFM is set by vector [0.3m 0m 0rad]Tq . 

The simulation results are shown in Figs. 3-6, in which the driving force, motion of the slider 

and deflection at the right end of beam are presented. From Fig. 4, the slider arrived at the 

desired position at about 1.35 s. Meanwhile, the controller effectively resists the slender beam 

oscillations in Fig. 5 and Fig. 6. There is no overshoot in Fig. 4, this indicates that the flexible 

beam can directly arrive at the desired position instead of moving back and forth around the 

desired position. 
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Figure 3. Control force τ. 

 
Figure 4. Displacement of slider. 

 
Figure 5. Transverse deflection at the right end of 

the link. 

 
Figure 6. Slope deflection at the right end of  the 

link. 

The control force performed by the CSMC law is shown in Fig. 3. In this figure, the driven 

force jumps back and forth at the outset to suppress the slender beam oscillations. In 

additionally, the chattering phenomenon is greatly reduced by the smooth function of atan(). 

 
Figure 7. Control force: CSMC vs. PD. 

 
Figure 8. Displacement of Slider: CSMC vs.   PD. 

 

 

 
Figure 9. Transverse deflection at the right end of 

the link: CSMC vs. PD. 

  
Figure 10. Slope deflection at the right end of the 

link: CSMC vs. PD. 
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In order to compare the controller proposed in this paper to another controller, the second 

simulation is conducted with the traditional PD controller, that is given by 

( )
pd p d d

k z z k z , with 62, 15
p d
k k . 

The simulation results are shown in Figs.7-10. The results show that with both controllers, 

the slider is forced to its desired position after about 1.2 second (Fig. 8). Figs. 9 and 10 show that 

the vibration of the tip mass is suppressed with CSMC better than the one with the PD 

controller. With the CSMC, the vibration of the tip mass is suppressed after about 1.5 seconds, 

meanwhile it is more than 3.0 seconds with PD one. In addition, the control force is not smooth 

as with the CSMC (Fig. 7). These results show the advantages of the CSMC controller in 

comparison to the traditional PD one. 

6. CONCLUSION 

In this paper, the mass and stiffness matrices for a flexible link moving in a plane have 

been established by using a floating frame. Based on these matrices the dynamic equations of a 

translational flexible link with two masses at two ends are driven. This approach can be 

extended for any flexible link moving in a plane. By using Jacobian matrix and finite element 

method, the robot was easily modeled, this method is especially useful for flexible link that has 

across-sectional change, that flexible link must be divided into many elements. Additionally, the 

sliding mode controller has been successfully designed for the SFM. The correctness and 

reliability of the parameter selection method has been confirmed through numerical simulation 

results. 
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